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Normal approximations, as provided by permutational central limit
theorems, conditionally can be arbitrarily bad. Such approximations there-
fore are poorly suited to the construction of critical values for Pitman
(permutation) tests. A classical remedy consists in substituting a beta
approximation (over the appropriate conditional interval range) for the
normal one. Whereas deriving permutational extreme values for usual,
nonserial statistics is generally straightforward, the corresponding problem
for serial statistics (e.g., autocorrelation coefficients), however, appears
somewhat more difficult. This problem, which is shown to reduce to a
particular case of the well-known travelling salesman problem, is explicitly
solved here for the autocorrelation coefficient of order one, allowing for a
simple computation of permutational critical values for Pitman tests against
serial dependence. The case of higher order autocorrelations is, however, of
a different nature and requires another approach.

1. Introduction.

1.1. Pitman tests and permutational central limit theorems. Whereas in-
variance principles provide the theoretical grounds for the well-developed
theory of rank tests, more classical unbiasedness and similarity arguments
quite naturally lead to the relatively less familiar class of permutation
tests—conveniently referred to as Pitman tests.

Pitman tests typically arise whenever the data, or some function thereof,
reduce, under the null hypothesis to be tested, to a white noise series (though
exchangeability here would be sufficient) with partly or completely unspecified
distribution function. The corresponding order statistic then is sufficient
complete (under the null hypothesis); conditioning (as suggested by classical
Neyman-structure considerations) upon this sufficient statistic yields permuta-
tional distributions and Pitman tests.

Pitman tests based on the permutational distributions of classical, normal-
theory test statistics can be shown asymptotically as powerful as the latter
[see, e.g., Hoeffding (1952)], with, however, the important additional property
of remaining valid and unbiased under completely arbitrary distributional
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assumptions. Such tests accordingly have been considered in a variety of
situations: one- and two-sample location problems (permutational ¢-tests; see
Fisher (1935), Pitman (1937a), Efron (1969), Cressie (1980) and Edelman
(1986, 1990), to name only a few], bivariate correlation problems [Pitman
(1937b)], analysis of variance [Pitman (1937c)], regression [Dufour and Hallin
(1991a)]. A complete coverage of the subject can be found in Edgington (1980).

Pitman tests against serial dependence also have been considered, mainly in
Wald and Wolfowitz (1943), Ghosh (1954) and David and Fix (1966). These
three papers, however, essentially concentrate on establishing permutational
central limit theorems for a class of statistics including serial correlation
coefficients. Now such permutational limit results are of limited practical
interest if a strictly conditional point of view is to be adopted. Unlike tradi-
tional (unconditional) central limit theorems, permuytational (i.e., conditional)
convergence results indeed usually cannot be interpreted as conditional ap-
proximation results, since convergence is far from uniform, which makes the
quality of the approximation heavily dependent on the actual observed values
(an important exception, due to distribution-freeness, is the case of rank-based
statistics in the absence of ties). As mentioned by David and Fix (1966), the
permutational distribution of autocorrelation coefficients can be extremely
skew (for any series length n), and normal approximations clearly cannot
account for any degree of skewness. Moreover, the critical values derived from
permutational central limit theorems usually differ very little from the uncon-
ditional ones—thus annihilating most of the theoretical advantages of permu-
tational procedures over their unconditional counterparts.

A classical remedy against the poor fit of a normal approximation to the
distribution of a skew, interval-valued statistic, consists in considering a
(four-parameter) beta approximation over the adequate interval, adjusting for
the first two moments. This device has been successfully employed in approxi-
mating permutational distributions in the nonserial case [Pitman (1937a, b, c),
as well as in approximating the unconditional distributions of correlation
and autocorrelation coefficients [Dixon (1944), Durbin and Watson (1971),
Anderson (1971) pages 338-347, Bartels (1982)].

1.2. Serial correlation and the travelling salesman problem. If a beta
approximation is to be constructed for the permutational distribution of some
test statistic, the first step is to identify the exact permutational range of the
statistic under study. Obtaining this range is fairly trivial in the case of
nonserial statistics, but turns out to be considerably less obvious for serial
ones. Consider indeed a general linear, first-order serial statistic of the form

n
(L1) S(X®) = T J(X0, X)),
t=2
where X™ = (X{™,..., X{) denotes an observed series of length n and

J(x,y) is some function (a score function) from R? onto R. Define the
complete directed graph on the set of nodes V ={0,1,...,n}, and attach a
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weight J(X;, X;) at arc (i, j), with J(0, X;) = 0 = J(X;,0). Then the minimal
(maximal) permutational value of S(X™) corresponds to a minimum (maxi-
mum) weighted Hamiltonian cycle through V (a Hamiltonian cycle through V
is a cycle which passes exactly once through each node). The problem of
determining such optimal Hamiltonian cycles is best known as the travelling
salesman problem, itself a special case of the linear ordering problem [see
Lawler, Lenstra and Rinnooy Kan (1985)]. These problems are of maximal
complexity, and no general explicit solution, no fast algorithmic procedure can
be expected to exist.

Now, in most cases of practical importance, tests against serial dependence
are based on statistic (1.1) with symmetric multiplicative score function of the
form J(x,y) = H(x)H(y) (H may also depend on the order statistic X,.,, e.g.,
through standardizing constants). This is the case for usual autocorrelation
coefficients (whatever definition is adopted), Spearman-Wald-Wolfowitz
autocorrelations [Wald and Wolfowitz (1943), Bartels (1982)], and also for
van der Waerden autocorrelations [David and Fix (1966), Hallin and Puri
(1988)]. Taking advantage of this particular structure of the weight function,
we derive (Proposition 2.1 and 2.2) an explicit solution to the corresponding
travelling salesman problem. This result is used, in Section 3, to derive critical
values for Pitman tests based on usual sample autocorrelations.

The mathematical techniques used throughout the paper constitute a rare
- instance of a statistical application of graph-theoretical methods, which are
rather nonstandard in the area.

2. Optimal Hamiltonian cycles. Denote by x., = (2, .. ., %,)), where
X1y < *°* <X, an ordered n-tuple of real numbers. Consider the complete,
undirected graph on the set of nodes V ={1,...,n} and associate a weight
X)X, With edge (i, j). For the sake of clarity, denote by x;, and (x;), x;))
node i and edge (i, j), respectively.

Let x = (xy,..., x,) be a permutation of x.,. Define the objective function

2.1) T(x) = ¥ %,y
t=1

with the convention x, = x,. Clearly, x characterizes a Hamiltonian cycle
through V. A permutation x*, or the corresponding cycle is called minimal
(respectively, maximal) if T(x*) = min T'(x) [respectively, T'(x*) = max T(x)],
where the minimum (respectively, maximum) is taken over the n! possible
permutations of x.,. The problem of obtaining minimal or maximal permuta-
tions (cycles) is a special case of the so-called symmetric travelling salesman
problem; due to the particular structure of the objective function (2.1), this
problem here admits an explicit solution, which is described in Propositions
2.1 and 2.2 below.

* PROPOSITION 2.1. A minimal permutation of X., is

(2.2) Xpin= (x(l): X(nyr X2y X(n—2)» X4y + - + » X(5)» X(n—3)>» X(3)» x(n—l));



526 M. HALLIN, G. MELARD AND X. MILHAUD

the corresponding value of the objective function is
[(n—1)/2]
Toin = X%y + 2 (%iyXn—iy T X+ 1y%n+1-iy)
(2.3) o1
+ X s2)%(n s2+1y I (N EVER),
where [m] denotes, as usual, the largest integer smaller than or equal to m
and I(neven) is one or zero according as n is even or odd.

ProOPOSITION 2.2. A maximal permutation of X., is

Xmax = (X(nys X(n—1)» X(n -8y X(n—5)1 - - » X5)» X3p» X1 X(2)1 X(ay» X(6)»
(2.4)
<9 Xn—6yr X(n—4q)> x(n—z))5

the corresponding value of the objective function is
n—2

(2.5) Thax = *y%2) + )y XiyXi+2) T Xn—1)%(n)-
i=1

The proof of Proposition 2.1 relies on two lemmas.

LEMMA 2.1. Lety € R. Then x* is a minimal (maximal) permutation of
X, if and only if x* +y=(xf +y,...,x5 +y) is a minimal (maximal)
permutation of Xy +y = (Xgy + ¥,..., Xy T Y.

LEmMMA 2.2. Let 0 <a<b<c<d.Thenad + bc <ac +bd < ab + cd.

Proor. Puttingx+y=(x; +y,...,%x, +y), we have

T(x+y)=T(x) +2y), Xy + ny?.
i=1

The proof of Lemma 2.2 is elementary and is left to the reader. O

Proor ofF ProposiTioN 2.1. For simplicity, we use the same notation x to

denote a permutation (x,,...,x,) of x., and the corresponding Hamiltonian
cycle {(xy, x5), ..., (x,_q, x,), (x,, x,)}. Obviously, the 2n cyclical permutations
of x and (x,,, ..., x,) all yield the same Hamiltonian cycle: accordingly, we may

assume without any loss of generality that x; = x;.

The proof below relies on a branch-and-bound idea. At each step %, a family
&%~ of Hamiltonian cycles is subdivided into two nonempty subfamilies
E® and £E-D\ £®);, £* then is shown to contain at least one minimal
cycle. Starting with the set & of all Hamiltonian cycles, the process ends up
with &™ = {x _, }.
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Letting £ = 41 + m, m = 0, 1, 2 or 3, define &® as the set of all cycles in
&*~1 containing edge (x;), %;,), with

(1,n), k=1,

(2l,n - 21), E>1,m=1,
(i,j)={(n—-21-1,21+1), k>1,m=2,

(n—20,21 + 2), kE>1,m=3,

@2l+1,n-20+1), k>1,m=0.

Accordingly, the cycles in &® are of the form

(%1 X(nys X35+ 3 Xn_1, %p),
(x(l)’ X(nyr X35+ ++»Xn_1, x(n—l)),

(x(l)a X(nys X@2ys X455 Xpn_15 x(n—l))’

-

(%(1y» X(ny> X2yr X5 -+ > Xn—25 X(3)5 x(,,_l)) ,

-

B )
|
v W b

-

(x(l)’ Xinys X2y X(n—2) X553 Xp_25 %), x(n—l)) ’

(x(l)’ X(nyr X2)s X(n—2)> X(4)s - + + » X(n—3)» X(3)> x(,,_l)), k=n.
Consider x’ € £&*~V \ &®, with k£ = 41 + 2, say. Then x' is of the form
x = (x(l): X(nys X(2)ys -+ -2 X@1)> X(n—21y» ¥21+1> X271+ 2>
e Xy X on, X1y 2 K@)y Xn—1)) >
with x; = x,,_g;_;,- Define X" as
x" = (x(1), X(nyr+ s Xn—21y X21+1> X¥21+2>
e X Xy o Xy o153 X1 Xn—21—1)> X@2I+1)s + + - X(3)» x(n—l))'
Obviously, as can be seen from Figure 1, x” € &® and
T(x") =T(X') + X_2-1y¥@+1 T Xic1Xn_21 ~ Xn-21-1%i-1 ~ %@+ 1)%n-2-

Since X974 1) < X, -2 < Xn_g7-1) AN X574 1) < X;_q < Xp_2;-1y, it follows from
Lemma 2.2 that T(x") < T(x'); &® consequently contains at least one mini-
mal cycle. A similar reasoning holds for £k = 4/ + m, m = 3, 1 or 0.

As for the minimal value of T, it is easy to check that T'(x_; ) actually
reduces to (2.3). O

ProorF oF ProprosITION 2.2. On account of Lemma 2.1, we may assume,
without any loss of generality, x;, = 0, x;, > 0. In order to fix the notation,
assume again n = 4/ + 2. The proof still holds, with minor changes, for
n=4l+m, m =0, 1 or 3. Denote by x the vector resulting from x_ . by
alternating the signs as follows:

(2‘16) X = (%) Fn-1y ~X(n-3p -+ X5y ~%@p %1 = 0,
~ Xy Xays > ~Xn—ty Xn-2))-
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Fic. 1. Hamiltonian cycles x' (bold) and x" (dotted).

Clearly, T(¥) = —T(x,,,,) and a sufficient condition for x_, being a maximal
permutation of x., is thus % being a minimal permutation of X ., where X, is
the ordered vector resulting from X, namely

Xy = (— %y ~Xn—3) ~Fn_ayr---» ~X@ Xy ~F@)p X ¥y = 0,

Xiays X5y> X8y X@)s - - - X(n—5)» X(n—-2)» X(n—1))

= (’Ea)’ @y @y o> % /2)-10 Xn g2y Xy = 05 s Xumnys j<n>)~

As can be checked easily from (2.3), (2.6) is precisely the minimal permutation
of % ., described in Proposition 2.1.
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As for (2.5), we leave it to the reader to check that T, ,, is nothing else than
T(X pay)- O

3. Pitman tests against serial dependence.

3.1. First-order autocorrelation coefficient. Let X = (X,,..., X,) be an
observed series of length n. Define

n 1/2
(3.1) Z, = (Xt—X)/[tgl(Xt_X)z] , t=1,...,n,
0’

t=n+1,
where X = n=1X?_, X,. Then the first-order autocorrelation is
n ) 9 n+1

n
(32) rn=X% (Xt—X)(Xt—I_X) )y (Xt_X) =X Z,Z,_,,
t=2 t=1 t=1
with the convention Z, = Z, . Alternative definitions of r; can be consid-
ered. The results below remain valid, provided (3.1) is modified in an obvious
fashion. Putting Z ., = (Z;), Zy), ..., Z(, 41y, With Z) <Zy < -+ <Z, ),
we have the following results.

ProposiTION 3.1. The permutational minimal and maximal values of r,
are

[n/2]
Tmin = Z0yZn+1) + Y (Zi\Zins1-iy + ZiisyZin +2-iy)
(3.3) =
+ Znr ol (nodd)

and

n—1
(3.4) Tmax = ZayZ2) + _Zl ZisZiivoy T ZinyZin 41y

is

respectively. The permutational mean and variance of r, are
(3.5) E(r))=-1/n
and

(8.6)  Var(r;) = [n2(n - 1)] '[n2 = (n = 1) — n(n + 1)by],

where b, = ¥ ,Z} denotes Pearson’s usual kurtosis coefficient (computed either
from the original series X or from the transformed one Z).

Proor. The first part of the proposition follows from Propositions 2.1 and
2.2 by noting that, provided that the n + 1 values of Z, are substituted for the
x;’s, the noncircular autocorrelation coefficient (3.2) coincides (with n + 1
instead of n) with the circular objective function (2.1); the extremal values
(3.3) and (8.4) then result from rewriting (2.3) and (2.5).
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As for the permutational moments (3.5) and (3.6), they can be obtained
from simple combinatorial arguments; see David and Fix (1966) or Hallin and
Mélard (1988) for details. They also are provided by Dufour and Roy (1985,
1986), where they are used in the derivation of an upper bound for the
unconditional variance of r: -

All the elements that are needed for performing Pitman tests based on r,
are now at hand. According to the available tables, one may either wish to
compute p-values or critical points. O

The p-values can be obtained either from tables of the incomplete beta
function ratio I(p, q) [Pearson (1968); Osborn and Madey (1968)], or from
approximations thereof [see Johnson and Kotz (1970), Chapter 24, Section
6.1]. The p-value for an observed value r; of the first-order autocorrelation
coefficient is then I (p, ), with

x = (rl - rmin)/(rmax - rmin)’
(37) 13=(rmin+n_1)(rmax_rmin)_lK’

(38) (j= —(rmax+n_1)(rmax_rmin)—1K’

B n?(n — 1)(rpm + n‘l)(rmax +n7h)

n? - (n-1)—-n(n+1)b, 1

(3.9) K

[p and § are obtained from formulas (19) and (20) in the above-mentioned
chapter of Johnson and Kotz (1970) on replacing the mean /; and variance u,
with (3.5) and (3.6), respectively].

Critical values can be computed from the tables of percentage points given
in Pearson and Hartley (1966). Denoting by x; , the wth quantile of the
standard beta distribution with parameters (p, qf[i.e., the solution of I.(p, q)
= 1], one has for r, the corresponding percentage point

(310) Tmin + (rmax - rmin)xg,d’
where p and ¢ are as in (3.7) and (3.8), respectively.

3.2. Higher order coefficients. Unfortunately, no straightforward exten-
sion of Proposition 3.1 to the case of higher order coefficients seems to be
possible. The reason for this is as follows. The graph-theoretical version of the
problem of order 2 > 1 involves a team of k salesmen. Letting n = kI + m,
with | = [n/k], divide the set of n nodes into & — m subsets of cardinal / and
m subsets of cardinal / + 1 in such a way that the cumulated weights of the %
minimal (maximal) Hamiltonian cycles through the k subgraphs thus ob-
tained, be minimal (maximal). Now, unlike the optimal Hamiltonian cycles in
the k& subgraphs [which, according to (2.2) and (2.4), exclusively depend on the
ranks of the x;’s], the optimal subdivision itself depends on the actual values
of the x,’s.



PITMAN TEST AGAINST SERIAL DEPENDENCE 531

To see this, consider the case n = 10, £ = 2. Let ¢ € (0.1) and
x{,=(2,3,6 — 2,6 —¢,6,7,8,9,10, 11).

The value of ¢ has no influence upon the ordering of the x;,’s. Whatever this
value,2 <83<6 -2 <6—-e<6<7< -+ <11 8till,for1/2 <e < 1, the
minimal value of ¥} _sx/x;_, is

= 7y min (2,8,8,10,11) + 7y, (6 — 26,6 — £,6,7,9) = 260 — 43¢,

7’3, min
and is reached for
*=(11,9,2,6 — 2¢,8,6,3,6 — £,10,7)
= (%i0y» %{ays X1y Xpy» Xry Ko X2y Xty X(ops X))
whereas for 0 < ¢ < 1/2, the minimal value is
=y min(2,8,9,10,11) + 1y (6 — 26,6 — £,6,7,8) = 259 — 41¢,

r 25; min

which is reached for
x** = (11,8,2,6 — 2¢,9,6,3,6 — £,10,7)
= (%i0y» Xnys X1y %ay» Xy Koy K2ys Xty Fiops X))

Different techniques thus should be considered if (exact or approximate)
permutational critical values were to be obtained for higher order autocorrela-
tion coefficients. One idea consists in deriving bounds for permutational
distribution functions, and is developed in [Dufour and Hallin (1991a, 1991b,
1992)], where various bounds of the exponential, Chebyshev, Berry-Esséen and
Eaton types are provided.

4. A numerical illustration. The accuracy of the proposed beta approxi-
mation and its expected superiority over normal approximation [based on
classical, nonconditional results, such as in Ljung and Box (1978) or Moran
(1948), or based on permutational central-limit theorems such as in Wald and
Wolfowitz (1943) or Ghosh (1954)] should be investigated through Monte Carlo
methods. The very idea of a systematic Monte Carlo study, however, is
somewhat contradictory with the conditional nature of permutation tests.
Separate Monte Carlo studies indeed should be conducted for every possible
value of the conditioning order statistic X ., [since the concept of an underlying
distribution for X,., in some sense has to be ruled out] except in a few specific
cases, such as that of rank tests, where all conditional (permutational) distri-
butions coincide with the unconditional one.

The present section is therefore restricted to a brief numerical illustration,
for a very short series length (n = 8; so that exact permutational distributions
still can be obtained through enumeration techniques). Example 1 considers
the permutational distribution of r; for an observed order statistic X ., =
(1,2,...,8). This distribution thus coincides with that of the Spearman-
Wald-Wolfowitz rank autocorrelation coefficient studied by Bartels (1982) and
Hallin and Mélard (1988). Except for the shortness of the series, these are
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relatively favorable conditions (skewness value of 0.07) for a reasonable nor-
mal approximation. To obtain a skewer, more challenging situation, X ., was
modified, in Example 2, into (1, 3,4, 6, 8, 12, 20, 27).

Tables 1 and 2 provide, for each of these two examples successively, the a-
and (1 — a)-permutational quantilés (« = 0.001, 0.005, 0.010, 0.025, 0.050 and
0.100) of r, obtained from (a) the exact permutational distribution, (b) the
beta approximation over [—1, 1] obtained by adjusting for the permutational
mean and variance (3.5) and (8.6) [this approximation is the one proposed—for
much larger values of n—by Bartels (1982) and Hallin and Mélard (1988)],
(c) the Ljung-Box (1978) (unconditional) normal approximation, namely,
(n? + 2n)%r, /(n — D2 = N(0,1), (d) the (conditional) normal approxima-
tion, based on the exact permutational mean and variance (3.5) and (3.6) and
(e) the beta approximation over [7,;,, "ma.x] Suggested in Section 3.

Inspection of Tables 1 and 2 reveals that the [7,;,, I'ma.x] beta approximation
(e) always performs fairly well (recall that the series length is only n = 8); it
generally provides the best approximate quantiles, mostly in the tails—though
the conditional normal approximation (d) is slightly better on a narrow inter-
val. The classical Ljung-Box approximation clearly is not reliable here—though
no one presumably would recommend using it for such a short series length.

Assume, for example, that x = (8,6, 1,4, 3,12, 20,27) has been observed,
yielding a first-order autocorrelation coefficient of 0.5489. Referring to row (e)
in Table 2, we reject the white-noise hypothesis at a (two-sided) a = 1%
probability level. None of the other approximate quantiles [rows (b), (c), (d)]
would lead to this rejection—though, as indicated by the exact 0.995 quantile
value of 0.547 showed in row (a), rejection here is the correct decision.

These two simple examples suggest that the beta approximation proposed in
Section 3 provides fairly good approximate permutational quantiles, even for
very short series. Other approximating methods, based on asymptotic expan-
sions and inequalities on tail areas are the subject of an ongoing study.
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