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IGNORABILITY AND COARSE DATA

By DanikL F. Hertgan! anp DonaLp B. RuBin?

Pennsylvania State University and Harvard University

We present a general statistical model for data coarsening, which
includes as special cases rounded, heaped, censored, partially categorized
and missing data. Formally, with coarse data, observations are made not in
the sample space of the random variable of interest, but rather in its power
set. Grouping is a special case in which the degree of coarsening is known
and nonstochastic. We establish simple conditions under which the possible
stochastic nature of the coarsening mechanism can be ignored when draw-
ing Bayesian and likelihood inferences and thus the data can be validly
treated as grouped data. The conditions are that the data be coarsened at
random, a generalization of the condition missing at random, and that the
parameters of the data and the coarsening process be distinct. Applications
of the general model and the ignorability condition are illustrated in a
numerical example and described briefly in a variety of special cases.

1. Introduction. Recent years have seen a growing interest in statistical
methods that properly account for incomplete data [Little and Rubin (1987)].
The type of incompleteness that has been studied most thoroughly is missing
data, in which each data value is either perfectly known or entirely unknown.
Rubin (1976) states a general model for missing data that explicitly incorpo-
rates randomness in the missing data indicators and presents conditions under
which inferences from data subject to missing values must take account of the
mechanisms that give rise to the missing values.

In a number of common situations, however, data are neither entirely
missing nor perfectly present. Instead, we observe only a subset of the
complete-data sample space in which the true, unobservable data lie; we refer
to this kind of incomplete data as coarse data. Coarse data arise in various
ways. Perhaps the most elementary form of coarseness is rounding, which
occurs when data values are observed or reported only to the nearest integer.
A related problem is that of heaping, which includes the phenomenon known
as digit preference. A data set is said to be heaped if it includes items reported
with various levels of coarseness. For example, histograms of age often exhibit
heaps at common ages such as integral multiples of ten years with adults, or
integral multiples of six or twelve months with children. Another common
source of coarse data is censoring, which arises in studies of failure time data
when an item has not failed by the time observation of it ends. In this case the

Received February 1990; revised November 1990.

'Research supported by USPHS Grant HL-33407.

®Research supported by NSF Grant SES-88-05433.

AMS 1980 subject classifications. Primary 62F99; secondary 62A10, 62A15.

Key words and phrases. Censored data, coarsened at random, grouped data, heaped data,
interval-censored data, missing at random, missing data, rounded data.

2244

y Q)
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ% )2
The Annals of Statistics. NINOIS

- ®
Www.jstor.org



IGNORABILITY AND COARSE DATA 2245

value for that failure time is known only to lie beyond the last point at which it
was observed. Interval censoring, a close relative of grouping common in
studies of cancer, occurs when units are observed at endpoints of intervals that
are perhaps themselves random quantities, and failure, if it occurs, is only
known to lie within those limits.

Our purpose is to present a general model that covers the principal kinds of
coarsening observed in practice, and to extend Rubin’s results on ignorability
of the missing data mechanism to this setting. In the coarsening model that we
propose, observations are not made in the sample space of the random variable
of interest, but rather in its power set. Within this framework, we state
conditions under which it is appropriate to ignore the possible stochastic
nature of the coarsening and base inferences on the model for the underlying
data and the observed coarse data, as is appropriate with grouping. In this
respect, our principal result involves a generalization of the concept of missing
at random [MAR, Rubin (1976)] to the case of coarse data.

2. The general theory.

2.1. Data grouping and the resultant likelihood function. A particularly
straightforward type of data coarsening is grouping, and so we introduce
notation and basic ideas in this context. Suppose a vector random variable X
with sample space E is distributed according to density f(x; @) with respect to
some measure, the statistician’s goal being to draw inferences about 6. Also
suppose that instead of observing X directly, one only observes Y = Y(X), a
coarse version of X that defines the subspace of E into which X has fallen,
without revealing the precise value of X. The sample space of Y is then 2%,
the set of all subsets of =, the power set of E. We refer to this situation as one
of data grouping. In practice all data are observed as coarse, that is, as falling
in one of a countable number of subsets; therefore we restrict the sample space
of Y to consist of the ensemble Q) of sets in the power set that have positive
probability.

Under grouping as we have defined it, the random variable Y is a function
of X; therefore the conditional distribution r(y;x,0) of Y given X =x is
degenerate:

1, ify=7Y(x),
2.1 ;x,0) = ]
(2.1) r(y;x,0) {O, ify # Y(x).
In words, the observed y is the subspace of E in which X lies (i.e.,y = {x € E:
Y(x) =y}), Y(x) =y for all x in y and r(y; x, ) is the indicator function for
the set y. Hence the likelihood arising from y, the observed value of Y, under
grouping is

(2.2) Lo(89) = [ r(y5%,6) f(x;0) dx
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or
(2.3) Ls(6;9) = [y f(x;0) dx,

where dx represents integration with respect to the underlying dominating
measure (typically Lebesgue or counting measure).

ExampLE 1. Suppose the real n-vector X is the result of i.i.d. sampling
from a univariate exponential distribution with mean 1/6:

(2.4) f(x;0) = lil-IIOe;{p(-Oxi).

Suppose further that Y = Y(X) is the rounding set that arises when the data
are reported truncated to the next smallest integer. Letting L - 1 be the greatest
integer or floor function, then Y = (Y}, ...,Y,), where

(2.5) Y, =[|X]|X;] +1).

The grouped-data likelihood with observed grouped data y is (2.3) with f(x;0)
given by (2.4) and y defined from (2.5). Letting c(y,) = [, udu/[, du be the
center of the grouping set for X, in this case the grouped-data likelihood can
be written as

(2:6)  Lo(6;3) = I (exp{=0[c(x) = 3]} — exp{=6[c(x) + 3]})-

Likelihoods of the form L in (2.3) can be analytically unpleasant because
of the required integration. A substitute likelihood, which entirely ignores the
coarsening and thus avoids the integration, treats the interval centers c(y) =
(c(yy),...,c(y,)) as if they were the observed values:

(2.7) La(6;5) = f(c(y);0),

where the subscript A indicates approximate. In Example 1, L,(6;y) =
IT,6 exp(—6c(y;)). As in Example 1, L, and L are generally not proportional,
and thus inferences that are based on ignoring the grouping and substituting
centers are not in general correct. In this sense the missing data mechanism is
nonignorable [cf. Rubin (1976) and Little and Rubin (1987), Chapter 11].

The fact that it is in general incorrect to substitute interval midpoints for
grouped data has long been recognized. Much early research [Sheppard (1898),
Fisher (1922)] and also some later research efforts [Lindley (1950), Dempster
and Rubin (1983)] have been devoted to ways of adjusting inferences based on
the simple likelihood (2.7) to make them more like inferences based on the
correct likelihood (2.3), at least when the grouping is not too coarse. Other
efforts have considered theoretical and computational aspects of basing infer-
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ences directly on (2.3) [Gjeddebaek (1949), Kulldorff (1961)]. Heitjan (1989)
gives a detailed, recent review of this area. In contrast to this traditional
interest, our interest is in cases where L, may be incorrect because the
grouping process is itself stochastic.

2.2. Data coarsening. Consider now a more general form of grouping in
which the precision of reporting is a function of a random variable G with
sample space I', whose distribution, conditional on X = x and a parameter vy,
is given by h(g; x, y). The variable G determines the precision of reporting in
the sense that the value of G determines which of a collection of possible
mappings X — Y to use in coarsening X, where y, the observed value of
Y = Y(X, G), is the coarsened data. Hence, the conditional distribution of Y
given (X, G) = (x, g) and the parameters is degenerate:

. = . — 1’ ify:Y(xng),
(2.8) r(y;x,8,0,y) =r(y;x,8) {0, ify # Y(x,g).
We assume that the random variable G is not directly observed, but can at
best only be inferred from the observed value y. In words, if x €y and y is
consistent with g (which happens with probability 1), then y = Y(x, g) will be
observed. Because G is never directly observed, formally, neither it nor the
degenerate density (2.8) is needed, but only the implied distribution of y given
x indexed by y:

(2.9) k(y;x,y) = fr r(y;x, 8)h(g;%,v) dg.

The inclusion of G is highly useful, however, for modeling the coarsening
process, as illustrated in the following and subsequent examples.

ExampLE 2. To continue to illustrate with exponential data, suppose that
the pairs (X;,G,;),i = 1,...,n, represent i.i.d. draws from a bivariate distribu-
tion where, as in Example 1, X; is exponential with mean 1/6 so f(x;6) is
given by (2.4). Assume G, is binary (0-1), where the probability of being 0 is a
function of x; and a parameter y = (y,,v,); for concreteness, we choose this
function to be ®[y; — y,x;], where ®[-] is the standard normal integral. The
conditional distribution of G given X = x is therefore

(2.10)  h(g;x,v) = ifll{q’[h — yox: 1} {1 — @y — yax 1)

Suppose the coarsening function for unit i is

' i [20] X;/20],20] X;/20] + 20), if G, =1,

which defines r(y; x, g) from (2.8). In this model, g is known from y.
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Although at first reading this model may seem peculiar, it can be motivated
by considering the important problem of heaping in epidemiologic studies of
populations of smokers. Marginal distributions of cigarettes smoked per day
tend to have large heaps at integral multiples of twenty, particularly at the
higher numbers of cigarettes [e.g., see Moolgavkar, Dewanji and Luebeck
(1989)]. One possible explanation is that the true number of cigarettes smoked
follows some discrete distribution and that those who smoke only a few
cigarettes are likely to report the exact number they smoke, but that the more
cigarettes one smokes, the more likely one is to report not the exact number
of cigarettes but the number of cigarettes in complete packs (multiples of
twenty cigarettes). This behavior is reflected in our model (2.10) and (2.11),
where G; = 0 indicates reporting cigarettes smoked per day and G, = 1 indi-
cates reporting cigarettes smoked per day in multiples of twenty.

2.3. Inference with coarse data. For coarsened data, three candidate likeli-
hoods for inference come immediately to mind. The first ignores the coarsen-
ing altogether and uses the approximate likelihood L, in (2.7). The second
treats the coarsened data as if they were grouped data and uses likelihood L,
in (2.3). This likelihood is appealing because, although it ignores the stochastic
nature of the coarsening, it does account for the grouping. In particular, using
L allows the drawing of inferences for  using only the density of interest
f(x;6) and the observed data y.

The third likelihood correctly accounts for the coarsening of X and the fact
that the degree of coarsening is stochastic:

(2.12) Lo(0,7;5) = f f(x;0)k(y; x,7) dx,

where the subscript C implies both coarsened and correct. Likelihoods of type
L, in (2.7) are clearly not correct except in trivial cases, although they can be
approximately correct. The question of primary interest to us concerns what
types of coarsening models make the generally incorrect grouped-data likeli-
hood L in (2.3) proportional to the correct likelihood L in (2.12), and thus a
fully proper basis for inference.

An answer is provided by the concept of coarsened at random, a generaliza-
tion of the notation of missing at random proposed in Rubin (1976).

DerFINITION 1. The data y are coarsened at random (CAR) if, for the fixed,
observed value of y and for each value of y, k(y; x, y) takes the same value for
all x €y, that is, for all values of x that are consistent with the observed
coarse data y.

With Definition 1, and the definition of distinctness of parameters [# and y
are a priori independent for Bayesian inference and lie in disjoint parameter
spaces for likelihood-based inference; cf. Rubin (1976)], the following theorem
is immediate.
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THEOREM 1. Suppose the data y are coarsened at random and the parame-
ters 0 and vy are distinct. Then:

(i) The likelihood ratio for 0 based on the grouped-data likelihood L,
L(65; ¥)/Ls(05; y), equals the correct likelihood ratio based on L,
Lo(6,,7;¥)/Lc(604,v;), for all y such that L:(8,,y;y) > 0 and all 6,0, in
the parameter space of 0.

(ii) The posterior distribution of 6 based on L equals the correct posterior
distribution based on L, and 6 and vy are a posteriori independent.

CorOLLARY 1. If g is known from y, then y is CAR if and only if h(g; x,y)
takes the same value for all x € y.

Proor. If g is known from the observed y, then at that y, 2 =r X h,
where r=1forall x €y. O

ExampLE 3. In our running example with exponential data, g is known
from y, and h(g;x,y) is given by (2.10), which for any fixed y depends on x
except when y, = 0, in which case it is free of x. Hence, for the general model
with nonzero values of y, in the parameter space, the data are never CAR, and
thus likelihood or Bayesian inferences that ignore the coarsening are generally
incorrect. Specifically, the incorrect likelihood L that accounts for the group-
ing but not for the stochastic coarsening can be written as

LG = ﬁ (exp{—()[c(yi) — 10]} — exp{_g[c(yi) + 10]})&'
(2.13) i-1
x (exp{~0[c(3;) — 3]} — exp{—0[c(3:) + 3]}) %,

since g is known from y. The correct likelihood L for this model is

n &i

(y)+10

Le=T1 {fy "% exp(—0x)[1 — (v, — ¥2%)] dx}
i=1 \"e(y,)—10

(2.14)

1-g;
X {f“‘”’“/zo exp(—0x)D(y; — y5%) dx} .
c(y)—1/2

Note that L is not generally proportional to L, unless y, = 0.

3. A numerical illustration. To explore the magnitude of the effect of
using an incorrect grouped-data likelihood with coarse data, we generated one
sample of n = 1000 observations under the model of Example 3 where 1/6 = 5,
v, =0,0.2,0.4 and y, = y,5In2. For the purpose of maximizing likelihoods,
we assumed the relationship y, = y,51n 2 was known, and so dealt with only
two unknown parameters, 6 and y = vy,; this form was chosen to create
plausible values for the smoking illustration described at the end of Example 2.

Likelihoods of the forms L, and L, were maximized over § and L. was
maximized over (6,y); standard errors were based on a finite-differences
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TABLE 1
ML estimates of 1/6 (= 5) and y using L4, Lg and L

1/0 Y
Likelinood Truey MLE  SE z MLE SE z
L, 0 748 024 10.50 — — —
0.2 688  0.22 8.66 — — —
0.4 659  0.21 7.63 — — —
Lo 0 483 019 -0.87 — — —
0.2 305 014  —14.06 — — —
0.4 253 012  —21.09 — — —
Le 0 475 021 “115  —0.008 0011  —0.74
0.2 472 023 -1.21 0.205  0.020 0.22
0.4 476 022 -1.11 0.367  0.033  —1.00

estimate of the Hessian of the likelihood. Results are summarized in Table 1.
The estimates based on L, are in error by 7-11 standard errors and are far
from the estimates based on L. Estimates and standard errors from L., and
L. are similar when y = 0, that is, when the data are generated under a model
for which both L, and L. are valid. The estimates diverge, however, as y
increases away from 0, so that by y = 0.4, the MLE of the mean, 1/6, under
L is over 21 standard errors from the true value 5, whereas the MLE under
L is only about 1.1 standard errors away. Standard errors based on L also
diverge from those under L, as y increases; by y = 0.4, the standard error
under L is about half the standard error under the correct model.

4. Discussion and applications. The theoretical structure described in
Section 3 can be applied to a variety of situations. Here we simply indicate a
few examples, some of which are pursued in detail in Heitjan (1991).

4.1. Missing data. Consider the special case with binary G;, where G; = 1
implies Y; = {X;} and G; = 0 implies Y; is the full sample space of X;. That is,
if G; =1, X, is observed, whereas if G; = 0, X; is missing. Missing data can
be viewed as a special case of coarse data, and Rubin’s (1976) condition missing
at random can be viewed as a special case of coarsened at random. Specifically,
g is known from y, and h(g;x,y) is the missing data mechanism, which is
MAR if it takes the same value for all x € y; by Corollary 1, this is equivalent
to CAR.

4.2. Partially classified count data. Suppose iid. X; take the values
1,2, 3 with positive probabilities 6,,6, and 1 — 6, — 6,, respectively, and the
G; are i.i.d. and binary, with G; = 1 indicating y, = {X,} and G, = 0 indicating
Y;={1,2}if X;=1or 2 and Y; = {3} if X, = 3. The G, given X, are also
independent with h(g;x,y) = I'1?_,h .(g;; x;,v), where h ,(g;;x;,v) is given
in Table 2, and g is known from y. Clearly, the data are CAR if either
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TABLE 2
Partially classified counted data: Values of Y; and h , for nonzero values of r; X h ,,

& x; ¥ = Yyi(x;, 8)) h,(g;x;,v)
0 1 {1,2} 71

2 {1,2} .
1 1 {1} 1-v

2 {2} 1-1v,

3 {3} 1

(@) y; = v, by assumption or (b) the value y; = {1, 2} does not appear in the
sample. Blumenthal (1968) and Hocking and Oxspring (1971, 1974) have
analyzed models of this kind, although the latter authors consider only the
CAR model with y; = y,. Blumenthal noted that if y, # y,, MLEs do not exist
without further restrictions and that the MLE of 6, under the assumption
Y1 = 7. is inconsistent if y; # y,.

4.3. Censored data. A variety of cases of censored data can be addressed
using our structure. Two common examples are right-censored failure data
with type I censoring, where the censoring times are fixed in advance, and type
IT censoring, where the study is stopped after the kth failure, %2 fixed in
advance. Both types lead to CAR data sets, so that likelihood and Bayes
inferences may ignore the stochastic nature of the coarsening. Kalbfleisch and
Prentice (1980) reach the same conclusion, although they employ specialized
arguments rather than the general concept of CAR; see also Lagakos (1979)
and Heitjan (1991).

Types of censoring that may or may not lead to CAR data include censoring
due to competing risks [Kalbfleisch and Prentice (1980); Cox and Oakes (1984)]
and interval censoring of failure time data [Finkelstein (1986); Riicker and
Messerer (1988); Self and Grossman (1986)]. Heitjan (1991) presents a detailed
discussion of these situations in biomedical contexts using the general concept
of CAR.

4.4. Age heaping. Age heaping occurs because people may report ages
rounded to the nearest year (e.g., 6 years) or half-year (e.g., 45 years) or the
the nearest month (e.g., 19 months). This situation is interesting because
when the reported ages are recorded only as the number of months, the
resultant observations y do not necessarily imply known values of the group-
ing indicator g. Let G; = 0 indicate that reported age is true age truncated to
the next lowest month, G; = 1 indicate that reported age is true age truncated
to the next lowest half-year and G, = 2 indicate that reported age is true age
truncated to the next lowest year. In this case, a recorded age of 24 months
implies y; = [24, 36) with associated possible values of G, in {0, 1, 2}, a recorded
age of 30 months implies y; = [30, 36) with possible values of G, in {0, 1} and a
recorded age of 25 months implies y; = [25, 26) with 0 the only possible value
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of G,. Specific models for the analysis of such data are presented in Heitjan
and Rubin (1986, 1990); an analysis of heaped height data is presented in
Wachter and Trussell (1982).

4.5. Conclusions. We have introduced a general model for describing vari-
ous kinds of data coarsening and defined the concept of coarsened at random
(CAR), which generalizes the notion of missing at random to more complicated
incomplete data problems. The theorem states that if the data are CAR,
likelihood and Bayesian inferences can ignore the stochastic nature of the
coarsening and treat the observed data as if they were simple grouped data.
Our example illustrates the danger in doing this when the data are not CAR.
The model and concept of CAR appear to be applicable to a wide range of
problems.
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