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OF HYPOTHESES
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University of Durham

We describe a general approach to the comparison of two stochastic
specifications over a collection of random quantities and then extend the
- comparison to collections of stochastic specifications. This comparison de-
rives from the eigenstructure of the belief transform, which we construct in
full generality for partially specified belief structures. We describe an
application of the methodology, namely the comparison of hypotheses.
Given various competing probabilistic specifications for a collection of
observable quantities, we use the belief transform to separate those quanti-
ties for which the different models make very different predictions (and
therefore which may be used to distinguish between the models) from those
quantities for which the different models make similar predictions (and
therefore which may be used to assess the suitability of the general class of
models under consideration). Finally, we describe a particular application of
hypothesis comparison which relates to the modelling of a collection of time
series derived from an aluminium smelting process.

Introduction. Many stochastic analyses require the comparison of two,
or several, stochastic specifications over a collection of random quantities.
Typical examples of such comparisons are: hypothesis testing (where the
comparison is between various competing stochastic models for a collection of
observable quantities); experimental design (where the comparison is between
stochastic measures of the amount of information to be gained about various
observable quantities from the competing designs); and sensitivity analysis
(where the comparison is between a given probabilistic specification and
various alternate specifications, which are obtained by small perturbations of
the original specification).

In this paper, we propose a systematic approach to the comparison of any
two specifications and then extend the comparison to collections of specifica-
tions. The comparison derives from the eigenstructure of the belief transform,
which is the fundamental object of study in this paper. We describe the
construction of the belief transform within a subjectivist framework, but the
methodology can be similarly applied to compare any stochastic specifications.
We build the belief transform over general inner product spaces to allow the
possibility of comparing partial belief specifications.

In Section 1, we explain how belief transforms can be constructed in full
generality and describe various properties of the transforms.
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In Section 2, we describe a direct application of the belief transform
methodology, which we term the comparison of hypotheses. The idea is that,
given various competing (partial) probabilistic specifications for a collection of
observable quantities, we use the belief transform to separate those quantities
for which the different models make very different predictions (and which may
thus be used to distinguish between the models) from those quantities for
which the different models make roughly similar predictions (and which may
thus be used to assess general acceptability of the class of models under
comparison).

In Section 3, we describe a particular application of the notion of hypothesis
comparison, which relates to the modelling of a collection of time series
derived from an aluminium smelting process.

1. Belief transforms.

1.1. Belief structures. In our development, we take as primitive the notion
of the prevision of a random quantity. [The prevision, P(X), for a random
quantity, X, can be considered to be your (subjectively assessed) expectation
for X, but specified directly as a primitive quantity. The probability of an
event, H, is identified with the prevision for the indicator function for H; see
de Finetti (1974) for a detailed explanation and development of this approach.]
We make prevision primitive so that we can analyse restricted aspects of belief
specifications, where necessary, without having to first specify detailed proba-
bility measures over some limiting partition.

The collection of prevision statements is organised into a belief structure
defined as follows. First, specify a base, C = [X,, X;, X,,...], of random
quantities, including X, = 1, the unit constant. Construct the vector space, L,
whose vectors are the finite linear combinations {a; X; + --- +a,; X } of the
elements of C. Thus L is the space of all quantities whose prevision is
uniquely determined by specification of previsions for all of the elements of C.

Next specify, for each pair i, j, the prevision P(X;X;). The belief structure
B denotes the (closure of the) inner product space whose vectors are the
elements of L, with inner product (X,Y) = P(XY).

For example, a discrete probability space is represented as a belief structure
whose base consists of the indicator functions for the elementary events in the
space, so that the vectors correspond to the collection of random variables over
the space. Similarly, the usual Bayesian formulation, in terms of a prior
measure over a probability space, is represented as a belief structure by the
corresponding Hilbert space of square integrable functions over the probability
space with respect to the prior measure.

One of the main objectives of the belief structure construction is to simplify
belief specification by allowing you to restrict specification to whatever (often
small) subspace of the full probabilistic structure is adequate for the problem.

The belief structure construction was used in Goldstein (1981) and formally
described in Goldstein (1986), with emphasis on exchangeability between
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structures. A general overview of the role of such structures in subjectivist
theory is given in Goldstein (1987a,b). Basic operations for manipulating such
structures were given in Goldstein (1988a, b). A general computer language for
analysing belief structures has been written under a SERC grant. The pro-
gram is termed [B/D] (an acronym for beliefs adjusted by data) and is
described in two technical reports, Goldstein (1987¢c) and Wooff (1987).

While the above-referenced papers are all phrased in terms of the particular
inner product (X,Y) = P(XY), it is important to note that the analysis
relates equivalently to any inner product over the chosen base. This paper
concerns the comparison of different inner products over the same linear space
L, so that we will informally refer to a “géneralised” belief structure as any
inner product space over L, for which the inner product characterises some
aspect of your beliefs over C.

1.2. Belief transforms.

1.2.1. Comparing quadratic forms. At many stages of a stochastic analy-
sis, you must compare various stochastic specifications. For example:

(A1) You may wish to compare alternative plausible prior specifications, (i)
to assess the differences between your beliefs over certain observable quanti-
ties which follow from various plausible parametrisations or (ii) to assess the
stability of your inferences under small perturbations of your belief inputs or
(iii) to compare your current collection of partial prior specifications with
various larger collections of specifications, for example, generated by various
standard conjugate prior forms, to identify possible gains from increasing your
actual number of specifications;

(A2) You may receive new information, in which case you may wish to
summarise the important differences between your prior and posterior beliefs,
relate these differences to different aspects of the information and identify
“influential” aspects of the information;

(A3) You may intend to make certain observations and for planning pur-
poses you may want to identify the nature and magnitude of your expected
changes in your beliefs, for example, to compare various experimental designs
or sampling frames. :

In each case, within our formulation, there will be two or more inner
products defined over the same linear space, and we need informative sum-
maries as to the main differences between the inner products. More generally,
we may compare the original inner product with a derived quadratic form for
which some of the elements have zero norm. (For example, we might compare
prior to posterior variances over a linear space, with some posterior variances
0.) Thus, in general, we will compare the initial inner product with various
symmetric positive semidefinite sesquilinear functionals.
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A symmetric psd sesquilinear functional on B is any real-valued functional,
f, on B X B satisfying, for all X,Y,Z in B, and numbers a, b:

() f(X,Y)=f(,X),
Gi) f(X,X)>0,
(ii) f(aX +bZ,Y) = af(X,Y) + bf(Z,Y).

[Sometimes, such a functional is termed positive symmetric, while if in-
equality (ii) is strict for X nonzero, f is termed strictly positive.]

A sesquilinear functional is bounded if the infimum of the values of & for
which &|| XYl > |f(X,Y)l, for all X,Y in B is finite. This infimum is
termed the norm of the functional. [The notation and results on inner product
spaces are given in Bachman and Narici (1966).]

In our formulation, we begin with a belief structure B, with inner product
(-, - ). We compute a bounded symmetric psd sesquilinear functional {-, - } over
B. Next, we seek ways to summarise the similarities and differences between
{-,-} and the inner product (-,-). To this end, we introduce the belief
transform.

1.2.2. Defining the belief transform. We will exploit the following property
of inner product spaces.

THEOREM. A necessary and sufficient condition for f to be a bounded,

symmetric positive semidefinite, sesquilinear functional over the Hilbert space
B is that f is of the form

f(X,Y) = (X,TY),

where T is a bounded self-adjoint operator over B, with norm equal to the
norm of f [see Bachman and Narici (1966), Section 21.1].

Thus bounded sesquilinear functionals are equivalent to self-adjoint opera-
tors. We refer to this construction as follows.

DEFINITION. The bounded self-adjoint operator T' defined by the relations,
for all X,Y, that

{(X,Y}) =(X,T(Y))

is termed the belief transform for (-, -') associated with {-, - }.

One particular type of belief transform, linked to the inner product (-, - ) =
P(X — P(X)XY — P(Y)) and constructed by a system of orthogonal projection,
was analysed in Goldstein (1981). This transform compared (-, - ) with {X, Y}
= P(X — P(X)XY — P(Y)), where P, is the posterior prevision at time 1.
This transform analyses the expected changes in belief caused by new informa-
tion. An overview of the role of this special type of transform is given in
Goldstein (1987a, b).
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1.2.3. Interpreting the eigenstructure of the belief transform. The eigen-
structure of the belief transform summarises the differences between the two
inner products as follows.

Consider first the case where B is finite dimensional, that is, where the
base of B has a finite number of nondependent elements, r say, plus the unit
constant. Any symmetric positive semidefinite, sesquilinear functional will be
bounded automatically. The associated belief transform T over B will have
r + 1 orthonormal eigenvectors, Z,, Z,, ..., Z,, corresponding to eigenvalues
A, > oo 22 214,20.

Each X in B can be written as

X=(X,20)Zy+ (X,Z)Z, + - +(X,Z,)Z,,
so that the ratio D(X) of inner products is given by
D(X) = {X, X} /(X,X) = ¥ 0(X, Z)*| T (X, Z)"

Thus D(X) will be large/small if and only if X has large components
corresponding to eigenvectors with large/small eigenvalues. In particular, the
smallest value of D(X) over all elements of B which are orthogonal to
Zy,Zy,...,2Z, is A, corresponding to Z, ,, and the largest value of D(X)
over all elements orthogonalto Z,,Z,_,,...,Z, is A,_, corresponding to Z,_;.
In particular, the norm of T is A,.

Thus the eigenvectors lay out a coordinate grid over B which summarises
the nature and degree of difference between (-, - ) and {-, - }.

NoraTioN. The eigenvectors of the belief transform with eigenvalue not
equal to 1 are termed informative. Eigenvectors with eigenvalue 1 are termed
noninformative. The space spanned by the informative eigenvectors is called
the sufficient subspace for the transform.

Note 1. We can define the inverse belief transform, T~1, between {-, - }
and (-, - ) in a similar fashion, that is,

(X,Y) ={X,T'Y},

provided that we restrict the transform to the strictly positive part of {-, - }.
Note, in particular, that if Z is an eigenvector of T with strictly positive
eigenvalue A, then Z is also an eigenvector of 7!, with eigenvalue 1/A. Note
also that the eigenvectors of T are orthogonal under both (-, - ) and {-, - }.

Nortk 2. The implications of the orthogonality conditions on the eigenvec-
tors depend on the nature of (-, - ). In the special case where (-, - ) = P(XY),
if X, is an eigenvector of T', then the orthogonality constraints imply that all
of the other eigenvectors have zero prevision and are uncorrelated.
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Two types of comparison where this will occur are the following:

1. If we compare quadratic forms which assign the same previsions over the
base, then {-, - } will typically satisfy, for all Y in B, the relations {X,, Y} =
(X,,Y). Here X, is an eigenvector of T, with eigenvalue 1.

2. If we extract X, from the system, for example, as part of a linear fitting
system, so that {-, - } satisfies {X), X,} = 0, then X, is an eigenvector of T,
with eigenvalue 0.

Norte 3. As the eigenstructure of T is determined by the linear space, the
decomposition into informative/uninformative eigenvectors is unchanged if
we ‘“‘reparametrise,” replacing the base B by any linearly equivalent base of
random quantities.

1.2.4. The complementary belief transform. It is often useful to work with
the complementary belief transform defined as follows.

DErFINITION. The complementary belief transform S is defined by
S=I-T,

where I is the identity operator over B.

The eigenstructures of S and T are essentially equivalent; the eigenvectors
are the same, and the eigenvalues of S are 1 minus the corresponding
eigenvalues for T'. S is psd if and only if the norm of T (i.e., A,) is not greater
than 1. The transforms S and T decompose the inner product as

(X,7) ={X,Y} + (X,Y) - {X,Y})
=(X,T(Y)) + (X,8(Y)),

where the first term on the right represents the new quadratic form and the
second represents the difference between the forms.

In our approach, finite-dimensional spaces are fundamental, in that they
represent actual rather than idealised belief specifications. However, if B is
not finite dimensional, then T still summarises the relation between the two
forms and the spectral representation through the resolution of the identity
will provide analogous information to the eigenstructure of T' in the finite
case. In particular, if the complementary belief transform, S, is compact, then
there will be a countable number of eigenvalues of S, tending to 0, and our
interpretation for the eigenstructure of T will be as in Section 1.2.3 [see the
discussion in Goldstein (1981)].

1.3. Adjusted belief transforms. Belief transforms summarise the differ-
ences between inner products. Often, it will be useful to make such com-
parisons in stages. For example, you might wish to analyse the effects of
introducing additional parameters upon your beliefs about certain observable
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quantities. In such cases it may be natural to introduce the additional parame-
ters one at a time, in order to separate out the overall differences in the final
specification into parts attributable to the individual parameters. Alterna-
tively, you might have revised an inner product sequentially, as fresh data
came on stream, and now wish to identify the stages of the revision at which
the various important changes were made and also whether such changes were
gradual and consistent or sharp and contradictory.

Suppose that there are two new inner products {-, - };,{-, - }, defined over
B, with associated belief transforms T, T, with respect to (-, - ).

NotaTioN. The belief transform T),,, associated with {-, - },, adjusted for
{-, - }; is the belief transform associated with {-, - },, with respect to the inner
product {-, - };, that is, satisfying, for each X,Y in B,

{X7 Y}Z = {X7 T12(Y)}l

(provided that the adjusted transform exists, i.e., that {-, - }, is bounded with
respect to {, - },).

Adjusted belief transforms are belief transforms in their own right. We use
the adjustment notation in order to relate the inner product {-, -}, to the
primary inner product (-, - ) through the intermediary product {-, - };. This is
analogous to the decomposition of chains of events via probabilistic condition-
ing, as P(A N B) = P(A|B)P(B). For adjusted belief transforms, the decom-
position is as follows.

THEOREM 1. With notation as above,
T, =TTy,

(operator multiplication is the composition of the two operators).

Proor. Foreach X,Y in B,
(X’ Tz(Y)) ={X,Y}, = {X, T12(Y)}1 = (X’ Tl(TIZ(Y)))’

and the result follows. O

(The same definitions and proof follow when {-, - }; and {-, - }, are positive
but not strictly positive. In this case, the requirement that {-, - }, is bounded
with respect to {-, - }; implies that the zero elements for {-, - }; are contained
in the zero elements of {-, - },.) 4

The eigenstructure of the adjusted transform T, is interpreted in similar
fashion to the eigenstructure of T,. Large/small eigenvalues identify eigenvec-
tors for which {-, -}, is larger/smaller than {-,-};,, and these values are
related to the changes between {-, - }, and (-, - ) by the general relation given
in the theorem.
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We have observed that the informative eigenvectors (i.e., with eigenvalue
not equal to 1) distinguish the effects of two inner products. From the above
theorem, we have the following corollary.

COROLLARY. Suppose that we have a collection of inner products (-, -);,

i=1,...,k, over the linear space L. Suppose that there is a linear subspace,
M, of L, with the property that the sufficient subspace for each transform of the
form T;;_,), i =1,...,k — 1, is contained in M. Then the sufficient subspace

for each T;; is contained in M.
1.4. Evaluating the belief transform.

1.4.1. Finite-dimensional transforms. We now give a simple computa-
tional algorithm for the belief transform in the special case where L, the
underlying linear space, is finite dimensional.

1. Choose a maximal set of vectors, Z = {Z,,...,Z,}, over which (-,-) is
strictly positive.

2. Construct the matrix representation, V, of the inner product, (-, - ), with
respect to Z, that is, V = (v;)), an r X r matrix with v;; = (Z;, Z)).

3. Construct the matrix representation, U, of the quadratic form {-, - } with
respect to Z, that is, U = (u;)), u;; ={Z;, Z}}.

4. Evaluate the matrix W = V-1U.

W is the matrix representation of 7' with respect to basis Z.

Proor. Take any elements X,Y in B. Write X,Y in the coordinate
system of Z, that is, write X as (x,...,x,), and Y as (y,,...,y,), where
X=xZ, + " +x,2Z,, Y=y,Z,+ - +y,2Z,.

We have {X,Y} = XTUY = XTVV-IUY = XTVWY = (X, TY), as required.
O

1.4.2. Adjusted transforms. Suppose that we construct the two trans-
forms T; and T,, as in Section 3. Again suppose that L is finite dimensional.
For simplicity, suppose also that {-, - }; is strictly positive.

Let V, U,, U, denote the matrix representations of (-, - ),{-, - };,{*, * },, with
respect to Z. Then we have as in Section 1.4.1 that, with respect to Z, the
matrix representation of 7, is V~!U,, the matrix representation of T, is
U7 'U, and the matrix representation of T, is V™ 'U,. (Note that V~!U, =
(V-IUNUT'U,), ie., Ty, = T,T,, as required.)

(If U, is not invertible, then we can substitute a generalised inverse in the
above expression, as in our formulation, the zero elements for {-, -}, are
contained in the zero elements of {-, - },.)

1.4.3. Transforms over infinite spaces. When L is infinite dimensional (as
will be the case, for example, when we are analysing a probability model over a
continuous space via the representation as the corresponding Hilbert space of
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square integrable functions over the space), the analogue to the above matrix
representation for the belief transform for (-, - ) induced by {-, - } replaces the
matrix form by the corresponding projection operators.

We create the inner product space A, whose vectors are ordered pairs
[U, V], where U,V are elements of L.

The inner product ¢ -, - ) over A is defined by the following conditions, for
any U,V in L:

<[U’O]’[V:0]> = (U’V)7
<[0’U]7[0’V]> = {U7V}’
([Uu,0],[0,V]) ={U,V}.

In particular, the subspace B* of A consisting of all vectors of form [U, 0]
is naturally isometric with the original inner product space, B, with product
(-, - ), and the subspace B~ consisting of all vectors [0, V] is naturally isomet-
ric with the inner product space under {-, - }.

The orthogonal projection from B* to B~ is the transform that takes [V, 0]
to [0, V1. (Call this transform P~.) Denote the orthogonal projection from B~
to B* by P™.

THEOREM. The belief transform T on B is isometrically equivalent to the
operator P*P~ on B™.

Proor. For any U,V in L, we have
{va} = <[U10],[0,V]> = <[U10]1P—[V10]>
=([U,0], P*P"[V,0]) = (U,TV). O

2. Hypothesis comparison. In this section, we describe an application
which shows the belief transform in a particularly simple form.

2.1. Comparing two simple belief specifications. Consider the simplest
type of belief comparison that we might make. There are two possible collec-
tions of beliefs that we may hold concerning a certain collection of observable
quantities. If each possible belief specification is in terms of a full joint
probability measure, then we may use the methodology of classical or Bayesian
hypothesis testing to enable observations on the quantities to help us to
distinguish the two possibilities. However, we need methodology to cover
situations in which at least one of the following applies:

(i) beliefs are only partially specified;
(i) we wish to identify which aspects of the two different specifications are
responsible for the data appearing to support one or the other hypothesis;
(iii) we wish to reserve the possibility that neither hypothesis applies;
(iv) we would like to distinguish between the hypotheses by a simple and
robust analysis, which may be convincing to people holding a wide range of
beliefs.
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More generally, we may simply be interested in qualitative understanding of
the ways in which the hypotheses differ. A simple way to compare the two
hypotheses, with respect to some partial collection of belief specifications, is to
compare the predictions made by each specification and to identify certain
aspects of the data for which the two given belief specifications predict
different values. (For example, many simple hypothesis tests are based on the
magnitude of some sample average which is expected to be large under one
hypothesis and small under the other hypothesis.)

We may similarly identify aspects of the data for which both hypotheses
predict roughly comparable values, which are thus primarily diagnostic as to
whether either hypothesis can be reasonably supported by the data.

We now describe a systematic method for making such comparisons using
the belief transform.

2.2. Comparison through the belief transform. Suppose that we are about
to observe the values of a collection of random quantities C = [X],..., X,].
We wish to use these values, in an informal manner, to help us to distinguish
between two hypotheses. (Note that, for this application, it is more natural to
omit the unit constant X, from the base C.)

Suppose that we make a belief specification under each hypothesis as
follows. We assign a prevision to each member of the collection C and a
prevision for each product of two elements of C. (Note that some elements of
C may be functionally related to other elements. If we include all functional
forms, then this is equivalent to a full probabilistic specification. For example,
in the discrete case, each X; might be the indicator for an elementary event
from a partition.)

This determines two inner products over the vector space L of linear
combinations of elements of C, namely (X,Y);, = P,(XY), where P; is the
prevision assignments under hypothesis i, i = 1, 2.

Let T denote the belief transform for (-, - ), associated with (- - ),. Thus T
satisfies the relations, for all X,Y in L, that

(X,Y),=(X,TY),.

Denote by Z,,...,Z, the orthonormal eigenvectors of T, with ordered
eigenvalues A, > -+ > A; > 0. Denote V, = Z2. The eigenvectors and eigen-
values summarise all of the implications of the collection of judgements. For
those elements with A; large/small, we assign a larger /smaller prevision for
V; under the second hypothesis than under the first hypothesis, while for those
elements Z; with A; near 1, we assign a similar prevision for V; under each
hypothesis.

Further this partition is the best achievable, in the sense that Z, maximises
over L the ratio Py(Z?%)/P(Z?), Z, maximises this ratio over elements of L
which are orthogonal to Z, and so forth.

Thus an obvious display is to compare the observed Z; or V; values with the
eigenvalues of T'. Under the first hypothesis, all of the V, values are expected
to have a value of 1. Under the second hypothesis, each V, is expected to have

l
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value equal to A;,. Thus we may examine the values and informally decide
whether either or neither hypothesis seems reasonably supported. Our com-
parison is analogous to the use of sufficient statistics, in that the information
distinguishing the hypotheses is contained in the informative eigenvectors,
while “goodness-of-fit”’ information is carried by the noninformative eigenvec-
tors.

NotE 1. In principle, the comparison may be over a very large collection of
quantities. For example, under a full probability specification, all functional
forms of all combinations of sample observations could be compared. However,
this would usually be an analytical overkill, and we might select some small
subset of functional comparisons, guided by the types of prediction for which
we are most concerned that the model should prove satisfactory.

Notk 2. To simplify the interpretation of the output, we may centre each
element X in the base C to have prior prevision 0 under hypothesis 1, yielding
a set of normalised eigenvectors of T with zero prevision, unit variance and
zero correlation under H;.

NotE 3. We have observed that the collection of noninformative eigenvec-
tors provides an informal ‘“‘goodness-of-fit” test for the models. The eigenvec-
tors are only defined up to an orthonormal transform. However, if there are r
orthonormal noninformative eigenvectors, Z;, then the mean of the square
values, M = (X Z?2)/r, will have the same numerical value however we choose
the eigenvectors. Therefore we may compare the numerical value of M with
the prevision for this value under both hypotheses, namely unity.

2.3. Examples. We now derive the belief transform for some simple com-
parisons.

2.3.1. Changes in location. Many standard types of hypothesis comparison
are concerned with location changes. For the simplest location change, the
variance matrix for the elements of C takes a common value under each
hypothesis. Centre each X in C so that P(X) = 0. Each eigenvector Z; of T
satisfies the relation

P2(Zi2) =(Z;,Z;); = Ai(zi’ Z;), = A, vary(Z;).
The variance matrix is common to H; and H,, so that
vary(Z;) = vary(Z;) = 1,

and we have P2(Z;) = (A, — 1), so we can plot the observed value of each Z;
against the appropriate root of A; — 1. In this case, our grid Z,, Z,, ... has the
property that each Z; is chosen to maximise the absolute value of Py(Z) over
all elements of L which, under the first specification, have zero prevision, unit
variance and are uncorrelated with Z,,Z,,...,Z,_;.
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2.3.2. A simple hypothesis on means. Suppose that Y,,Y,,... form a (in
principle infinite) second-order exchangeable sequence. That is, P(Y;) and
P(Y;?) do not depend on i, and P(Y;Y)) for i +# j does not depend on i or ;.

We now describe two possible belief specifications for this sequence. For
hypothesis H,, k = 1,2, we denote the values of P(Y,), P(Y;2) and P(Y}Y;) for
i #j by m,,v,, c,, respectively.

Suppose that the current prevision for each Y; is 0 under each hypothesis,
that is, m, = m, = 0. Suppose further that:

Under H,, the sequence is uncorrelated, that is, ¢; = 0.
Under H,, there is a positive correlation between the members of the
sequence, that is, ¢y > 0.

Informally, the difference between H;, and H, is that observation of a
sample of Y values may change the prevision for future Y, values under H,
but not under H,. The comparison between H, and H, is essentially the
comparison between belief in a zero population mean and belief in a nonzero
(but unknown) population mean. The comparison is formally expressed through
exchangeability relations. It is often appropriate when we only wish to express
beliefs about observable quantities and we only wish to make a small number
of belief specifications.

Suppose that we can observe n members, Y = [Y},...,Y, ], of the sequence.
We construct two inner products over the linear space, L, generated by Y. The
inner products describe beliefs under each H,, that is, (Y;,Y)), = Cov,(Y, Y)),
r=1,2, so that

( ) {vl, i=J,
o , otherwise,
=17
(¥, 1)2 { 2 otherwise.

Thus the matrix representation, U, of the inner product (-, - ),, with respect to
basis Y, is

U=uvl,

where I is the identity matrix, and the representation, V, of inner product 2,
with respect to Y, is

where w, = v, — ¢, and E is the matrix all of whose entries are 1. The belief
transform for (-, - ); associated with (-, - ), has matrix representation

T=U"'YW=uvYwyl+c,E).
The eigenstructure of T is as follows. The largest eigenvalue of T is

Ay = (wy + ncy) /vy,



BELIEF TRANSFORMS AND THE COMPARISON OF HYPOTHESES 2079

corresponding to the normalised eigenvector

Z, = (n/vl)l/zyM’

where Y,, = (Y; + -+ +Y,)/n is the sample mean.

Thus the single linear combination whose variance differs the most between
the two specifications is Z;, the normalised sample mean, the variance being 1
and A, under hypotheses 1 and 2, respectively. Large values of Z? therefore
“support” hypothesis 2.

The remaining eigenvalues are

Ag=Ag= - =2, =(ug —¢y) /vy,

corresponding to any (n — 1) mutually uncorrelated standardised combina-
tions a,Y; + -+ +a,Y, which are also uncorrelated with (Y, + --- +Y}),
that is, for which @, + --- +a, = 0. A simple choice is the ‘“cumulative
residuals” R, =Y; — (Y, + -+ +Y;_,)/(j — 1), normalised to variance 1 un-
der hypothesis 1.

(We could alternatively evaluate the usual residuals Y, — Yy, as these would
equivalently span the required space, but for small samples we might need to
take account of the correlation between the residuals.)

Thus, if w, and v, are reasonably different, then we might plot the
cumulative or simple normalised residuals to see whether they appear consis-
tent with a variance specification of 1 or w,/v,, or neither. The quantitative
feature of the plot is whether we have got the variance specifications of about
the right order of magnitude. The qualitative feature is whether the residuals
can all be reasonably thought to derive from a sequence with similar variance
for each value. The qualitative features of the analysis do not depend on the
specific numerical inputs, so that, if the hypotheses are determined to be
qualitatively of the form that we have discussed, then we may examine the
plots without necessarily being very precise in our quantifications.

NoteE 1. In the special case where w, =v,, all of the information to
distinguish the two hypotheses is in Y;,, and the remaining directions have a
strictly diagnostic function.

In our formulation, w, represents the residual variation in each observation
which cannot be removed by further sampling [see the detailed discussion in
Goldstein (1986)]. Thus w, = v, when the residual variation is the same under
H, and H,. In particular, this specification applies to the standard location
shift problem, in which under H, a certain (positive or negative, fixed but
unknown) amount has been added to each quantity. This is a special case of
the analysis in Section 2.3.1, with (A; — 1) nonzero, and all other (A -1
values 0, for which Z, is the single diagnostic quantity.

2.3.3. Testing for a trend. As an alternative to the above hypotheses, let
us suppose that the observations Y; occur at time points ¢;, and that we
suspect that there might be a trend in the values across time. Let ¢ denote the
column vector (¢,,...,¢,)7.
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We introduce hypothesis Hj: Each Y; can be described by the simple
regression model of the form

Y,=m+ bt +e,

where m, b are unknown constants, and e, e,, ... are a second-order ex-
changeable sequence of random quantities, each with prevision 0.

We rewrite hypotheses H, and H, of the preceding section in the notation
of this model by the following assignments:

Under H,;: Y, = e;, that is, P(m) = var(m) = P(b) = var(b) = 0.
Under H,: Y, = m + e;, that is, P(m) = P(b) = var(b) = 0.

Suppose that under H,, H,, H; the same value, v,, is assigned for the
variance of each e;. (This implies, in the notation of the preceding section, that
wy = Uy, 1.e., that all but one of the eigenvalues of the transform between H,
and H, have value 1.)

Denote by u« ,,,v,, the variance of m under H, and H;, respectively. Denote
by v, the variance of b under H,. Suppose, for simplicity, that the origin for
time has been chosen so that (¢, + -+ +¢,) = 0, and that the covariance
between m and b under Hj is 0.

The matrix representations V. for the three inner products (X,Y), =
P(X,Y),i=1,2,3, are as follows:

V.,=v,1,
Vo=v, I+ u,E,
Vs=v,I+v,E+wG,
where G = #T and w, = v, + P(b).
There are three comparisons that we might make:

H, against H,, a simple location shift alternative;

H, against H, a trend test given nonzero, but unknown, level;

H, against H,;, comparing a zero-mean, exchangeable sequence to trend
plus general level.

Let T;; be the transform for H; associated with H .
We compared H, to H, in the preceding section. We now compare H, with
H;. The matrix form for Ty, is

Ty = Vo'Vy=(1/v,)(I — kE)(v,I + v, E + w,G),
where k = v, /(nu,, + v,), so that, as EG = 0,
T23=I+dE+rG,
where d = ((v,, — «,,)/(nu,, +v,) and r = (w,/v,).
There are two informative eigenvectors of T,5. The first is Wy, [= (¢,Y; +
-++ +¢,Y,)/n], the sample covariance of ¢ and Y, with eigenvalue A, =1 +

tor, where tgy = (t2 + --- +¢2). The second is Y,,, the sample mean, with
eigenvalue A, = 1 + nd.
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Norte 1. If the uncertainty for the level is the same under H, and H,, that
is v,, = u,, then A, = 1, and the only informative eigenvector is W,,.

NotEe 2. As before, the least squares residuals R; = Y; — Y,, — b*t,, where
b* = Wy /t ), span the space of unit eigenvectors, and may thus be plotted for
diagnostic purposes, though if n is small we might again choose to work with
the corrected residuals.

NorEe 3. - Again, the qualitative features of the analysis do not depend on
the precise numerical values, so that as before the influence of the belief
specification is firstly to direct us qualitatively to the kind of features of the
data that we should examine and secondly to give us quantitative guidelines to
compare with our qualitative assessments.

Note 4. Given a nonzero covariance between b and m under Hj, there
would again be two informative eigenvectors of T. In this case, each would be
a linear combination of vectors W,, and Y,,.

Finally, we compare H; with H;. We can form this comparison directly
from the comparisons H,; with H, and H, with H,, by the relation

T13 = T12T23-

As the space, M, spanned by Y,, and W,, is sufficient for transforms T,
and T3, M is also sufficient for T',. (This is a special case of the corollary of
Section 1.3.)

We can form a basis, consisting of Y,,, W,,, and any (n — 2) combinations
orthogonal to both Yy, and Wy,. This basis is an eigenbasis for each of T,,, Tys
and T';. All the eigenvectors of T',; are noninformative except Y,, for which
the eigenvalue is (1 + n(v,,/v,))X1 + nd), and W,, with eigenvalue 1 + ¢, r.
Thus the values Y), and Wy, may be used to distinguish H, and H,.

However, as we have seen above, W,, distinguishes H, from H,, while,
particularly in cases with d = 0, Y,, distinguishes H, from H,. Thus splitting
T3 by introducing H, may be useful to clarify which aspects of H, are
“contradicted” by the data, and, in particular, whether it is sufficient to move
from H, to H, or whether we need to introduce the full H,.

3. Example.

3.1. Problem description. To illustrate the methodology of hypothesis
comparison, we give the following example. The situation that we are analysing
relates to certain aspects of an industrial smelting process for aluminium.
Alumina Al,O; is reduced (ie., the metal is extracted from the oxide) by
electrolysis. A (more or less) constant electric current is passed through a hot
solution containing alumina. The current is carried on charged Al** ions. In
principle, we can calculate how much the aluminium is being reduced by
Faraday’s law. However, there are certain practical complications, namely that
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some Al®* recombines with oxygen, and also “current efficiency’ is less than
100% (in our case, usually about 80%). As long as current efficiency is
independent of alumina concentration, aluminium is produced at a constant
rate and hence Al,O; is used at a constant rate, within normal operating
conditions. A further complication is that various extraneous features of the
process (“sludge,” “crust,” etc.) all contain undissolved alumina which gradu-
ally dissolves or comes out of solution, depending on a variety of unpredictable
circumstances. However, experience strongly suggests that the overall trend is
still more or less linear.

In a certain experiment, under “normal” operating conditions, the percent-
concentration of alumina in the solution ‘was determined every 10 minutes.
The experiment was run several times, each time terminating when an ‘“anode
effect” occurred (corresponding to the concentration falling to a critical value).
As the value of the observation is essentially fixed at the end of the series, it
will simplify our description of the model to call the last time point ¢,, the
second to last time ¢, and so on. We call y,, the alumina concentration at the
tth time point from the end, on run r. The interest in this example is to
consider the underlying average performance and to study the stochastic
behaviour of the system. The physical specification of the problem suggests the
following model formulation.

3.2. Model: simple errors. The first model used to represent the values of
y for run r was

(3.2.1) ¥,, = intercept, + slope,t + error,,,

where slope, and intercept, are the two constants for run r which define the
underlying deterministic physical process of extraction of the metal and are
considered exchangeable between runs. The error term expresses the various
discrepancies from the linear trend. For our first analysis, we will suppose that
this error represents the pure measurement error for the reading y,,. This is
not a particularly realistic supposition, and one of the purposes of the study is
to examine the stochastic behaviour of the error terms. However, this simple
specification will allow us to apply the analysis of the preceding section directly
to the deterministic components of the equation. (We will analyse the error
term in more detail in Section 3.6.) Thus, in our initial analysis, all error
quantities are considered exchangeable, uncorrelated with each other and all
other quantities and to have prior prevision 0.

3.3. Belief transform. We compare the two hypotheses H, and H; which
were described in Section 2.3.3. In the notation of that section, we evaluate the
operator T, for the trend test given unknown level, that is, for comparing H,
against Hj, over the linear space spanned by Y;,...,7Y,.

For simplicity, we suppose that the prevision and variance for the ‘“inter-
cept”’ term is the same under the two hypotheses. We could reform the model
so that the mean time was 0, but it is more natural in this example to have
time points ¢ =1,2,3,...,n. In the notation of Section 2.3, the operator
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becomes
Tos =1+ rG - sH,

where H = ut™, u = (1,1,...,17, and s = ku"tw, /v,. Thus T,; has a single
informative eigenvector, proportional to
Zi=r(t,)Y;+ - +t,Y,)—-s(Y; + - +Y,)=d, Y, + -+ +d,Y,

n-n

where d; = rt; — s, with eigenvalue
A=1+r(Ef+ - +82) =s(t, + - - +t,).

We correct all of the data, by subtracting the prior mean of each Z, under
H,, or equivalently by subtracting from each Y; the prior mean of Y; under
H,. This prior mean is equal to P(intercept) for each i. Under H,, we have laid
an uncorrelated grid, of 13 directions, on the Y space, where each Z; has zero
prevision and unit variance. Under H,, Z; has P(Z2Z) = A, and each other
P(Z?) = 1. Thus the value of Z? is informative for distinguishing between the
hypotheses, while the remaining Z? values may offer simple indications of
degree of fit of the pair of models.

3.4. Example analysis: data and beliefs. We will analyse a set of three
runs, each under ‘“normal’’ operating conditions. Two of the series (the first
and third) ran for 18 observations each, while the other ran for 13 observa-
tions. To simplify our account, we evaluate the same transform for each series.
Therefore we truncate the longer series to 13 values, so that each series
corresponds to the last 13 values. The data that we use in this analysis are
listed in Table 1.

TABLE 1
Percent-concentration of alumina in solution, determined every
10 minutes for three runs, each under “normal” operating conditions
(the observations are presented in reverse time order)

Run1 Run 2 Run 3
1.79 1.93 1.54
2.14 1.76 1.48
2.13 1.61 1.57
2.07 2.32 1.28
2.08 1.87 1.50
1.88 1.80 1.79
1.94 2.21 1.88
2.01 2.23 2.11
2.35 2.42 2.48
2.23 2.58 2.28
2.58 2.60 3.39
2.48 2.65 3.44

2.82 2.70 2.80
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We will analyse the three runs under the following belief specifications:

H, H,
P(intercept,.) = 14 14
P(slope,) = 0 0.1
var(intercept ) = 0.058 0.058
var(slope,.) = 0 0.0017
cov(intercept,, slope,) = 0 0
var(error,,) = 0.04 0.04

(From the exchangeability specification, these assessments are the same for all
t and r.)

While these specifications are intended simply as an illustration of the types
of analysis that we might perform, the above values did actually represent the
belief specifications of the analyst and were based upon both theoretical
arguments and pilot studies under similar operating conditions. The sole
exception is the error variance, which has been set at the actual assessed
marginal value, but for which the errors were not actually judged exchange-
able—we return to this in Section 3.6.

(I am very grateful to Malcolm Farrow for explaining to me the above
problem and for providing the data and belief specifications that we are using.
Notice that the specified variances are small, corresponding to a high prior
confidence that the stochastic development is roughly as specified, with under-
lying values for which we have fairly reliable prior estimates. As a general
observation, precise prior inputs provide clear distinctions between the com-
peting models, while being very sensitive to ‘“small”’ discrepancies from our
descriptions.) _

The analysis of this collection of data involves a further level of belief
specification, namely an exchangeability specification for the slope and inter-
cept coefficients across runs, in the manner of Goldstein (1986). However, for
the purpose of this illustration, rather than introducing another layer of
complexity into the analysis, we follow the alternative of analysing each series
separately. We then compare the analyses to identify informally the differences
between the series. Formal analyses relating the individual series involve belief
transforms for exchangeable systems, which we will consider elsewhere.

Thus we shall evaluate the transform for comparing the hypotheses based
on a single run and use the three runs as repetitions against which we can test
our formulation.

3.5. Example: eigenanalysis. With the above belief specifications, the sin-
gle informative eigenvalue for T,5, as evaluated in Section 3.3, takes value
63.6, with corresponding eigenvector Z; = d,Y; + - -- +d,3Y;3, where d; is
proportional to 0.0428; — 0.285.

The variance of Z, under H, is 1, with zero prevision, while P(Z2) under
H, is 63.6.
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TABLE 2
Standard
Run Mean Z} deviation Z? Range
1 0.996 0.789 0.010-2.451
2 0.910 1.133 0.002-3.502
3 3.049 6.408 0.000-23.96

(As in section 3.3, we have subtracted from each Y; the prior prevision
under H,, which in this case has value 1.4.)
For the above data, the observed values of Z?2 are as follows:

Run 1, Z2= 244,
Run2, ZZ= 423,
Run3, Z2=128.38.

The average over the three runs agrees almost exactly with the prior
expectation under Hj, supporting the alternative of positive slope.

The remaining 12 eigenvectors each have P(Z?) = 1, under both H, and
H,. We selected a particular grid and evaluated the collection of Z?2 values,
i=2,...,13, for each series.

As noted in Section 2.2, M = Y 13Z%/12, is invariant over choices of grid,
and values near 1 suggest a reasonable fit. In Table 2, we tabulate the value of
M for each run and also give the standard deviation and range of the Z? for
each run over our chosen grid. (For example, analysing the first series, we
evaluate 12 Z? values, the smallest being 0.010, the largest being 2.451 and
the average of the 12 values being 0.996.)

The values for the third run were inflated by a single extremely large value,
namely 23.96. If we eliminate this value, then the mean of the remaining
values falls to 1.148, with standard deviation 1.197 and largest value 4.012.
The sample correlations between the Z? values across the three runs all have
absolute magnitude less than 0.2, suggesting no unsuspected consistencies
across runs. Informally, our analysis suggests that the simple slope and
intercept model makes reasonable predictions across the grid over the series of
three runs. l

Notice that the single “aberrant” value, namely 23.96, occurred in the same
run which had by far the largest observed ZZ? value, suggesting possible
quantitative differences between run 3 and the first two runs.

The above analysis suggests first that beliefs about the slope are of roughly
the right order of magnitude, and secondly that the simple slope/intercept
model describes the sequence variability adequately to a ‘first-order’’ approxi-
mation.

We could introduce formal accept/reject type of decisions based upon our
analysis, provided that we were prepared to make higher-order belief specifi-
cations in order to judge the ‘“ variability” of our eigenvariances. However, this
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would take us beyond our current investigation, namely to examine the
implications of a fairly minimal collection of belief specifications for distin-
guishing the hypotheses. Often, as in the above analysis, an informal judge-
ment will be adequate (supported, if necessary by simple probability
arguments such as Markov’s inequality). In other cases, the conclusion of the
analysis must be that the combination of the observed data and the limited
belief specification is not sufficient to distinguish the hypotheses, though the
analysis will still offer some limited guidance. (For example, both in the above
analysis and the analysis of Section 3.7, the third series is repeatedly identified
as behaving differently than the first two series.)

We now carry out a more detailed analysis of the error terms in the model.

3.6. Model: general errors. A more realistic description of our uncertain-
ties concerning the stochastic development of the process represented the
series as follows:

(3.6.1) ¥,, = intercept, + slope,t + e, . + v, + h,,.

In this equation, e, v and h represent the three types of ‘“‘error’ which are
superimposed on the observation.

(1) v,, expresses the stochastic development of the series as a random walk
with drift (equal to the slope) so that the successive differences in the series
are uncorrelated jumps. We express v,, as

t
vtr = Z fir?
i=1

where all quantities f,, are considered exchangeable, uncorrelated with each
other and all other quantities and to have prior prevision 0.

(ii) h,, represents the measurement, in the chemical analysis of the sam-
ple, of suspended particles, as well as the dissolved alumina. The amount in
suspension will vary, but will have similar effects in neighbouring time points
and is expressed by an autoregressive term as

hi =ahq_yy, + u,,

where a is an autoregressive parameter, and all quantities u,, are considered
exchangeable, uncorrelated with each other and all other quantities and to
have prior prevision 0. There is no u,, term, but A,, has variance chosen so
that variances for %, are constant over t.

(The autoregressive parameter is an aspect of our uncertainty, which must
be specified, rather than a physical parameter which must be estimated.
Partly, this is for simplicity, but mainly it is because this did actually represent
the beliefs of the analyst.)

(iii) e,, represents the pure measurement error for the reading on y,,.. All
quantities e,, are considered exchangeable, uncorrelated with each other and
all other quantities, with prior prevision 0.
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The minimal belief specification that we require to determine second-order
beliefs for the data requires us to specify the following additional quantities:
var(e,,), var(f;,) and var(h,,). (From the exchangeability specifications, these
assessments are the same for all ¢ and r.) We must also state a value for the
autocorrelation parameter, a.

For our example analysis, we will use the following specifications:

var(e, ) = 0.01, var(f,)=0.01, var(h,)=00204, a=0.7.

Note that the marginal error variance for Y, is the same under this specifica-
tion and the specification of Section 3.4, and first differences for the series
have constant marginal variance. (These values were thought reasonable from
previous studies and theoretical arguments—again, I am grateful to Malcolm
Farrow, for providing the model and belief inputs.)

3.7. Eigenanalysis. We now compare the two specifications, H, corre-
sponding to model (3.2.1), and H*, corresponding to (3.6.1), by generating the
two corresponding inner products over the base [Y,..., Y}3], and extracting
the 13 eigenvalues and vectors of the corresponding belief transform.

As each Y; has the same prevision under both H and H*, we subtract from
each Y; the common prior prevision [namely P(Y,) =14 + 0.1r]. This is
equivalent to comparing the inner products over the two spaces generated by
the covariances rather than the product moments.

For each individual run of the sequence, the value of Z? was evaluated for
each i = 1,...,13. For this decomposition, each Z; has prevision 0 and the
collection Z,, ..., Z,5 is uncorrelated under each specification. The prior vari-
ance for each Z; is 1 under H. Each Z; has maximum variance under H*,
given unit variance under H, and zero correlation with previous Z; values.

In Table 3, we list the ordered eigenvalues of the transform and the
corresponding average of the three evaluations of the value of Z2% (For
example, the largest eigenvalue is 3.23 and the average of the values of Z?2
over the three runs is 6.05.)

Note firstly that as none of the eigenvalues are particularly large or small,
there is no particular linear combination that will be strongly diagnostic
between hypotheses. However, the average values for the two strongest diag-
nostic directions, Z2 and Z2, appear to favour H*. Furthermore, the four
smallest eigenvalues all correspond to small Z? values, but most of the
observed eigenstructure could be consistent with either specification. There
does not seem to be dramatic evidence from the display which would cause us

TaABLE 3

1 2 3 4 5 6 7 ] 9 10 11 12 13

Eigenvalue 3.23 2.37 155 142 1.17 0.93 0.77 066 060 0.55 0.52 0.50 0.49

A‘;;'age 6.05 3.06 090 058 022 1.12 1.82 1.80 240 0.57 0.87 0.70 0.70
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to reject the pair of models. We might feel, from the values for the largest
eigenvalues, that there is somewhat more support for H* than for H.

The largest Z? value, namely 6.05, may be worth describing further. The
corresponding eigenvector, describing the sharpest ‘‘nonlinear” error effect
that we expect, a priori, under the general error model, was

Z, = —0.86Y, — 0.61Y, — 0.18Y, + 0.32Y, + 0.77Y; + 1.1Y, + 1.1Y,
+ 0.89Y; + 0.49Y, — 0.02Y,, — 0.51Y;, — 0.85Y,, — 0.97Y,.

The three values of Z2 were 2.80, 0.54 and 14.75, for series 1, 2 and 3,
respectively. (The value of 14.75 is the only' Z2 value which is larger than 5 for
any of the three series.) As in the analysis of Section 3.5, we identify the third
series as being consistently highly variable with respect to our specifications.

4. Concluding comments.

4.1. On hypothesis comparisons. We have suggested a general methodol-
ogy for comparing two, or several, hypotheses. This methodology is of particu-
lar value when we do not wish to make a full specification of beliefs. For
example, in Section 3.5, we demonstrated strong support for belief in a linear
trend term in the data, with very modest belief specifications. Again, for the
model of Section 3.6, any reasonable, full probability specification would prove
difficult both to specify and to analyse.

In our approach, particular belief statements about model quantities imply
various belief statements about certain observable quantities which are com-
pared with the actual behaviour of the observed quantities. We could make
more detailed belief statements about the quantities, if we were both willing
and able to do so, and then build our hypothesis comparison over the larger
collection of beliefs. The difficulty with exclusive reliance on likelihood-ratio-
type comparisons is that there is no way to give ‘“easy answers to easy
questions.”’” We are forced into extremely detailed levels of belief specification,
not as a matter of choice but as a matter of necessity. Often this results in a
high degree of arbitrariness in the specification. In such cases, it is very hard
to interpret a likelihood-ratio-type comparison, as there is no way to distin-
guish those aspects of the comparison which relate to meaningful belief
specifications from those which are purely artifacts of the analysis.

Because the method of hypothesis comparison does not lead unambiguously
to an accept/reject type of decision, the approach may be considered comple-
mentary to such formal analyses. If the data do support one of the hypotheses
strongly, then we would expect that a comparison of the observed behaviour of
the system, of the type that we have suggested, over natural subspaces of
interest, should lead to similar conclusions to those of the full analysis. Indeed,
if the favoured model does not make better predictions for the data, then this
may call into question the apparent conclusions of the formal analysis.

We have emphasised the informal nature of the hypothesis comparison.
However, because the hypothesis comparison separates out the differences
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between the predictions under the differing hypotheses in a very efficient
manner, the transform also plays an important role in formal inferential
procedures based on the belief specifications, essentially allowing us to sepa-
rate beliefs over the hypotheses from the beliefs given the hypotheses. We will
discuss this in detail elsewhere.

4.2. On belief transforms. We have described the method of hypothesis
comparison in some detail, partly because it is useful in its own right, but
mainly to illustrate the basic argument of this paper, namely that it is very
often useful to be able to systematically compare various collections of belief
specifications. This comparison can be made automatically through the associ-
ated belief transform which exists in full generality. The hypothesis compari-
son is the simplest type of belief specification that we can make, as various
initial belief specifications are directly compared. In general we will compare
derived belief measures, such as expected information for various competing
experimental designs or sampling frames, typically involving perturbations of
an initial belief specification. The derivation of the derived belief structures
may be technically complicated, but in all cases the comparison of the beliefs
will follow automatically from the associated belief transform, which unifies all
of the apparently different forms of analysis. We will discuss the treatment of
such general types of belief transform elsewhere. ,
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