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EMPIRICAL LIKELIHOOD FOR LINEAR MODELS!

By ArRT OWEN
Stanford University

Empirical likelihood is a nonparametric method of inference. It has
sampling properties similar to the bootstrap, but where the bootstrap uses
resampling, it profiles a multinomial likelihood supported on the sample.
Its properties in i.i.d. settings have been investigated in works by Owen, by
Hall and by DiCiccio, Hall and Romano. This article extends the method to
regression problems. Fixed and random regressors are considered, as are
robust and heteroscedastic regressions. To make the extension, three varia-
tions on the original idea are considered. It is shown that when some
functionals of the distribution of the data are known, one can get sharper
inferences on other functionals by imposing the known values as con-
straints on the optimization. The result is first order equivalent to condi-
tioning on a sample value of the known functional. The use of a Euclidean
alternative to the likelihood function is investigated. A triangular array
version of the empirical likelihood theorem is given. The one-way ANOVA
and heteroscedastic regression models are considered in detail. An example
is given in which inferences are drawn on the parameters of both the
regression function and the conditional variance model.

1. Introduction. Empirical likelihood is a nonparametric technique for
constructing confidence intervals and tests. It has sampling properties similar
to the bootstrap, but achieves them through profiling a multinomial with one
parameter per (distinct) data point instead of through resampling.

Properties of empirical likelihood in i.i.d. settings are described in Owen
(1990), Hall (1990) and DiCiccio, Hall and Romano (1991). This article makes
the extension to regression models.

Inferences based on an assumption of homoscedasticity are sometimes
invalidated by heteroscedasticity, even in large samples. Empirical likelihood
applied in the regression setting accounts for the heteroscedasticity, in much
the same way as Wu’s (1986) reweighted jackknife or the bootstrap resampling
of data vectors.

Section 2 introduces empirical likelihood, gives Theorem 1 from Owen
(1990) and describes related work. In Section 3 it is shown that knowledge of
one statistical functional can be used to sharpen confidence regions for an-
other, that a Euclidean distance can be used in much the same way as the
empirical log-likelihood and that the assumption of identity of distribution can
be relaxed. Section 4 introduces the notation and assumptions behind our
linear models. Section 5 shows that empirical likelihood confidence regions for
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regression parameters have an asymptotic justification with either fixed or
random regressors. Homoscedasticity is not required. An extension to robust
regression is made. In section 6 the one-way ANOVA model is considered as a
special case. In Section 7 we consider simultaneous modeling of the conditional
mean and log standard deviation by linear models. The method is illustrated
on a heteroscedastic regression in Section 8. Expected breast cancer mortality
is modeled as a linear function of the underlying population size while the
standard deviation of the mortality rate is modeled by a power law in popula-
tion size. Some concluding remarks are given in Section 9, on the relative
merits of empirical likelihood versus resampling methods and parametric
methods. An Appendix contains the proof of Theorem 2.

2. Empirical likelihood. Let X, X,,... be independent random vectors
in R? for p > 1, with common distribution function F,,. The empirical distri-
bution

is well known to be the nonparametric maximum likelihood estimate of F,
based on X,,..., X,. Here 4, denotes a point mass at x. The likelihood
function that F, maximizes is

um=ﬁﬂm,

where F{X,} is the probability of {X,} under F. The notion of nonparametric
likelihood can be carried further. One approach is through the empirical
likelihood ratio function

R(F) = L(F)/L(F,).

R(F) has some of the properties of parametric likelihood ratio functions.
Owen (1990) contains the following.

THEOREM 1. Let X, X,,X,,... be i.i.d. random vectors in RP, with
E(X) = uy and var(X) =3 of rank q > 0. For positive r <1, let C,, =
{/XdF|IR(F) >r,F < F,}. Then C, , is a convex set and

r,n

lim P(p, € C,,) = P(x%, < —2logr).
Moreover if E(| X||*) < c, then
|P(1o€C,,) —P(x2, < —2logr)| = 0(n"1/2).

Owen (1990) extends the result to statistics that depend smoothly on
several means and to statistics with linear estimating equations. Examples of
the former include the variance and the product moment correlation. The
latter include quantiles and M-estimates. The restriction to distributions that
reweight the sample, that is, F < F,, is a technical one and is unnecessary if a
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bounded support can be prespecified for F, or if the statistic under considera-

tion has positive breakdown. The chi-square limit and even the rate given in

Theorem 1 are the same ones found for the parametric case by Wilks (1938).
Define the profile empirical likelihood ratio function

R(n) = max{R(F)IfXdF =u,F< Fn}

for all u in the convex hull of the data X|,..., X,,, and let it be zero outside
the convex hull. It follows from the proof of Theorem 1 that for u = u, +
0 (n— 1/2)

p b

(2.1) — 2log #(p) = n(X —p)3 (X —pn) +0,(n"?)

provided fourth moments of X are finite. The lead term in (1) may be taken
with a sample version of 3 in which case it becomes Hotelling’s T'2. The
0,(n"'/?) term is dominated by sample third moments and it elongates the
confidence regions in directions of positive skewness.

DiCiccio, Hall and Romano (1991) show that the error in coverage probabil-
ity in Theorem 1 is O(n~1!), provided certain Edgeworth expansions are
justified, and this holds for smooth functions of means. This implies that
central confidence intervals for a real parameter have coverage errors O(n 1),
although one-sided intervals have coverage errors O(n ~'/2). These are also the
typical rates when parametric likelihood intervals are used as confidence
intervals. A consequence is that, compared to Hotelling’s T2, empirical likeli-
hood does not increase the order of coverage accuracy, although simulations in
Owen (1988b) suggest an improvement is obtained for the mean of a skewed
distribution.

Many techniques for improving the accuracy of parametric likelihood inter-
vals apply also to empirical likelihood. DiCiccio, Hall and Romano (1991) show
that a Bartlett correction reduces the central coverage errors to O(n~2) and
DiCiccio and Romano (1988b) show that a location scale modification to the
signed root of the profile empirical likelihood ratio function reduces one-sided
errors to O(n~1).

Hall (1990) gives a location adjustment of order O(n~') to the family of
empirical likelihood confidence regions that makes them second order correct.
Since only a location adjustment is required, the regions are, to second order,
of correct size, shape and orientation.

When there are no ties among the X,, the empirical likelihood ratio
function takes the form

R(F) = flnwi, w, = F{X,}.

Owen (1988a) shows that this formula is still appropriate even when there are
ties in the data, with the natural modification T . x _xw; = F{X;}. Taking the
supremum of R(F') subject to a constraint T'(F') = t, forces w; = w; whenever
X =X.

i J
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The computation of %(u) is discussed in Owen [(1990), Section 5] and
Owen (1988c). We record some of the details here. To compute %#(u), one
must maximize [Tw; subject to w; > 0, Lw; = 1 and Y w,; X; = u. Assume u is
inside the convex hull of X,..., X,, in which case the problem can be reduced
to one of minimizing —X log(1l + X(X; — n)) over A € RP. The minimum
value is log #(u). The new problem is the convex dual to the original
constrained maximization. It is an unconstrained minimization in a smaller
number of unknowns. The function to minimize is convex, so there exist
algorithms to find the global minimum. Attempting to compute %#(u) and
then inspecting the solution (to see whether it is in the unit simplex) provides
a way to determine whether u is indeed inside the convex hull of X,..., X,,.

Empirical likelihood methods were first used by Thomas and Grunkemeier
(1975) to construct confidence intervals for survival times under censoring. A
discussion of the connections between empirical likelihood, the nonparametric
tilting bootstrap of Efron (1981) and the Bayesian bootstrap of Rubin (1981) is
given in Owen (1990).

3. Extensions to empirical likelihood. In this section we present three
extensions of the empirical likelihood method. First we show that if we know
the value of a statistical functional T' of the unknown distribution ¥, that we
can sharpen our inferences by restricting consideration to those distributions
F for which T'(F) = T(F,). Then we consider replacing the likelihood criterion
by one based on the Euclidean distance from (w,,...,w,) to (1,...,1)/n. The
resulting method is equivalent to Hotelling’s 7'2. Finally we introduce a
version of Theorem 1 in which the assumption of identity of distribution is
relaxed.

3.1. Constrained empirical likelihood. If we know T'(F,), then it would be
natural to consider only distributions F for which T'(F) = T(F,). This infor-
mation should allow us to sharpen our inferences for other functionals.
Corollary 1 shows that such side information can indeed be used by constrain-
ing the empirical likelihood, when both functionals are means.

COROLLARY 1. Let Z,,Z,,...,Z, be i.i.d. random vectors in RP*9, where
Z, = (XYY with X, € R? and Y, € R? for p,q > 0. Suppose that Z, has
finite fourth moments and that

2Jc.x 2Jc y )
ny Eyy
is of full rank, where the partition above is the natural one. Write E(Z,) =

ko0 = (Wyo, o), again with the natural partition.
Let

Var(zl) = 222 =

sup{L(F)|F < F,,[XdF = p,, [YdF = p}
sup{L(F)|F < F,, [XdF = p,} ’

(8.1) Pyix(uylu,) =
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where F, is the empirical function of the Z,. If p, = p.o+ O,(n"'?) and
Ky =ty + O(n™1/?), then

—2log ‘@mx(ﬂymx)
- n((l_’— /“y) - By'x(X- - '“x))lzy_li((y_ ”’y) —Byo(X - /“x)) +0,(n™1%),
where 3, =3, -3 3°'3 and B,, =33 and so
' —2log ‘@mx(#yomxo) - X(2q)

in distribution as n — o,

Proor. Let
A ( I, 0)
=By 1,
so that
var(AZ,) = (261 20 )
ylx

We may replace L(F) by R(F) in the definition of Zy,x. Then using (2.1)
with u, = (&}, i),
—2log Ry x(kylns) + O,(n~1/?)
=n(Z - p,)3(Z — 1) — (X — p ) E2HX — 1)
=n(Z - pJA(ASLA) A(Z - ) —n(X - )3 N (X - )
= n((? - ”’y) - By'x()_( - ”‘x))lzy_l;((l_, - ”’y) - By'x(X - '“’x))

as required. The second conclusion follows easily. O

(3.2)

For known p,,, we can get sharper inferences on u,, by using Ry x(yl o)
instead of #y(u,). The maximum empirical likelihood estimate of ., is then

approximately Y — By,x()? — u,) and the likelihood regions are based on the
conditional variance matrix 2, .. These constrained empirical likelihood re-
gions are asymptotically at least as small as the unconstrained ones. They can
be much smaller if X and Y are highly correlated. This is essentially the same
result one sees in the regression estimator from sampling theory [Cochran,
(1977), Chapter 7]. Note that it is not necessary to know 3 in order to use the
constrained method. The resulting inferences are, to the order given above,
equivalent to using the conditional distribution of Y-u o given the observed
value of X. That is, imposing side knowledge of a population mean is like
conditioning on the observed value of a sample mean.

The value [YdF, where F maximizes R(F) subject to [XdF = Ko May be
of some independent interest as a point estimate of u,, that makes use of the
knowledge of u,,. In Section 8, we consider a regression through the origin in
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which the errors about the regression line are thought to have mean zero and
be uncorrelated with the regressor. The usual least squares estimate of the
slope uses the second of these conditions and results in residuals that do not
have mean zero. In the example of Section 8, the zero mean of the residuals
gets imposed as a side constraint and this changes the estimate of the slope.

When a relevant ancillary statistic is available, it is usually considered
proper to conduct inferences conditionally upon the observed value of the
ancillary; see, for instance, McCullagh [(1987), Chapter 8]. Perhaps this can be
done here by imposing side constraints on the ancillary statistic. In this
nonparametric setting, a definition of ancillarity of X for Ko should entail
zero correlation between X and Y. In that case the condltlonmg would make
no difference in the first order calculations given here, though it may make a
difference in higher order considerations. Ancillarity is typically not a first
order effect in parametric problems either [McCullagh (1987)].

Side information in the form of the probability of a set can be incorporated
through the introduction of indicator variables. It follows that if a quantile is
known, it can be used to sharpen inferences. If for events A and B, the
conditional probability of A given B is known to be p, this information can be
exploited by imposing the linear constraint E(Igz(I, — p)) = 0, where I, and
I, are appropriate indicator variables.

Delta method arguments extend the constraint method to sufficiently smooth
nonlinear statistics. If T',(F,) is known, inferences for T, can be sharpened by
holding T\(F) = T(F,) during the profiling.

Sheehy (1987) considers distributions that minimize a distance measure
from the empirical distribution subject to linear constraints. Likelihood,
Kullback-Leibler and Hellinger distances are used and the result is an empiri-
cal measure with a reduction in variability, similar to that given in Corollary 1.
Lippman (1986) considers minimization of Kullback-Leibler distance from the
empirical subject to linear constraints, including specification of conditional
probabilities, in the context of pattern recognition.

3.2. Euclidean likelihood. Likelihood is not the only distance in the sim-
plex that can be used to generate confidence sets with a chi-square calibration.
It is an easy exercise to show that using Euclidean distance in the set where
Yw; =1 gives rise to Hotelling’s T? apart from the denominator in the
estimate of var(X). One defines the log-likelihood I = — $¥ (nw; — 1)* and
maximizes I subject to Lw; X, =p and Zw; = 0. A httle calculus shows that
mlnus twice this constramed maximum is n(X — u)S X — u), where

S=n"'Z7 (X, - XXX, - X). That is, —2max{lg|X w,; X, = u,Lw; = 1} =
(1 — n~YH)T? where T? is Hotelling’s T2 The statistic — 2! g can also be
thought of as Neyman’s chi-squared L ;(O; — E;)?>/0,, where there are n cells
with observed counts O; = 1 and expected counts E; = nw;.

The Euclidean profile likelihood was constructed without imposing the
constraint w; > 0. When u is far enough from X, the maximum of [ involves
some negative w;. For instance, if u lies outside the convex hull of the data,
some of the maximizing w; will be negative. This is advantageous when n is
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small, since it allows confidence regions to extend outside the convex hull of
the data. There are also computational advantages since algorithms can exploit
the quadratic nature of lj. It has the consequence that confidence intervals
for correlations may extend outside [ —1, 1] and intervals for a variance may
include negative values, when [ is used. Since ordinary empirical likelihood
considers only proper distributions on the data, it automatically obeys range
restrictions like those for the correlation and variance.

Other distance measures in the simplex may be used. Efron (1981) and
DiCiccio and Romano (1988a) consider the one-dimensional subfamily of
multinomials generated by minimizing the Kullback-Leibler distance
D(F, F,)) = Yw; log(nw,;) subject to Lw;X;,=pn €R and Lw; =1 Both
sources also consider the likelihood family. DiCiccio and Romano (1988a)
describe one-sided confidence intervals based on inverse testing that have
coverage errors of order O(n 1) for the Kullback-Leibler family, the likelihood
family and another family obtained by using the likelihood family on a
linearization of the statistic of interest. They also show that likelihood inter-
vals have the usual chi-square coverage, to order O(n~1!) for central intervals
and O(n~1/2) for one-sided intervals, in the Kullback-Leibler and in the
linearized family. -

The likelihood and Euclidean distances have the advantage that the
Lagrange multiplier corresponding to Y w; = 1 can be solved for in terms of
the multiplier for Yw;X; = p and this simplifies many expressions. The
Euclidean distance has the further advantage that the multiplier for the
constraint Yw;X; = u can also be solved for leading to the closed form
—2max I, = (1 — n")T2 Apart from factors like 1 — n~!, the Euclidean
method reproduces some other well known statistics in the anova setting of
Section 6 and in linear regression setting of Section 5.

3.3. Triangular array empirical likelihood. In this section, we relax the
assumption of identical distribution made in Theorem 1. Such a relaxation is
essential to handle regressions with nonrandom regressors. The i.i.d. central
limit theorem used in the proof of Theorem 1 gets replaced by an appeal to the
Lindeberg—Feller central limit theorem. Since the latter is stated for triangu-
lar arrays, it is natural to define a triangular array empirical likelihood
theorem.

Some notation is needed. Let maxeig(V) and mineig(V) denote the maxi-
mum and minimum eigenvalues of the symmetric matrix V. Let ch(A) denote
the convex hull of the set A c R”.

THEOREM 2 (Empirical likelihood for triangular arrays). Let Z;, € R? for
1<i<nandp <n <x, be a collection of random vectors, with Z,,, ..., Z,,
independent for each n. Suppose that E(Z;,) = m,, var(Z,,) = V,, and let
V., =Q/n)L}_V,,, 0y, = maxeig(V,) and g,, = mineig(V,).

Assume that as n — o,

(3.3a) P(m, € ch({Z,,,...,Z,,})) > 1
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and
(3.3b) n 2 Y E(|Z;, - m,|*o52) > 0
i=1

and that for some c > 0 and all n > p,
(3.3¢c) 0yn/ 01, 2 C.

Then —2log #(m,) — Xa,) in distribution as n — », where
#(m) = SUP{Hnwilwi 20, Y w; =1, wZ, = m}.

The proof of Theorem 2 appears in the Appendix. Note that the random
vectors in any row of the triangular array have a common mean, but may have
different variances. In most applications, the mean would be common to all
rows as well. The largest eigenvalue of V,, is used to scale the problem in the
same way that row sums of variances are commonly used to scale triangular
arrays in the central limit theorem.

4. Linear regression models and notation. This section introduces
the two versions of the linear model corresponding to fixed (Section 4.1) and
random (Section 4.2) designs along with the notation to be used. We adopt the
terms regression model and correlation model from Freedman (1981). We
include a brief discussion of the standard inference methods for these prob-
lems. Section 4.3 considers resampling methods. Our emphasis throughout is
on point and set estimates for the coefficients in a linear model.

4.1. Regression model. In the regression model, the data are of the form
(x;,5;) for 1 <i < n. Here x; is a row vector of dimension p > 1 and y; € R.
The vector x; contains explanatory variables on the ith case for which y; is the
response. The response y; is the observed value of

Y, =x,8) +¢,,

where B, € R” is a column vector of coefficients and ¢; is a random variable
with mean 0 and variance o%(x;) < ». The n random variables ¢, are indepen-
dent. The distribution of &; may depend on x; but it does not depend on x; for
any j # i. We write F, for the distribution of Y, when x; = x. We use the
notation u(x) = [YdF, = xB, below.

Our regression model differs from Freedman’s in that he assumes ho-
moscedasticity, o%(x;) = o2

It is convenient to let X denote the matrix (assumed here to be of full rank
p) whose n rows are the x; and Y denote the column vector whose n elements
are the y,.

The regression model with homoscedasticity and a multivariate normal
distribution for the ¢; is the one usually considered in introductory texts. In
this context the maximum likelihood estimate of B, is B.s = (X'X) XY,
which is unbiased and has variance (X'X) 'o2 The usual ¢, F and x?2 tests
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based on the estimate 62 = (n — p)~}||Y — XBLSII2 are exact for this model. If
the assumption of normality is dropped, but the ¢; are still i.i.d., the normal
theory inferences are approximately correct by the central limit theorem. See
Anderson (1971). Other versions of the central limit theorem would not
require identically distributed ¢;, though stronger moment conditions would
have to hold.

When the homoscedasticity condition is dropped, B; ¢ is still unbiased for
Bo, but by the Gauss—Markov theorem, it is inefficient. This inefficiency is
usually rather mild in applications [Bloch and Moses (1988)]. More seriously
the variance of B, is no longer consistently estimated by (X'X) '62 and
confidence regions and tests for B, will not have even asymptotic justification.

4.2. Correlation model. In the correlation model, (x;,y;) are realizations
of n iid. random vectors (X;, Y;). We assume that u(x) = E(Y;|X; = x) and
o%(x) = var(Y;|X; = x) exist and that E(X!X,) is positive definite. Then we
may write

Y, = X.;Bo + n(X;) +¢&,
where ¢; = Y, — u(X,) and
Bo = E(X;X,) 'E(X]Y)).

The random variable ¢; may be interpreted as a measurement error and n(X;)
is a misspecification error. It follows from the definition of B, that E(X;n;) = 0.

In this model, F, denotes the conditional distribution of Y, given that
X, ==x.

When each F, is normal and there is no misspecification (n = 0 a.s.) and
assuming homoscedastlclty, the usual normal theory inferences are exact
conditionally on the observed values of X;,..., X,. The central limit theorem
can be appealed to if normality fails, but homoscedasticity holds and there is
no misspecification. Heteroscedasticity or model misspecification invalidate the
normal theory confidence methods.

4.3. Resampling inference. The jackknife may be used to estimate the
variance of B, ¢ in a way that accounts for heteroscedasticity and nonnormal-
ity. For a survey, see Wu (1986) and the discussion that follows. The jackknife
was applied to the linear model by Miller (1974). Hinkley (1977) modified the
jackknife to account for the unbalanced nature of regression data points. Wu
(1986) proposed a method weighted by the information for 8, in subsamples.
Wu’s method extends naturally to jackknife schemes leaving out more than
one observation.

There are two main approaches to bootstrap resampling for regression. One
approach [Efron (1979)] is to fit a linear model, estimate an error distribution
from the residuals and generate resampled data from the fitted linear model
plus independent errors from the estimated distribution. Another approach is
to resample the (x,, y;) pairs. Freedman (1981) shows that the former provides
asymptotically valid inferences on B, in the homoscedastic regression model
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and the latter does so in the correlation model, both requiring some moment
conditions. Freedman allows for misspecification in his correlation model.

5. Empirical likelihood inference. In this section we consider infer-
ences based on empirical likelihood in both the regression and correlation
models.

5.1. Correlation model. In the correlation model, the parameter B, is
defined as a smooth function of population moments. It follows from a delta
method argument in Owen [(1990), Theorem 2] that inferences based on
empirical likelihood have a large sample justification. All that is required is
that the second moments of X;X; and X]Y, exist.

An approach based on using the normal equations as estimating equations
for B, requires somewhat weaker moment conditions and leads to simpler
computations. If for some distribution F on pairs (x, y) with x a row vector of
length p and y a scalar we have B = (/x'xdF) '/x'ydF, then we also have
Jx'(y — xB) dF = 0 and vice versa if [x'xdF is of full rank. So we introduce
the random variable Z; = Z(B) = X(Y; — X;B), a column vector of p compo-
nents. The Z, are i.i.d. by construction and B, = B if and only if E(Z;) = 0. To
test B, = B, we test whether the Z; have mean 0. This may be done using
empirical likelihood, according to Theorem 1, assuming only that the Z; have a
finite variance, that is E||X/(Y, — X,B,)II> < o.

The computational problem is to calculate

R(B) = maX{Z log nwilwi >0, w; =1, ) wxi(y, — x,B) = 0}7

the profile empirical likelihood for 8. Minus twice the log empirical likelihood
may be referred to a X(2p) distribution, rejecting B, = B for large values of
—2log #(B). If interest centers on a subset of r components of B, one can
profile out the other components and refer to a xZ2, distribution. Similar
remarks hold if one is interested only in r contrasts. Owen (1990) indicates
that a better reference might be based on an appropriate F distribution. If
there are no nuisance parameters, then Z#(B) can be computed using the
methods sketched in Section 2. If some components B are to be profiled out,
then the nested algorithm of Owen [(1990), Section 6.3] can be used. In Section
8, we use sequential quadratic programming to solve a similar problem.

5.2. Regression model. We show here that the empirical likelihood func-
tion #(B) used in the correlation model leads to confidence regions with an
asymptotic chi-square calibration under mild conditions.

As above, it is most convenient to work with the normal equatlons We
construct the auxiliary variables Z; = Z,(B) = x(Y; — x;B), where now the x;
are not random. If B = B,, the Z; all have mean 0. They are not identically
distributed. For instance, var(Z;) = x}x,0%(x;). Homoscedasticity would not
suffice to make the Z; i.i.d.
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To handle this case, we appeal to Theorem 2, for triangular arrays. We let
Z;, = ZB). Under the hypothesis that B, = B, we have m, = 0 for all n and
V., = x.x;0%(x;). Empirical likelihood confidence regions for B, in this model
are asymptotically correctly calibrated by the chi-square, provided that condi-
tions (3.3a, b, c) apply to the Z,,.

Condition (3.3a) of Theorem 2 is a mild one for regression problems. We
need the convex hull of the Z;, to contain 0, when B, is used in the
construction of Z;,. The condition is violated, for example, if x; = (1,¢,),
Bo = (B1, B,Y with B, < 0 and the sample values y; are increasing in ¢;, for
then there is no way to reweight the data to get a negative least squares slope
for the y; versus the ¢,. Under i.i.d. sampling, (3.3a) is satisfied exponentially
fast as may be determined by the Vapnik—Cervonenkis theory. The event
in (3.3a) has a simple sufficient condition in the regression model. Let P =
{x;|Y; — x;,8, > 0} and N = {x;|Y; — x;8, < 0}. If

(5.1) ch(N) N ch(P) + @,

then 0 is in the convex hull of the Z;,. In the case of simple linear regression,
with x; = (1, ¢,), it suffices to have at least one sequence ¢, < ¢; < t,, where the
Jth error y; — x,B, differs in sign from the ith and kth.

Conditions (8.3b) and (3.3¢) are mild regularity conditions, used to justify a
moment approximation to log %#(B,). They are also strong enough to allow the
application of the central limit theorem to the moment approximation and to
establish the asymptotic negligibility of certain remainder terms. The matrix
V, from Theorem 2 is, in the regression model, (1/n)L x!x,0%(x;). Trivial
inequalities show that maxeig(V,) < max, _; _, o*(x;)maxeig((1/n)X'X) and
mineig(V,) > min, _; _, 0%(x;)mineig((1/n)X'X), so (3.3c) holds if the eigen-
values of (1/n)X’'X are bounded away from zero and infinity and the o%(x;)
are also bounded away from zero and infinity. If for & > 0, we have o%(x;) <
Allx;]|*, then (3.3¢) follows if (1/n)}:||x,-||2+°‘ < o and both mineig((1/n)X'X)
and o%(x;) are bounded away from zero.

As for condition (3.3b), introduce u,(x) = (Y — u(x))* dF,. If mineig(V,) >
a > 0 for all sufficiently large n, a sufficient condition for (3.3b) is

n
(5.2) n72 Y llallfug(x;) = 0.
i=1
To summarize:

COROLLARY 2. Let ny>p, @ >0 and a,b > 0. Assume that (5.2) holds
and as n — «, (5.1) holds with probability tending to 1. Suppose a < o%(x;) <
bllx;I* for all i and that for all n > n, a < mineig(X'X)/n and
(1/n)Z||x,~|I2+°‘ < b. Then —2log #(B,) — X(2p) in distribution as n — .

5.3. Comparison to resampling methods. We now compare empirical likeli-
hood inferences with those of the resampling methods. For 8 near S, the lead
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term in —2log #(B) is
(L (% - 28) (L (% - x:8)°xix) (T =i(Y; - x.8))
= (Bus — BY ((X'X) ' T (Y; - 2:8) % X'X) ™)) (Brs - B).-

In the correlation model, the error is O,(n~'/?) and to this order of accuracy
one can replace x;8 by x,8, or x;8.s in (5.3). In this sense the empirical
likelihood method uses

(X'X) 'L 6%(x)xia (X' X))}

with 6%(x;) = (Y; — x;8)? as an estimated variance for 8; ¢. By way of compar-
ison, Hinkley’s (1977) weighted pseudovalue version of the jackknife uses
6%(x;) = (Y, — x;B.5)?/(1 — p/n), Wu’s (1986) information weighted delete
one jackknife uses ¢%(x;) = (Y; — x,8.5)%/(1-x,(X'X) " 'x!), bootstrap resam-
pling of (x;, Y;) pairs uses 6%(x;) = (Y; — x;8.5)* and the usual normal theory
uses 6%(x,;) = |IY — XB,5l?/(n — p) as does bootstrap resampling from residu-
als. These results may be found in Wu (1986). In the Euclidean version of
empirical likelihood, minus twice the log relative likelihood is

(5.4) (Bs — BY((X'X) ' T (Y - x:B15) 52 X'X) ") (Bus - B)

so that, in comparison with the above it uses 6%(x;) = (Y; — x, 8. 5)? providing
a close match to the bootstrap with resampled (x;, Y;) pairs. The covariance
estimate implicit in (5.4), namely (X'X) (Y, — x,8.5)%xx(X'X)™}, is the
one produced by the ACOV option of the REG procedure in SAS (1985); see
also White (1980).

(5.3)

5.4. Misspecification in the regression model. Empirical likelihood results
are available assuming that there is either no model misspecification in the
regression model or that the predictors are i.i.d. Can one use empirical
likelihood to form confidence regions assuming fixed regressors and some
model misspecification? For example, one might seek asymptotic confidence
regions for B, = (L xix;) 'L x;u(x;), where u(x) is not necessarily of the
form xpB.

The situation is analogous to one in which we observe Z,,...,Z, € R?,
where E(Z;) = p; and var(Z;) = V; has full rank and we wish to test whether
r = (1/n)L u,; takes a given value u,. For simplicity only, we consider p = 1,
letting V; = 0;°. Then the empirical likelihood test refers

n(Z - Mo)
(1/n)E(Z; — po)®

to a chi-square distribution. If u, = &, then n'/%Z — p,) has mean 0 and
variance (1/n)X o;2. The denominator (1/n)L(Z; — n,)? should estimate this
variance, but has expectation (1/n)C 0?2 + (1/n)Z(n; — ). The variance
estimate is thus biased upward by a term due to the model misspecification,

2
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and this term would usually be of the same order of magnitude as the variance
itself.

Consequently, confidence sets for B, would not have consistent coverage
levels in the regression model with misspecification. They would be conserva-
tive to the extent that the model misspecification inflates the estimate of
variance.

5.5. Robust regression. Robust regressions can be obtained by substitut-
ing a location M-estimate in the definition of B,. Introduce the robust
correlation model in which B, is the solution of

0 = E(X{y(Y;, X;Bo)),

where the (X, Y;) pairs are i.i.d. and ¢ is an appropriate function [see Huber
(1981)] Typically, ¢ depends on Y; and X;B, only through Y; — X;8,. Empiri-
cal likelihood confidence regions for this problem will have asymptotically
correct coverage under conditions on  that make sure B, is well defined and
provided that the variance of Z; = X/y(Y;, X;B,) is finite and nonzero. See
Owen [(1990), Theorem 3] for M-estimates and empirical likelihood.

For the robust regression model, we assume that

E(xiy(Y; — x;Bo)) =0
for i = 1,...,n. That is, we do not allow misspecification of the model. The Z;
(with x; in place of X;) must now satisfy the conditions of Theorem 2, and of
course, identifiability conditions on ¢ are still needed.

The resulting family of confidence regions are nested around a point esti-
mate of B, that is (for the common choices of i) robust against occasional
extreme values of y; — x;8,. The regions are also robust in that their coverage
properties do not depend on homoscedasticity or normality.

6. ANOVA. The one factor analysis of variance is a commonly used linear
model and studying it gives some insight into empirical likelihood. Let the
observations be Y;;, where j=1,...,n;, and i=1,...,k. Let N=ZX} in;
Suppose that Y;; ~ F;, are independent samples from the % different distribu-
tions. Use F. to denote a candidate for F,,. We present two approaches to
forming an empirical likelihood ratio function.

It is natural to take the product of % empirical likelihoods, from the &
independent samples. This leads to the likelihood

kE n;
L(Fl7""Fk)= l_Ill_IlvlJ,
i=1j=

where v;; = F{Y;;}. The empirical likelihood ratio function is
R(Fl""7Fk)= nl—[nlvu.
i

A second formulation is to consider N random pairs (I,Y), where I €
{1,...,%} and the Y’s for I =i are denoted Y;;. Let F be a distribution on
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pairs (I,Y). The data are not i.i.d. from this F because the index I in each
pair is nonrandom. Consider

L(F)= U l;[wij,

where w,; = F{(i, ”)} Let w, =X ,w;; and w;; = w,;/w,. The empirical
hkehhood ratlo function is

R(F) = T1T1Nw,,
i

l

=11 I;INwi-wm

= (TT(Mwi/m) )(n [T,

If we are interested in statistics that depend only on the w;,’s, we may
maximize R(F) by taking w; = n;/N. Both formulations lead to the same
profile empirical likelihood ratio functions for statistics that depend only on
the F,. So empirical likelihood applied to the (I,Y) data set automatically
keeps the relative weights of the k& groups fixed at the sample values. The
second formulation is directly covered by Theorem 2, so both approaches have
an asymptotic justification as ny = min, _; _,n; > «.

This equivalence does not hold for the Euchdean distance. That is, profiles
of — 3X,(Nw;; — 1) can differ from those of — 3¥,;(n;v;; — 1) even when
the statistics depend on w;; only through w;,. (The two are asymptotically
equivalent as n, - ® since they are each asymptotic to the corresponding
empirical likelihood method.)

Suppose that E(Y;;) = u;,. Let Q(pq, .., ) be the maximum value of
R(F) subject to ¥ ; wlU =M i=1,... k If each p; = p;o+ O(n;?),
then

(%-wi)
- K
—2log By, ..., 1) = 2 ni~———— + 0,(ng?) - x&,

sz

in distribution as n, — », where Y, = n 7'L,Y;; and

=n;'Y (Y” - 2)2

It is necessary that all of the group variances be finite and nonzero. They do
not have to be equal. We can change Y,. to u; or to u;, in the definition of s?2
without changing the order of the approximation.
The most common test in a one-way analysis of variance is for Hy: u, =
© = uy. Let p, denote the common mean. Since H,, forces £ — 1 contrast
means to be 0, the limit law for the empirical likelihood test is x3 ;). To first
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order, under H,,,

2

k A
(61) - 210gmax%(p,,...,,.;,) = Z ni(‘s—zﬂ) + Op(n51/2),
H i=1 i
where
6.2 : " Einii_ﬁ-./S?
(6.2) i = W

The estimate of the common mean in (6.2) is not the mean of all the Y;,
which is the usual estimate in the analysis of variance. Instead it weights the
group means in inverse proportion to the group variances. If the variances
were known a priori to be equal, one could impose such homoscedasticity as a
side constraint in the profiling of the likelihood. This would still not lead to the
standard anova, even asymptotically. The reason is that the sample variance
and sample mean are correlated in general. So information about the group
variances will change the estimates for the group means.

In the case of anova, the convex hull criterion (3.3a) becomes min; Y;; <
p; <max;Y;; fori =1,..., k. It follows that the method would not work well
if & were large and n, were small. The Euclidean method might be preferable
in this case.

Using the Euclidean distance — 3Z;;(n,v;; — 1)%, we can solve for minus
twice the log-likelihood ratio under H,, in closed form. The result is the lead
term in (6.1). Replacing n; by n;, — 1 in the denominator of s?, we get a
statistic used by James (1951) to test differences among group means when
population variance ratios are unknown. James does not use a chi-square
criterion. Instead he uses a criterion that depends on the values of s?.

7. Variance modeling. Suppose that the variance o%(x) is not constant.
We saw in Section 5 that empirical likelihood confidence regions still have the
correct asymptotic level under both the correlation model and the regression
model. Although B; s is not an efficient estimate of B, the uncertainty in 8¢
is adequately assessed.

If we knew o(x), we would use a weighted least squares estimate of B,
equivalent to the solution B of

(7.1) 0=y xi{(y; — %:B)

i=1 ‘72(xi)

We can still use (7.1) if we only know o(x) up to a constant multiplicative
factor. If we use (7.1) with an incorrect function o, our point estimate of g,
will be inefficient, though it may represent an improvement over B;¢. Theo-
rem 2 applies to the weighted least squares estimate too, with somewhat
different moment requirements, so the confidence regions for B, will attain
their nominal levels, asymptotically.
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In many applications we will want to use the data to guide us in a choice of
weights for weighted least squares. One way to do this is by modeling 2.
Suppose that

(7.2) logo =ub

for some parameter vector # and row vector of explanatory variables u. We
change our two models to the heteroscedastic regression model and the
heteroscedastic correlation model. We will assume in the heteroscedastic corre-
lation model that u, is the observed value of U; and that the triples (X;, U,, Y;)
are i.i.d. In the heteroscedastic regression model, «; and x; are fixed, while
E(Y) = u(x,) = x,8, and var(Y;) = 0%(u;) = exp(2u,8). Some of the compo-
nents of z may match components of x or be deterministic functions of
components of x.
The normal theory maximum likelihood estimates for 8 and 6 solve

(7.3a) 0= x;(y; — x:B)exp( —2u,0)
and
(7.3b) 0=Y u,(1— (3 —x:8)" exp(—2u,0))

jointly. Even if normality does not hold, we can still interpret xB as a
conditional mean and exp(z6) as a conditional standard deviation. We could
replace (7.3a, b) by estimating equations based on a location-scale family other
than the normal one, or more generally use M-estimates of location and scale.
For a discussion of variance modeling in regression see Davidian and Carroll
(1987).

Under i.i.d. sampling, we can test specified values of 8 and 6 by construct-
ing the auxiliary variables

(74) Z; = (X(Y; - X,B)exp(—2U;0), U(1 = (Y; — X,8)” exp(—2U;6)))

and testing whether their common mean is 0. To test only 0 or 8 the empirical
likelihood for testing (8, 6) is maximized over the other vector.

In the heteroscedastic correlation model, only moment conditions are needed
for the resulting inferences to be valid for the corresponding population values.
Misspecification does however complicate our interpretations of the coeffi-
cients.

The heteroscedastic regression model requires that the conditional mean
and variance functions be specified correctly. Otherwise at least one of the
components of the vectors Z; in (7.4) will have a mean that depends on i. At
first this seems to contradict the remarks in the second paragraph of this
section. But there, the variance model does not enter into the estimating
equations, so its incorrectness does not affect the applicability of Theorem 2.

8. Example. Rice [(1988), page 221] gives a table of breast cancer data.
Each data point is from a county in North Carolina, South Carolina or
Georgia. For each county the number of adult white females living there in
1960 is given, as is the number of deaths due to breast cancer among adult
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white females from 1950 through 1969 inclusive. The population sizes range
from about 500 to about 100,000. Rice [(1988), Chapter 14] gives some plots
and an analysis of this data. This data is also discussed in Royall and
Cumberland (1981). It is well described by a regression through the origin and
it is evident that the variance of the mortality count increases as the popula-
tion increases. Royall and Cumberland consider weighted regressions based on
a model in which the variance is proportional to the square of the mean. Rice
(1988) fits a regression of the square root of the mortality on the square root of
the population. We will only use the data points on page 221 of Rice (1988)
which represent n = 151 of the 301 counties.

Let X, denote the population in the ith county (divided by 10,000) and let
Y, denote the mortality due to breast cancer (divided by 10). Scaling the data
this way improves numerical stability for the computations that follow. We
model the mean of Y, given X, =x by B; + B,x and the log standard
deviation of Y; given X; = x by 6, + 6, log x. That is, o(x) = e%1x°2. The most
interesting parameters are B,, which may be interpreted as a cancer rate and
6, through which we can compare the conditional variance to the Poisson
model (6, = 0.5) and to the Gamma model (8, = 1.0).

The normal theory maximum likelihood estimates are B, = 0.0073, B, =
3.567, 6, = —0.0764 and 6, = 0.0749. That is to say these values satisfy
equations (7.3a,b). It might be more natural to use a negative binomial model
since the response is discrete, but the normal likelihood equations are simpler
and the resulting estimates still have intuitive meaning since they specify
conditional moments. Davidian and Carroll (1987) advocate the use of robust
scale M-estimates in place of (7.3b). This was not done here because it is easy
to inspect the data and plots showed no outliers. A normal Q® plot of
(y; — A(x,))/6(x;) is very straight.

The cancer mortality rate is approximately 3.6 per 1000 of population,
which translates into 1.8 per 10,000 of population per year, since the figures
are over 20 years. This translation is rough since the populations would not be
constant over the 20 years. The intercept B; is quite close to the origin and the
estimate of 6, is intermediate between the 0.5 expected under a Poisson model
and the 1.0 expected under a gamma model.

Profile empirical likelihood curves were computed for each of the parame-
ters. For example, for a specified value of 6,, it is necessary to maximize I'Tnw;
over w; > 0, B;, B, and 6, subject to the constraints ¥ w; = 1 and

Z wi"i/o'iz = Z wixi"i/‘fiz = Z wi(l - "i2/‘fi2)
=Y w lOg(xi)(l - "i2/‘fi2) =0,

where r; = Y; — B; — B,x; and o; = exp(6, + 0, log x,). The optimization thus
has 155 variables, namely the w;, the B, and the 6;, has one linear constraint
on the w;, an equality constraint on 6, and four nonlinear constraints. This
was done for two sequences of values of 8, starting at the maximum likelihood
estimate; one increasing until the empirical likelihood was small and the other
decreasing. The FORTRAN function NPSOL of Gill, Murray, Saunders and

(8.1)
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1.0
1

0.8

Profile ELR
0.6
!

0.4

0.0
]

0.6 0.7 0.8 0.9 1.0

Theta(2)

Fic. 1. Exponent for S.D.

Wright (1986) was used to do the optimization. NPSOL implements a sequen-
tial quadratic programming algorithm. The objective function was taken to be
L log nw; for numerical stability. Each optimization in a sequence provided
starting values for its successor.

The profile empirical likelihood curve for 6, appears in Figure 1 with
asymptotic 95% and 99% lines indicated. There is sufficient evidence in this
data to reject the mean-variance relationships of both Poisson and gamma
distributions. A similar curve for B, has a peak centered near 0 as would be
expected. The 99% confidence interval for B, has endpoints that lie very close
to values translating into —1 and 1 cancer mortalities in the twenty year
period.

Because regression through the origin makes sense and fits the data well, it
was decided to constrain B, = 0 in the optimization. Holding B; = 0 is not the
same as simply dropping the intercept from the regression. In terms of
equation (8.1), dropping the intercept would amount to taking 8, = 0 in the
last three weighted sums and ignoring the first weighted sum. Instead, we are
imposing the constraint in all four estimating equations. This asserts that the
errors are uncorrelated with the population sizes and have mean zero. Simply
dropping the intercept and fitting a regression through the origin would
impose only the first of these conditions.

The maximum empirical likelihood possible under the constraint 8, = 0 is
0.984. Figure 2 shows a plot of the profile empirical likelihood ratio function of
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FiG. 2. Breast cancer deaths per 10,000 population per year.

B, subject to the constraint that B, = 0. The units have been converted to
deaths per 10,000 of population per year. The likelihoods achieved for various
values of B, have been divided by 0.984. Also plotted in a dashed line is the
profile empirical likelihood function of B, without imposing the constraint
that B8, = 0. The constraint results in a narrowing of the confidence intervals
and a shift in location, as predicted by Corollary 1.

Constrained (8, = 0) and unconstrained plots for 6, are almost indistin-
guishable visually. The same is true for 6,. These results would be expected if
it were known that the residual distribution had zero skewness.

9. Conclusions. The method of empirical likelihood applied to regression
problems, has been seen to have wider validity than the usual parametric
methods. The asymptotic behavior of the method is much the same as that of
various resampling methods, and in fact there is a lot of similarity in the test
statistics used by the nonparametric methods.

Empirical likelihood is qualitatively different from the resampling methods
in that it uses optimization of a continuous function instead of discrete
simulation. This is not an advantage per se, but there may be situations in
which it is convenient. For example, empirical likelihood lends itself naturally
to the imposition of side constraints. In the example in Section 8, this allowed
us to estimate regression coefficients where the normal equations impose more
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constraints than the number of regression parameters that are free to vary. If
the design matrix X is of full rank, then any of the reweighted versions of it
used by empirical likelihood will also be of full rank. This stands in contrast to
the resampling methods in which resampled design matrices might be rank
deficient. When confidence regions for a pair of parameters are sought, the
profiling of an empirical likelihood ratio function provides a natural choice.
With resampling methods, the problem of finding the central 1 — « fraction of
a point cloud arises; see Owen (1990). Empirical likelihood chooses the shape
as well as the size of the confidence region. On the other hand, the resampling
methods may be applied to enormously complicated statistics much more
easily than can empirical likelihood.

To use empirical likelihood, one must specify the estimating equations for
the parameters of interest, but need not specify explicitly how to construct
standard errors for them. The latter can be quite difficult, and it is often
tempting to make assumptions based on tractability instead of wideness of
applicability. For instance, one might specify a parametric family of distribu-
tions in which it is easy to get interval estimates. A case in point is inference
on variances, in which it is convenient to consider normal populations. But
normality carries with it the assumption that the kurtosis is zero. If the
kurtosis is not zero, normal theory methods do not correctly assess the
sampling variability of a quantity like s2. The well-known test of Bartlett for
comparing two or more variances is, for this reason, very sensitive to the
normality assumption. Similarly, assumptions of homoscedasticity or symme-
try are often made for convenience.

APPENDIX

This appendix contains the proof of Theorem 2. Recall that maxeig(V) and
mineig(V) denote the maximum and minimum eigenvalues of the symmetric
matrix V and ch(A) denotes the convex hull of the set A C R”.

ProoF oF THEOREM 2. Without loss of generality, we may assume that
m, =0 and o, = 1. This follows from considering standardized vectors:
(Z,, — m,)o;,'/?. For simplicity of notation, we drop the second subscript n.
Let V, =(1/n)L Z,Z|.

By (3.3a), we may assume that the convex hull of Z,,..., Z, contains the
origin. Then a straightforward argument based on Lagrange multipliers shows
that

(A1) 2(0) = [ ni,,
i=1

where

A9 3 1 1

(A.2) it n 1z,

are the (strictly positive) coordinates in the simplex of the maximizing F < F,,
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and the multiplier A € R? is uniquely determined by

First we show that
(A4) A= Op(n“l/z).

Introduce Z = (1/n)LZ; and Z* = max,_;_,|lZ,. Let A = pd, where p > 0
and |||l = 1. From (A.2) and ¢ times (A.3)

1 Z,
0=-0Yy ——
n X 1+ pb0'Z;
1 (02)°
___0’ Z —
) p ) 1+p0’Z
SBZ—TZ* Z(BZ)
— P ~
=0Z—- ——=0'V, 0
1+pZ* "
- p (D
SBZ—TPZ*mlnelg( n),

where we have used 0 < 1 + p8'Z;, < 1 + pZ* which follows from the positiv-
ity of w; and the definition of Z*. Rearranging terms we find that

p(mineig(Vn) - B'ZZ*) <0Z.
From (3.3b) and Chebychev’s inequality, it follows that V, — V, = 0,(1) and
so by (3.3c),
c+o,(1) < mineig(Vn) <1+0,(1).

It also follows from (3.3b) that
(A.5) Z* = o0,(n"1?)
and by the central limit theorem [(A.5) implies Lindberg’s condition]

0Z = 0,(n"1?)

so that p = O,(n~'/?) establishing (A.4).
Put y;, = XZ,. It follows from (A.4) and (A.5) that

(A.6) maxly| = 0,(1).

Now from (A.2) and (A.3),
1 1 1
0==32,-—YXZ,Z;+ - ¥
n n n

Zﬁ'iz
1+,

13
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from which
A=V7Z + 5,

where § = op(n‘l/z).

Because the y; are uniformly small, we may expand

log(1 +v;) = v, — vZ + m;,

where for some finite B > 0,
P(lnl <Bly)},1<i<n)—>1

as n - o,
Now —2log #(0) = 2% log(1 + v,) and after some algebra this reduces to

—2log Z(0) = nZ'V;'Z —n&V; % +2Y n,.

The lead term tends to X(zp) by the central limit Atheorem, the second term is
0,(1) by the bound on 6 and because maxeig(V,)"' <c¢™' + 0, (n"'/?) and
finally

|Z n| < BY (X2,)° < nBINIZ* ¥ (XZ,)*
< nBZ*|AlI® maxeig(Vn) =0,(1). ]

There is no guarantee of a rate in the above theorem. By strengthening the
moment conditions, the rate O(n~'/2) should be attainable.

Acknowledgment. The author gratefully acknowledges helpful com-
ments of an Associate Editor.

REFERENCES

ANDERSON, T. W. (1971). The Statistical Analysis of Time Series Data. Wiley, New York.

BERAN, R. (1986). Discussion of ‘“Jackknife, bootstrap and other resampling methods in regres-
sion analysis” by C. F. J. Wu. Ann. Statist. 14 1295-1298.

BrocH, D. A. and Mosks, L. E. (1988). Nonoptimally weighted least squares. Amer. Statist. 42
50-53.

CocHRaN, W. G. (1977). Sampling Techniques, 3rd ed. Wiley, New York.

DavipiaN, M. and CARROLL, R. J. (1987). Variance function estimation. J. Amer. Statist. Assoc.
82 1079-1091.

DiCiccio, T. J. and RoMaNoO, J. (1988a). Nonparametric confidence limits by resampling methods
and least favorable families. Technical Report 295, Dept. Statistics, Stanford Univ.

DiCiccio, T. J. and Romano, J. (1988b). On adjustments to the signed root of the empirical
likelihood ratio statistic. Technical Report 303, Dept. Statistics, Stanford Univ.

DiCiccio, T., HaLL, P. and RomaNo, J. (1991). Empirical likelihood is Bartlett-correctable. Ann.
Statist. 19 1053-1061.

EFroN, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1-26.

ErroN, B. (1981). Nonparametric standard errors and confidence intervals (with discussion).
Canad. J. Statist. 9 139-172.

FREEDMAN, D. (1981). Bootstrapping regression models. Ann. Statist. 9 1218-1228.



EMPIRICAL LIKELIHOOD REGRESSION 1747

GiL, P. E., Murray, W., SAUNDERS, M. A. and WRiGHT, M. H. (1986). User’s guide for NPSOL
(version 4.0): A FORTRAN package for nonlinear programming. Technical Report SOL
86-2, Dept. Operations Research, Stanford Univ.

HaLL, P. (1990). Pseudo-likelihood theory for empirical likelihood. Ann. Statist. 18 121-140.

HINKLEY, D. (1977). Jackknifing in unbalanced situations. Technometrics 19 285-292.

HinkgLEY, D. (1986). Discussion of *“Jackknife, bootstrap and other resampling methods in regres-
sion analysis” by C. F. J. Wu. Ann. Statist. 14 1312-1316.

HINKLEY, D. and SCHECHTMAN, E. (1987). Conditional bootstrap methods in the mean-shift model.
Biometrika 74 85-94.

HUBER, P. J. (1981). Robust Statistics. Wiley, New York.

James, G. S. (1951). The comparison of several groups of observations when the ratios of the
population variances are unknown. Biometrika 38 324-329.

LippMAN, A. (1986). A maximum entropy method for expert system construction. Ph.D. disserta-
tion, Div. Applied Mathematics, Brown Univ.

McCuLLAGH, P. (1987). Tensor Methods in Statistics. Chapman and Hall, London.

MILLER, R. G., Jr. (1974). An unbalanced jackknife. Ann. Statist. 2 880-891.

OwEN, A. B. (1988a). Empirical likelihood ratio confidence intervals for a single functional.
Biometrika 75 237-249.

OWwEN, A. B. (1988b). Small sample central confidence intervals for the mean. Technical Report
302, Dept. Statistics, Stanford Univ.

OWwEN, A. B. (1988c). Computing empirical likelihoods. In Computing Science and Statistics,
Proceedings of the 20th Symposium on the Interface (E. J. Wegman, P. T. Gantz and
J. J. Miller, eds.) 442-447. Amer. Statist. Assoc., Alexandria, Va.

OWEN, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90-120.

RICE, J. A. (1988). Mathematical Statistics and Data Analysis. Wadsworth, Pacific Grove, Calif.

RovarL, R. and CUMBERLAND, W. (1981). An empirical study of the ratio estimator and estimators
of its variance (with discussion). J. Amer. Statist. Assoc. 76 66-88.

RusIN, D. B. (1981). The Bayesian bootstrap. Ann. Statist. 9 130-134.

SHEEHY, A. (1987). Kullback-Leibler estimation of probability measures with an application to
clustering. Ph.D. dissertation, Dept. Statistics, Univ. Washington, Seattle.

SAS INsTITUTE INC. (1985). SAS user’s guide: Statistics. SAS Inst. Inc., Cary, N.C.

Tuomas, D. R. and GRUNKEMEIER, G. L. (1975). Confidence interval estimation of survival proba-
bilities for censored data. J. Amer. Statist. Assoc. 70 865-871.

WarTE, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test
for heteroskedasticity. Econometrika 48 817-838.

WiLks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite
hypotheses. Ann. Math. Statist. 9 60-62.

Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis
(with discussion). Ann. Statist. 14 1261-1350.

DEPARTMENT OF STATISTICS
STANFORD UNIVERSITY
STANFORD, CALIFORNIA 94305



