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SOME STABILIZED BANDWIDTH SELECTORS FOR
NONPARAMETRIC REGRESSION!

By SuEAN-T'sonG CHIU

Colorado State University and Academia Sinica

The problem of bandwidth selection for nonparametric kernel regres-
sion is considered. It is well recognized that the classical bandwidth selec-
tors are subject to large sample variation. Due to the large variation, these
selectors might not be very useful in practjce. Based on the frequency-
domain representation of the residual sum of squares (RSS), the source of
the variation is pointed out. The observation leads to consideration of a
procedure which stabilizes the RSS by modifying the periodogram of the
observations. The stabilized bandwidth selectors are ebtained by substitut-
ing the stabilized RSS for the RSS in the classical selectors. The strong
consistency of the stabilized bandwidth estimate is established. For suffi-
ciently smooth regression functions, it is shown that the stabilized band-
width is asymptotically normal, and the relative convergence rate of the
stabilized bandwidth estimate is T~1/2 instead of the rate 771710 of the
classical estimates. In a simulation study, it is confirmed that the stabilized
selectors perform much better than the classical selectors. The simulation
results are consistent with the theoretic results. The article contains the
important message that the commonly used cross-validation can be im-
proved substantially. The procedure and the theoretic results are developed
for a rather restrictive case. Further studies are required for more general
situations.

1. Introduction. In nonparametric regression estimation, a critical and
inevitable step is to choose the smoothing parameter (bandwidth) to control
the smoothness of the resulting curve estimate. The smoothing parameter
considerably affects the features of the estimated curve. Although in practice
one can try several bandwidths and choose a bandwidth subjectively, auto-
matic (data-driven) selection procedures could be useful for many situations;
see Silverman (1985) for some examples.

Several automatic bandwidth selectors have been proposed and studied in
Craven and Wahba (1979), Silverman (1984), Rice (1984), Li (1985, 1987),
Hérdle, Hall and Marron (1988), Chiu (1990b) and references given therein. It
is well recognized that these bandwidth estimates are subject to large sample
variation. As demonstrated in Figure 1, the kernel estimates based on the
bandwidths selected by these procedures could have very different appear-
ances. The data sets in Figure 1(a) and (b) are two samples from the simula-
tion study described in Section 5. The solid curves are the kernel estimates
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Fic. 1. Two samples from the simulation study. The dashed curves are the regression function

and the solid curves are the kernel estimates based on the bandwidths (a) 0.157 and (b) 0.357
selected by GCV.

with the bandwidths chosen by the generalized cross-validation [Craven and
Wahba (1979)]. More details concerning Figure 1 can be found in Section 5.
Due to the large sample variation, these bandwidth selectors might not be very
useful in practice.

In the simulation study of Chiu (1990b), it was observed that Mallows’
criterion gives smaller bandwidths more frequently than predicted by the
asymptotic theorems. Chiu (1990a) provided an explanation for the cause and
suggested a procedure to overcome the difficulty. By applying the procedure,
we introduce several bandwidth selectors which give much more stable band-
width estimates. Section 2 gives a brief background of automatic bandwidth
selection. In Section 3, based on the frequency-domain representation of the
residual sum of squares (RSS), we point out the source of the variation. The
observation leads to consideration of a procedure which stabilizes the RSS by
modifying the periodogram of the observations. The stabilized bandwidth
selectors are obtained by substituting the stabilized RSS for the RSS in the
classical selectors. Some asymptotic results about the stabilized Mallows crite-
rion are given in Section 4. It is shown that the stabilized selector gives a
strongly consistent bandwidth estimate. For sufficiently smooth regression
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functions, we get the quite remarkable result that the relative convergence
rate of the stabilized bandwidth estimate is 7~ !/% instead of the rate 7-1/1°
of the classical estimates. In Section 5 several commonly used criteria are
considered. A similar procedure is proposed to modify the well known cross-
validation. To compare the bandwidth estimates for finite samples, we carried
out a Monte Carlo study in Section 5. The simulation results are consistent
with the asymptotic results and confirm that the performance of the stabilized
selectors is much better than the performance of the classical selectors. This
article contains the important message that the principle of cross-validation
can be improved substantially. We remark that the stabilized procedure and
the asymptotic results are developed for a rather limited case: positive kernel
estimation with a circular design and equally spaced design points. Further
research is required for more general situations.

2. Automatic bandwidth selection. We consider the model Y(¢) =
m(x,) + &), x,=t/T,t=0,...,T — 1, where &(¢) is a sequence of indepen-
dent random variables with mean zero and variance o2. A commonly used
nonparametric method for estimating m(x) is the kernel estimator

T-1

mg(x) = (TB) ' L w{(x, —x)/B}Y(2)

t=0

[Priestley and Chao (1972)], where B is the bandwidth and w(x) is the kernel
function, which is a symmetric probability density function with support on
[-1/2,1/2]. Here we consider a “circular design”; that is, m(x) is assumed to
be a smooth periodic function and the estimate is obtained by applying the
kernel on the extended series Y(¢), where Y(¢ + kT) =Y(), k=0, + 1,... .
The circular design is often assumed in theoretic works to avoid difficulties
caused by boundary effects. A brief discussion concerning boundary effects is
given in Section 6.

The optimal bandwidth considered here is B,;, the minimizer of the risk
function

T-1

(2.1) Rr(B) = E{SSEr(B)} = E L {m(x,) — my(x,)}

t=0

2
Under some mild conditions, A;(8) = T~'/5R(T~'/%9) converges to

A(6) = 0‘10-2[w2(x) dx + 4_104{[x2w(x) dx}2[{m”(x)}2dx.

A(6) has an unique minimum at 6,, where

(2.2) 65 = o2 [w?(x) dx/[{jx2w(x) dx}zf{m”(x)}zdx].
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Most bandwidth selectors are based on the residual sum of squares

T-1
RSS:(8) = T {¥(t) - g(x,))
t=
For example, the Mallows criterion [Mallows (1973)],
(23) Ry(B) = RSSy(B) — To? + 20%w(0) /B,

was considered in Rice (1984). R,(B) is an asymptotically unbiased estimate of
R;(B). In practice o2 in (2.3) is replaced by a VT consistent estimate 2. Rice
(1984) argued that the error caused by the substitution is negligible. It was
shown in Rice (1984) that 6 — 6, = 0,(T~'/1%), where 6=TB and Bis a
local minimizer of R,(B). Similar results for other selectors can be found in
Rice (1984) and Hardle, Hall and Marron (1988).

3. The motivation and the stabilizing procedure. Following the ap-
proach in Chiu (1990b) and Rice (1984), we use the technique of Fourier
analysis to study the problem. Most notation and terminology follows Brillinger
(1981). In the following discussion, we let S(¢) = m(¢/T') (signal), and S,,(t) =
1 g(t/T). The geriodogram of the series Y(¢), t =0,...,T — 1, is defined as
I,(A) = |dy(MI* /@27 T), where

T-1
dy(A) = ), Y(t)exp(—iAt), —o <)<,
j=0
is the (finite) Fourier transform of the series Y(¢). The periodograms and
Fourier transforms of the series &(¢), S(¢) and S’B(t) are defined similarly.
Applying Parseval’s formula yields, for odd T,

N 2
(3.1) RSSr(B) = 47 ZIIY('\j){l - Ws(2,)}
i

[see Chiu (1990b) for details], where A; = 2mj/T, j=0,+1,..., are the
Fourier frequencies,
Ws(A) = X exp(—irt)w{t/(TB)}/(TB)
t
is the transfer function of the filter {(T8) 'wlt/(TB)]} and N = [(T — 1)/2].
Since w(x) is symmetric, W,(A) is a real function. For even T, (3.1) drops the
term at frequency w, which has negligible effects. Similarly, for odd T,

N N
2 2
(32) Rp(B) =47 Y Ig(A){1 - Wy(A))} + o2 ZIWB(,\,.) + o2
Jj=1 Jj=
Under mild conditions, any finite collection of the periodogram ordinates
I(A;) at A;, j=1,..., N, is approximately independently and exponentially
distributed with mean o2/(27). See Brillinger (1981) for a more precise
statement.
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It was shown in Chiu (1990b) that 6 — 6, is approximately proportional to

N
(3'3) Z [Is(/\j) - 02/(2;’7)]{1 BoT()t )](3/3B)VVBOT()¢ )

A closer look at (3.3) reveals that the periodogram ordinates at j = O(T''/%)
make the major contribution to the sample variation on the bandwidth esti-
mate. However, under commonly used smoothness conditions of m(x), m(x)
has negligible effects on Iy(1;) at j > O(T''/). It seems quite unreasonable
that the behavior of the bandwidth estimate is essentially determined by the
periodogram ordinates Iy(A;), which do not contain much information on
m(x). This suggests that one could reduce the variation by modifying the
periodogram Iy(A;) at j > O(T'/®),

A procedure for stabilizing the variation is described below. We first obtain
an estimate of o2, Two estimates, 6 = TN 'L ¥ Iy(A;) and

1 N Iy (2;)
N_jO +1 J=Jo '1 _ eXp(—z)tj)lz ’

62 =27

are considered here, where Y(¢) = Y(¢) — Y(¢ — 1) is the differenced series of
Y(#). The estimate 47 is a slight modification of the estimate suggested in Rice
(1984). Both 62 and 62 are special cases of

_I IIY(/\ )|t - exp(=ir)[$(2,)

(34) 52 =
£24J1 - exp(—i,)[*6(2,)

where ¢(A) is a weighting function. More details about the estimation proce-
dure (3.4) can be found in Chiu (1989b). Since the signal may still have some
effects on Iy(A;) at low frequency, we prefer to exclude a few periodogram
ordinates when obtaining &7. By inspecting the plot of Iy(A;)/I1 —
exp(—L)t )12, it is usually not difficult to select a j, such that IY(/\ )at j > j,
is not aﬁ'ected much by the signal. Wlth a proper selection of j,, 6-2 is more
accurate than 472 The estimate 47 has an advantage in that it does not
require the selection of j,. Since a slight change in bandwidth does not affect
the kernel estimate much, the estimated curves based on different variance
estimates will have similar appearance. In the following discussion, we let 2
denote an estimate of o2, which could be either 2 or &3

Second, for some constant ¢ > 1, find the first integer J such that
Iy(A;) < c62/(27). The constant c sets a threshold. As indicated in Theorem
3, the choice of ¢ is not important when m(x) is sufficiently smooth. In our
experience, setting —log(0.1) < ¢ < —log(0.05) yields good results. For a
smooth m(x), the Fourier transform of the series S(¢) decays rapidly. There-
fore, once Iy(A,) is smaller than the threshold, it is reasonable to believe that
Iy(A) at frequency A > A; is not affected much by m(x). The stabilized
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residual sum of squares (SRSS) is defined by

N
(3.5) SRSS7(B) = 4w L T ({1 - Wy(A))
iz
where
(3.6) Iy(x;) = Iy (%), Jj<d,

62/(2m), j=d.

The stabilized selectors are obtained by substituting the stabilized RSS and
RSS in the classical selectors. As an example, we modify (2.3) and get a
stabilized criterion

(3.7 Ry;(B) = SRSS;(B) — Té2 + 26w(0) /B.
An example of the stabilized criterion is plotted in Figure 3.

4. Assumptions and asymptotic results. We first describe the assump-
tions which we need in establishing the results.

AssumpTioN 1. The noise &(¢) is a sequence of independent random vari-
ables with mean zero, variance o2 and finite cumulants «, of all order.

AssumpTiON 2. The kernel function w(x) is a symmetric probability den-
sity with support on [—1/2,1/2] and the second-order derivative of w(x)
satisfies a Lipschitz condition of order a > 1/2.

AssumpTION 3. There exist positive constants M, M,, K; and K, such
that M,|jl ™% > T~U4();) for |jl <N and T~Us(A)) = M,ljI~** for |jl <
T/,

Assumptions 1 and 2 are quite standard. The part in Assumptions 3 that
requires Ig(A;) to decay fast is not strict; when m®)(x) is of bounded variation
and m®(0) = m®Q) for I < k, then T 'Ig(x;) < M|j|~***? for some con-
stant M [Zygmund (1959), page 241]. The other part that requires Ig(};) to
decay in some regular way is a crucial condition. We need this condition to
ensure that the stabilized procedure does not cut off (determined by J) too
much signal; thus the bias caused by dropping Ig(A;) at high frequency is
negligible. A modification, which requires less strict conditions, is given in
Section 6.

In the statements of the theorems below, let 8y = T''/°Bor, 6 = T3,
where B is the global minimizer of R;(B) (3.7). Also let B be a consistent local
minimizer of R;(B) (2.3). Under commonly used conditions, Theorem 1
establishes the strong consistency of 6.

THEOREM 1. Under Assumptions 1-3, with K, > 5 and assuming 6% is a
strongly consistent estimate of a®, 6 converges to 0, almost surely.
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With slightly stronger conditions, Theorem 2 shows that the stabilized
bandwidth estimate converges to B, faster than the classical one.

THEOREM 2. Under the assumptions in Theorem 1 with K, > 5.5 and

(K, - 5)/K,>1/10, B — Bor = 0 (ﬁ Bor)-

In fact, if m(x) is as smooth as assumed in Theorem 3, we can get the quite
surprising result that the convergence rate of 0 is T~1/2 instead of the rate
T-1/10 of the classical estimates.

THEOREM 3. Under Assumptions 1-3 with 10 < K, < K, < 2K, — 10, and
letting 6 be either 62 or 62 (with jo,/T — m > 0);, T/%6 — 0y;) is asymptot-
ically normal with mean zero and variance

2 4
{A”(Oo)}'z[ag“{fwz(x) dx} V+ 40802{fx2w(x) dx} [{m@x))* dx],
where V is the asymptotic variance of TY/%(6% — o?).

The quantity [{m®(x)}*>dx can be estimated by 2T~ 2L 7_ 1(271'j)8|dY(/\j)|2.
To simplify the discussion below, we now assume o2 is known. Rewrite

3.7 to
- J-1 2
Ry (B) =47 '21 {IY()‘j) - ‘72/(2‘"’)}{1 - %(’\j)}
j=
(4.1)

N
+o? Zo W2(A;) + o2
Jj=

Comparing (4.1) with (3.2), we see that RT(B) uses 47X ({Iy(A;) -

2/(277)}{1 W(A,)}? to estimate the bias term in Ry (B). Notmg that 1 —
Ws(A)) = 1(2773 J)wa(x)x dx leads to the consideration of a ‘plug-in”
bandWldth estimate, which is obtained by replacmg G = [(m"(x)}*dx in (2.2)
by the estimate G = 2T~ 2xd_@mj)dy(A; )% Following the arguments in
Section 7, similar results for the plug-in estlmate can be established. In fact,
when o2 in (2.2) is also replaced by &2 the plug-in estimate has the asymp-
totic variance described in Theorem 3.

The discussion above shows an important point that estimating the regres-
sion function and estimating the bias term in R;(B) are two different and
separate problems. Previously, the two problems were often mixed together,
which obscures the nature of the bandwidth selection problem. Another
important point is that it is not necessary to use the kernel method to estimate

R (B).
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5. Other selectors and simulation results. In addition to the selector
(2.3), we also consider the generalized cross-validation

(5.1) GCVr(B) = RSS;(B) /{1 — T7Bw(0)}
[Craven and Wahba (1979)], the selector T' of Rice (1984),
(5.2) Tr(B) = RSS;(B) /{1 — 2T '8 'w(0)}

and the well known cross-validation CV,(B) = LT HY(#) - B(t)}2 [Clark
(1975)], where

8u(t) = ¥ w((t - u) /(BT)}¥(t) | ¥ w{u/(BT))

u+t u+0

is a “‘leave-one-out” estimate of S(¢). The cross-validation can be rewritten as

CVr(B) = 4w g Iy(A;){1 + U 'w(0) - UfIUzwﬂ()‘j)}Z
(5.3) j=1

+O0(T'B71),

where U, = Lw{u/(BT)} and U, = U, — w(0). Similar to (3.5), the peri-
odogram Iy(A;) in (5.3) can be replaced by IY(/\ ) of (3.6) to obtain the
stabilized cross-vahdatlon The stabilized GCV and T selectors are obtained by
substituting SRSS for RSS in (5.1) and (5.2), respectively.

We carried out some simulations to compare the performance of the band-
width estimates. The observations Y(¢) were obtained by adding independent
Gaussian random variables with mean 0 and variance o2 = 0.0032 to m(x,) =
x2(1 — x,)3, x,=1¢t/T. The function m(x) was the one considered in Rice
(1984). We also used the same kernel function w(x) used in Rice (1984). All
random variables were generated by using the function RAND in Fortran 77
on a SUN 3/50 computer.

Five hundred series with T' = 75 were generated. For each observed series,
the minimizers of the criteria were obtained by searching over 451 equally
spaced points in the interval [0.04, 0.49]. The noise variance was estimated by
67 with _]0 5; jo was selected by inspecting the plots of Iy(A;)/[1 —
exp(—iA; )I? of some sample series. The stabilized residual sum of squares was
obtamed as described in the previous section with ¢ = 3 = —1o0g(0.05).

As mentioned in Section 1, due to the large sample variation of the classical
bandwidth estimates, the kernel estimates based on these bandwidths could
have very different appearances for different samples. Two sample series are
plotted in Figure 1(a) and (b); the dashed curves are the regression function
m(x) and the solid curves are the kernel estimates with the bandwidths 0.157
[Figure 1(a)] and 0.357 [Figure 1(b)] selected by GCV. The bandwidths are
about, respectively, the 10th and 90th percentiles of the empirical distribution
of ﬂGCV Since the empirical distribution of ﬁch has a short right tail, and is
biased toward undersmoothing, the bandwidth 0.357 is not too far away from
0.307 (Byr). So the kernel estimate in Figure 1(b) does not give a bad fit. For
the same pair of samples, Figure 2(a) and (b) shows the kernel estimates (solid
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FiG. 2. The same pair of samples shown in kigure 1. The dashed curves are the regression
function and the solid curves are the kernel estimates based on the bandwidths 0.302 [ Figure 1(a)]
and 0.300 [ Figure 1(b)] selected by SGCV.

curves) based on the bandwidths 0.302 and 0.300 selected by the stabilized
GCV. The kernel estimates in Figure 2(a) and (b) look more similar than the
pair of estimates in Figure 1(a) and (b).

Figure 3 compares R, (B) with R,(B) and R,(B) for the data set shown in
Figures 1(a) and 2(a). The stars in Figures 3-4 indicate the locations of the
optimal bandwidths BOT While RT(B) differs from R;(B) widely, the stabi-
lized criterion R(pB) is very close to the risk function.

Table 1 summarizes the sample means and standard deviations of the
bandwidth estimates and SSET(ﬁ). The last row gives B,r, the approximate
standard deviation of the stabilized estimates (from Theorem 3), and R (B,r).
We should point out that Is(A;) = O(Tj~"®) and thus m(x) does not satisfy
the conditions of Theorem 3. Flgure 4 shows the estimated densities of /3 £ and
Bs 5. The densities were obtained by using the S function ‘“density” with a
Gaussian kernel and bandwidths 0.06 and 0.02, respectively. The normal
probability plots of the bandwidth estimates suggest that the empirical distri-
butions of the stabilized bandwidth estimates are close to the normal distribu-
tions. The standard deviations of the stabilized estimates are much smaller
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Fic. 3. Comparison of the risk function Rp(B) (dotted curve) and the criteria ft’T(B) (dashed
curve) and Rp(B) for the data set shown in Figures 1(a) and 2(a). The star indicates the location
of the optimal bandwidth.
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Fic. 4. Estimated densities of the bandwidth estimates B3, (dashed curve) and By (solid curve).
The sample size is 500 and T = 75. The star indicates the location of the optimal bandwidth.
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TaABLE 1
Summary of the sample means, the standard deviations and SSE. The sample size is 500 with
T = 75. The last row gives the optimal bandwidth B,r, the approximate standard deviation from
Theorem 3 and R1(Byr)
4

Selector E@) SD(B) E{SSE, ()}
R 0.287 0.0685 6.48¢ — 5
R 0.306 0.0177 5.48¢ — 5
GCV 0.276 0.0827 7.36e — 5
SGCV 0.306 0.0176 5.48¢ — 5
T 0.306 0.0598 6.13¢ — 5
ST 0.321 0.0176 5.50e — 5
cv 0.276 0.0827 7.36e — 5
scv 0.306 0.0177 5.48¢ — 5
0.307 0.0236 5.30¢ — 5

than those of the classical estimates. It is interesting to note that, although
Rice (1984) intentionally designed the selector T to be biased toward over-
smoothing, T is the only classical selector that gives an unbiased estimate.
However, the stabilized T is substantially biased.

The kernel estimates based on the stabilized bandwidth estimates give
better fits. From Table 1, we see that the sample means of SSE are reduced by
as much as 25%. The sample means of SSE of the stabilized estimates are
remarkably close to R;(B,7). Table 2 gives some empirical quantiles of the
ratio SSE;(Bgev)/SSE(Bggoy)- It can be seen that the stabilized estimate
often substantially reduces the sum of squares errors. Following Rice (1984)
and Hérdle, Hall and Marron (1988), Table 3 gives the number of times that
the ratio R;(B)/R(Byy) exceeds certain values. For the stabilized estimates,
the ratio is rarely larger than 1.05.

We also obtained similar results from the simulations for different sample
sizes and for the regression function m(x) = 16x%(1 — x)° which satisfies the
conditions of Theorem 3. For the smoother regression function, the approxi-
mate standard deviations provided in Theorem 3 agree well with the empirical
ones.

TABLE 2
Some empirical quantiles of the ratio SSEr(Bgcy)/SSEr(Bsgov). The sample size is 500 with
T="15
p 0.05 0.6 0.756 0.9 0.95

Quantile 0.91 1.06 1.27 2.48 3.77
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TABLE 3
Number of exceedances by Rp(8)/R(Byr). The sample size is 500 with T = 75

Selector 1.05 1.1 1.2 1.4 1.6 1.8 2 4
T 188 100 46 19 10 7 2 0
R 206 132 76 48 30 17 11 0
GCV 220 155 105 75 59 49 39 5
cv 220 155 105 75 59 49 39 7
ST 11 0 0 0 0 0 0 0
R 7 0 0 0 0 0 0 0
SGCV 7 0 0 0 0 0 0 0
GCV 8 0 0 0 0 0 0 0

6. Remarks. This section gives some remarks. We discuss some interest-
ing problems and suggest some possible approaches. It is clear that for most
problems, both theoretic and practical issues deserve further study. It is our
hope that the discussion can stimulate more research interest.

REMARK 1. The problem of boundary effects has rarely been studied.
Boundary effects also cause trouble on classical selectors. The main difficulty is
that when m(0) # m(1), |[d,(A;)| decays slowly (the rate is T'/j). The decaying
rate can be accelerated by multiplying a smooth function (taper) to Y(¢). This
is called “tapering” in time-series analysis. A closely related procedure was
suggested in Hirdle, Hall and Marron (1988), who considered a weighted risk
function and a weighted RSS. These are reasonable approaches since there are
fewer data available for estimating m(x) at the boundaries. A practical prob-
lem is the selection of a proper taper to ensure that the Fourier transform of
the tapered signal decays fast enough. A more important problem is that when
|m(0) — m(1)| is large, one has to taper the observation heavily. In this case,
the bandwidth is essentially determined by the observations at the center. As
pointed out by a referee, we can fit a line to the data and obtain the bandwidth
from the residuals. We have done some preliminary simulation studies and
found that this procedure works well. Since the difference between m(0) and
m(1) would be greatly reduced, we would only need to taper the residuals
slightly to overcome the boundary effects.

REMARK 2. Following the approach of Chiu (1989b), the proposed proce-
dures can be modified similarly for the case of the corrected noise series, which
has a parametric spectral density function.

ReEMARK 3. When the signal contains periodic components at high fre-
quency, the stabilized procedure will modify the periodogram ordinates at the
frequencies of the periodic components. This could be a desirable feature
because we might not want the trend estimate to be affected much by the
high-frequency components. For extracting such a signal, it might be better to
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use a combination of a low-pass filter (such as a kernel smoother) and some
bandpass filters. See Chiu (1989a) for a discussion of detecting periodic
components.

REMARK 4. We now describe a modification of the stabilized procedure. The
only change is on the selection of J. We first select a J; which is the largest j
such that Iy(1;) > log(T)é?/m. We then choose J to be the first integer
larger than o, such that I y(A;) < ¢62/(2m). With a stronger condition on the
cumulants of £(¢), T |«,|2"/h!' < » for z in a neighborhood of 0, we have, with
probability 1, max I,(A;) < log(T)o?/7 [Theorem 5.3.2 of Brillinger (1981)].
The second part of Assumptlon 3 can be relaxed to: For any 8§ > 0, there exists
a sequence jr > T'/¥27% such that liminf Ig(A; )/log(T) = m > o®/7 (m
could be »). Under the conditions above, Lemmas 3 "and 5 hold for the modified
procedure, as do Theorems 1-3. In practice, one can use the modified proce-
dure as a safeguard. When the procedure disagree, the data set contains some
subtle features and deserves more study.

REMARK 5. Since this article was first written, we have seen the manuscript
of Hall and Marron (1989). For the density case, they showed that the fastest
relative convergence rate of bandwidth estimates is 7~1/2 (T, the sample size),
which is the rate given in Theorem 3 for the stabilized bandwidth estimate. By
considering a normal density with the standard deviation o, the reason for the
lower bound can be easily understood [Hall and Marron (1989)]. The optimal
bandwidth depends on o, and the best convergence rate is T~ !/2 for any
estimate of o. For the regression case, the unknown noise variance sets the
lower bound even when m(x) is known. We note that the convergence rate of
the stabilized bandwidth estimate is faster than the lower bound given in
Theorem 3.2 of Hall and Marron (1989). For example, for the class of functions
which have bounded second-order derivatives, the minimax lower bound given
in Hall and Marron (1989) is T~/ However, if m®(x) is of bounded
variation, the relative convergence rate of the stabilized bandwidth estimate is
o(T~1/6+3) for any & > 0.

REMARK 5. Whether one should try to minimize SSE or MSSE is an
important issue. Hall and Marron (1989) discussed this issue in some detail.
They argued that since the relative convergence rate of estimates of [30, the
minimizer of ISE, cannot be faster than T~!/1° one should try to minimize
MISE. Here we give an intuitive explanation for the difficulty in “estimating”
B,. From Chiu and Marron (1990), 3, is approximately proportional to

—8m Z {I ()t ) - 02/(277)} Bor(/\j)(a/aﬁ)vvﬂor(Aj)

+ 4T~ ReZ ds(A;)d.(—A;)(8/0B)Wp (A;).

Jj=
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The trouble here is that d,(A;) at low frequency does make a substantial
contribution to the second term above (the variance of each term at low
frequency is of order T'3/1°). To get a good estimate of j3,, we have to separate
the signal and noise at low frequency, which is a difficult job unless S(¢) has
some special structure. It was observed in Hardle, Hall and Marron (1988),
and explained in Chiu and Marron (1990) that the minimizer of SSE and the
classical bandwidth estimates are negatively correlated. Therefore, the stabi-
lized bandwidth estimates are closer to B, than are the classical estimates.

7. Proofs. This section establishes the results stated in previous sections.
We first derive the bounds for J through the following lemmas.

LEmMA 1. Under Assumption 1 and assuming that b — a = o(T), for any
positive integer k,

{(b -a) ' ¥ (L(x)) - 02/(277))} } =0{(b-a)7*}.

a<j<b

(11) E

Proor. First, note that for any [ > 1,
(7.2) Y - X am{L(A),...,L(x;,)} = 0{(b - a)}.
a<j,<b a<j;<b

This can be shown by using the technique described on pages 19-21 of
Brillinger (1981) and noting that

cum(d,(@y), .., d.(wp)) = {

where w’s are Fourier frequencies. Defining B, = £5_{I,(A;) — o?/(2m))} for

h =1,...,2k, we see that the left-hand side of (7.1) is equal to
(b-a) Y cum{B,,h € v} - cum{B,,h € v},

Tk, o, +  +w, =0 (mod27),
0, otherwise,

where the summation above is over all partitions v = v; U -+ U y, of the set
{1,...,2k}). Since EB; = 0, any partition that gives nonzero contribution must
have p < k. The lemma follows this and (7.2). O

LEMMA 2. Under Assumption 1 and assuming that b —a = o(T) and
T°/(b - a) = o(1) for some & > 0, for any constant ¢’ > 1, min, _; ,I.(1;) <
c'o?/(2m) with probability 1.

Proor. It is clear that
P min 1.04) > eo/(2m)
Join 1,(4;) > ¢o’/(2m)
b-1

< P[(b - a)_l{ Y (IS(AJ-) - 0'2/(217))} > (¢ - 1)0'2/(217)].

J=a
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From Lemma 1 and the Chebyshev inequality [Chung (1974), page 48], the
right-hand side above is of order (b — a)~* = o(T~*°). The lemma is estab-
lished by choosing a large enough k. O

From Lemmas 1 and 2, Lemn;a 3 gives an upper bound of oJ.

LemMa 3. Under Assumptions 1 and 3 and assuming 62 converges to o2
almost surely, for any 6 > 0, J < T?*+Y/E1 with probability 1.

ProoF. Let b =[T?*/%1] and a = [T%*/K1] for some & > 8, > 0. It is
sufficient to show that, with probability 1, only finitely many events
{min, _; ,Iy(A;) > ¢62/(2m)} occur. The event above is contained in the
union of the events

(7.3) min Iy(A;) > c'a?/(27)
as<j<b

and

(7.4) 62-02< —(c—c)a?%/c

for any ¢ > ¢’ > 1. From Lemma 2 and Assumption 3, with probability 1, only
finitely many events of (7.3) occur. The same statement holds for (7.4) from
the strong consistency of ¢2. O

Lemma 4 is a direct consequence of Theorem 4.5.4 of Brillinger (1981).

LeEmma 4. Under Assumption 1 and for any 6 > 0, max, _; _x I(A;) < T?
with probability 1.

Similar to Lemma 3, we obtain an upper bound for oJ.

LEmMmA 5. Under the conditions of Lemma 3 and for any 6 >0, J >
T/K2=% with probability 1.

Next we proceed to prove Theorems 1-3. Comparing (3.2) with (3.7) yields,
for odd T,

R7(B) — Rr(B) = D(B) = Dy(B) + Dy(B) + D3(B) + Dy(B) + Ds(B),

where

N
D) = ~47 L Is(){1 = W),

J-1
Dy() = 4w T {L(x) - o*/@m}H{1 = Wy(n)}

J—-1
Dy(B) =477 Re £ ds(h) di(~2){1 = Wo()},
1

I 2
D(B) =2(c* = %) L (1= Wy(1,))
=
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and

N
Dy(B) =2(6%2-02) ), WBZ(AJ-) + o2.
j=0

For even T, D,(B) and DyB) drop the terms at frequency =, which have
negligible effects.

In the following discussion, we let M be a generic positive constant. The
definition of M will depend on the context in which it is used. Also, unless
stated otherwise, all bounds concerning random variables are probability 1
bounds. Letting W(B,j) = [w(x)exp(—i27Bjx) dx, Assumption 2 implies that
(W(BH)I < MB73j73 and [(3/9BIW(Bj)l < MB372 for 0 <B <1 [see
Edwards (1979), pages 32-34 and note that w(1/2)=w'(1/2) = 0]. Since
W,(A,) = L% _ W(B(nT + j)),

[W(4) = W(B)| < M T (BT +1)) " = O(7%%).

Therefore, | W5(2;) can be replaced by W(Bj). Similarly, the derivatives
(8/3B)W5(1 ;) can be replaced by (3/08)W(Bj). We will ignore the errors caused
by the replacement. Also note that

W(A) =1 - 27Y272) % fw(x)x2dx + O(X*)
and so |1 — W(Bj)| < M(B%?) for j < B~ 1.
The uniform convergency of R;(B) is given in Lemma 6.

LEMMA 6. Under the conditions of Theorem 1, R (B)/R(B) converges to
1 almost surely and uniformly on T~ Y%7 < B < TY%*" for any positive
constant 7 < min{(K, — 5)/(4K,),(K; — 5)/(6K)}.

ProoF. Letting 8 > 0 be a constant such that J < T1/X1%8 < T1/5-7 we
have

(7.5) | Dy(B)| < M{B*T1+(~Ki+5X1/Kz+5) | TgKi-1)
and

J—1 2
19 £ {1 W4, < MavTsosmies

j=1

From Lemma 4, and the fact that max,|d (A)| = o(T'/2*°) for any 6 > 0
[Theorem 4.5.4 of Brillinger (1981)], we also have, for some small §, > 0,

M 4T1/2+81+(—K1/2+5)(1/K1+8)’ K < 10’
(17 D)= :
MpBAT /2%, _ K, > 10.
Similarly, since max, I.(A) = o(T'®) for any § > 0,

(78) |Dy(B)| < MB*T 50/ Karoan,

Also note that =Y (;W2(A,) < MB~'. From (7.5)-(7.8) and the definition of
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D,(B) and D4(B), it can be seen that, by selecting small enough 4 and &,
D,(B) = o(TV%), k=1,...,5, uniformly on T/~ <B <T 1/5*". The
lemma follows the fact that R,(8) > MT'/%. O

PrOOF OF THEOREM 1. From the definition of R,(B) [also see (4.1)], we see
that

MT1/5+1’ 0< B < T—1/5—-r’

Rp(B) 2 MTV/5+47 T-1/547 < B < o,
Since R (T~1/®) = O(T'/5), the global minimizer of R,(8) must be inside
T-Y5-7<B <T~1/5*" for large enough T. The strong consistency of 6
follows this and Lemma 6. O

ProorF oF THEOREM 2. In this and the proof of Theorem 3, we let
B =0T"'5 for some constant § > 0. From Taylor expansion, we have
D'(B) = (B — Bor)R'y(B) for some B in between B,y and B. Similarly, D'(B) =
(8 — Bor)R(B) for some B in between By and B, where D(B) = R (B) —
R(B). Since D'(B,y) is of order T3/ [Rice (1984) and Chiu (1990b)], it is
sufficient to prove that D'(B,;) = o(T'3/1°). This can be shown by noting that
{1 — W,(A)X3/0B)W4(A;) = O(B%*) for j <B~' and is of order B~3%j=2 for
Jj > B! and following the arguments in Lemma 6. O

Proor oF THEOREM 3. The strong consistency and the asymptotic distribu-
tion of 67 were established in Chiu (1989b). For the estimate ¢, we note that
LT 48%(¢t) < MT~! and so

N 2 N 2
Y |de (1) = T |da(a)| + o(T),
Jj=1 Jj=1

where &(¢) = &(¢) — &(t — 1). Since &(¢) is independent with &(¢) for all
|t — #| > 1, the strong consistency and the asymptotic distribution of &7 can
be established easily.

Before showing that Dy(B) and D)(B) are of order O,(T~'/1°), we note that
the other terms are of smaller order. It is clear that D,(B) and Dj(B) are of
order o(T~'/'°) when K, > 10. When 10 < K; < K, < 2K, — 10, D{(pB) is
also of order o(T~1/1%), Since

N
2(3/9B) 21m2(xj) = —p7% [w?(x) dx + O(T'87%),
i

5(B) = (6% — 0?72 [w?(x) dx = O,(T~").
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Since

N
T8 L dg(d;)do(—1;)j* = o(T7/"),
j=d

*

2 N
(19) (B) = 4T‘1[33{fx2w(x) dx} Re Z:l ds(;)d.(—A;)(@2m))*
. s

+ o(T~1/19),
The variance of the first term in (7.9) is equal to

4 N
(7.10) 8ﬁ6Ta2{jx2w(x) dx} zl(ij)8|ds()tj)|2/T2.
J= .

Note that T'/5 times (7.10) converges to 40%02{ fx2w(x) dx}*/{m®(x))? dx.
Since d(A;) = {1 — exp(—iA;)} d (A;) + O,(1), and cum{Ide()tj)Iz, d.(A\))} =
0 for any 1 < |jl, || < N, the covariance between the first term of (7.9) and

N
BT X |41 - exp(=i)6(,)

is of order BT~'/? = o(T~'/®) for any weighting function ¢(A;) <
M1 — exp(—iA;)| ~2, Therefore, D(B) and Dj(B) are asymptotically uncorre-
lated.

The asymptotic normality follows the fact that the kth order joint cumu-
lants of Dy(B) and D(B) are of order o(T*/1°) for %k > 3, which can be
shown by some quite straightforward but notationally complicated computa-
tion [see the proof of Theorem 5.10.1 of Brillinger (1981)]. O
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