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BAYES EMPIRICAL BAYES ESTIMATION FOR NATURAL
EXPONENTIAL FAMILIES WITH QUADRATIC
VARIANCE FUNCTIONS

By G. G. WALTER AND G. G. HAMEDANI

University of Wisconsin-Milwaukee and Marquette University

Certain orthogonal polynomials are employed to estimate the prior
distribution of the parameter of natural exponential families with quadratic
variance functions in an approach which combines Bayesian and nonpara-
metric empirical Bayesian methods. These estimates are based on samples
from the marginal distribution rather than the conditional distribution.

1. Introduction. The univariate natural exponential families (NEF) with
quadratic variance functions (QVF) include many of the most widely used
distributions (normal, Poisson, gamma, binomial, and negative binomial; in-
deed these are five of the six basic NEF-QVF distributions). These were
studied by Morris (1982, 1983), who presented many of their properties in a
unified way. Among other things, Morris constructed an associated family of
orthogonal polynomials which in each particular case reduced to a family of
standard classical orthogonal polynomials. These polynomials were then used
to find estimators for arbitrary analytic functions.

The conjugate families needed for the prior distribution in Bayesian analysis
were also studied by Morris (1983). These are not themselves NEF-QVF
distributions, but belong to a Pearson family and have a simple form which
can be exploited to obtain formulas for Bayes and parametric empirical Bayes
estimation.

In previous papers, Walters and Hamedani (1987, 1989) have exploited
certain classical orthogonal polynomials to obtain estimates for a prior distri-
bution in an approach which combined Bayesian and nonparametric empirical
Bayesian methods. These estimates are based on samples from the marginal
distribution.

In this work we shall show that Bayes empirical Bayes procedure works in
this general setting of NEF-QVF. However, the orthogonal polynomials must
be related to the prior distribution rather than the conditional distribution,
and therefore must be defined differently than those of Morris (1982).

We shall suppose that an initial prior distribution, based on subjective
knowledge, has been selected from a member of the conjugate family. This is
the best one can do [Morris (1983), Theorem 5.5] if only the first two moments
of the prior distribution are known. We then use our sample to improve the
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estimate, that is, by getting a better approximation to the true prior distribu-
tion as the partial sum of a series of these orthogonal polynomials.

The orthogonal polynomials defined here are exactly the ‘““classical’’ orthog-
onal polynomials considered by Tricomi (1955). In each of the six NEF-QVF
distributions, the polynomials are identified as particular types of classical
orthogonal polynomials. In some cases, however, only a finite number of them
can be used, since the conjugate prior distributions may not have moments of
all orders.

In Section 2 we shall review, for subsequent use, some of the properties of
NEF-QVF distributions given in Morris (1982). In Section 3 we define our
family of orthogonal polynomials and show their relation to those defined by
Morris (1982). Some basic properties are also discussed, including the differ-
ential equation and recurrence formulas satisfied by the polynomials. More
detailed properties are relegated to Appendix A. Section 4 introduces a
biorthogonal system related to the polynomials which is used to recover the
prior distribution from the marginal distribution. This is applied to the
~ empirical Bayes estimation problems in Section 5. Appendix B contains
the results for each of the six basic NEF-QVF distributions. These results are
summarized in Table 1.

In the standard Bayesian approach it is assumed that the parameter, say 6,
is fixed but not precisely known. The prior probability law g(6) has a different
character than the probability law f(x|6) of the random variable X. It is
assumed to be a subjective measure of the investigator’s prior knowledge of 6.
The observations are of the function f(x]|#), and a sample X =
(X;, X,, ..., Xy) therefore has the probability law

: N
f(xl6) = Dl f(xi16),

and the marginal distribution of X is determined by

N
fx) = [ T1 7(xl0)2(0) do.

The nonparametric empirical Bayes procedure referred to earlier is due
principally to Robbins (1956). It assumes that the parameter 6 is a bona fide
random variable. A sample consists of independent pairs

(X1’®1)’ (X2’®2)’ s ’(XN’G)N)
with the joint probability law
N
I_-[lf(xilai)g(oi)'
ie

The X, X,,..., Xy are observable, but the 0,,0,,...,0, are not. The
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marginal distribution of X = (X, X,,..., Xy) is

N
fx) = [ [+ [ T1f(xd6)2(0,) do, dy --- doy

N
= I1 [f(x6)8(6) db.
i=1

The assumption here is that (X, 9,),(X,, 0,),...,(Xy,®y) is an indepen-
dent sample from the distribution with density function f(x|6)g(#). The
conditional probability law of X given 6, namely, f(x| -), is assumed known;
g(+) is assumed unknown but a smooth density.

Most approaches to the problem of estimating g(6) have been indirect in
that estimators are obtained not for g(8) itself, but for the moments of g(6);
see Maritz (1970). These approaches, while simple, often suffer from excess
“jumpiness” [as was observed by Berger (1985)] and should be smoothed. The
direct methods in which g(9) itself is estimated have usually been based on
step functions [see, e.g., Deely and Kruse (1968)] or Dirichlet processes [see,
e.g., Berry and Christensen (1979)] or maximum likelihood [see, e.g., Laird
(1978) or Leonard (1984)]. Laird pointed out that her method is equivalent to
the simultaneous estimation of several exchangeable parameters and leads to
an estimator with finite support. Since we shall assume that g is a smooth
density, such estimators suffer from the same difficulty as the empirical
distribution, viz. they are not mean-squared consistent.

At the other extreme lie the parametric methods in which g depends only
on a finite number of parameters. The simplest method depends on the
assumption that g belongs to a class of conjugate densities, for example, the
assumption that g is a beta density in the binomial case.

The method presented here is intermediate between the two, and may
involve a finite or infinite number of parameters. It is similar to that in Walter
and Hamedani (1987, 1989) and is based on orthogonal polynomials. It in-
volves a preliminary choice of a conjugate prior and of two parameters, the
prior mean and variance of which may be subjective (Bayesian) or estimated
from the data (parametric empirical Bayesian), followed by an improved
estimate of g based on the sample from the mixture. Then Bayes and
empirical Bayes methods are combined, but in a fashion somewhat different
than that of Deely and Lindley (1981).

2. A review of certain properties of NEF-QVF. A natural exponen-
tial family is one with a cumulative distribution function (CDF) F, given by

(2.1) dF,(x) = exp(6x — ¢(0)) dFy(x), x€R,

where 6 € ® C R, F,, is a univariate CDF possessing a moment-generating
function in a neighborhood of zero and

¥(0) = 1ogj exp(0x) dFy(x), 0 €.
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The mean and variance of F, are given by

(2.2) n=4y'(8)
and
) do\!
(2:3) V() =w'(®) = || -
7
A NEF has quadratic variance function if V has the form
(2.4) V(k) = vy + vip + vgp®.

The orthogonal polynomials defined by Morris (1982) are given by the
Rodrigues formulas

n

d
(2.8) P,(x,u) = V"(#){d“nf(x,")}/f(x,f’), n=0,12,...,

where f(x,6) = exp(6x — ¢(6)) is a multiple of a NEF-QVF probability law.
These are polynomials of exact degree n in both x and x which are orthogonal
with respect to (2.1) as a function of x. Their normalizing factor is

(2.6) E,(PA(X, 1)) = a,V" (1),

where a, = n!lI}Z3(1 + kv,). If the parameter p is changed to u,, the ex-
pected value with respect to 6(u) is

(27) Ey(PX, 10)) = (1 = o)™

This is used to obtain the unique minimum variance unbiased estimator of an
analytic function [Morris (1983), Theorem 3.1]

(28) fu(w) = ¥ )
n=0 *

by

(29) &(X) = T B(X 1),

where ¢, = g{™(u,), the nth derivative at .

This unbiased estimator (2.9) leads to the standard moment estimators
when g,(u) = (i — po)", for example, if n = 1, ,(X) = X — p,. This estima-
tor is of course sufficient for 6 as well by the Rao-Blackwell theorem. This can
also be shown directly by the factorization theorem.

A conjugate prior distribution has a density with respect to du of the form

(2.10) g(n) = K{exp(mpu,8 — my(6))}/V(n),

where 6 is now treated as a function of u and m > 0 is a convolution
parameter. This now depends upon two prior parameters u, and m, and is a
two-parameter exponential family; in fact, it is a Pearson family, but is not in
general a NEF.
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3. A system of orthogonal polynomials. Since the system of polynomi-
als given by Morris (2.5) is orthogonal with respect to x and not u, we must
define a different system for use with prior distributions. We define

(3.1) ra(p) =r(m,m,pg) = (- ) g( ) di n(g(y.)V (r)),

n=0,1,2,...,
where g(u) is the prior distribution given by (2.10). Then
rO(l"’) = 1,
ri(p) =m(p — po),

ro(w) = m(p = o) = m(n = wo)V'(k) + (205 = m)V(),

and r,(u) is a polynomial of exact degree n except for exceptional values of the
parameters. For example, if m = v, or m = 2v,, then the leading coefficient of
ro(u) is zero; otherwise it is not.

We next observe that the polynomials of Morris may be obtained from the
prior distribution by means of formula (2.5) since g(u) = Kfy(mpu,,60)/V(w),
where fi(x,6) is the modification to f(x,6) which includes the convolution
parameter m [Morris (1983), (4.1)],

fi(x,0) = exp(6x — my(0)).
This is equivalent to multiplying x and V(u) by m. Indeed we have

n

d
(3.2) P (mpo, mp) = V"‘I(#)( i (V(u)g(u)))/g(u),

n=12,...,

and hence find that r, is given by
ra=(=1)"(Vev")"/g

- (-1"% (NP e e

k=0

(33) _( l)n( zn: ( )Vn —k~ I(Vg)(n k)/g){(Vn 1)(k)V1+k n}
k=

0
=(- 1)"i ( ) - k Vn 1)(k)V1+k n}

Since the expression in the braces is a polynomial of degree at most %, it
follows that r, is a polynomial of degree at most n. It is of exact degree n
except possibly in a discrete set of values of the parameters.

We now consider the orthogonality. We assume that g(x) has moments up
to the 2nth order. Then by Theorem 5.2 of Morris (1983) and the fact that the
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integrated terms in integration by parts vanish for NEF-QVF distributions,

[rtrwg(u) di = ["a (=D (V" (1) du

n

— fb d kvn d
= gt (n)g(p)du

(3.4)

0, k<n,
= bn
[ Vi(w)g(u)du,  k=n,

and hence r, and r, are orthogonal. Let r, have leéding coefficient k,. Then
the normalizing factor is

vo = [Tr2(m)e () du = b, [w'r,(n) & (u) du
(3.5) ¢ ¢

= kan! [V (w)g (k) d = Rynly,.
a

This sort of Rodrigues formula is satisfied by the classical orthogonal
polynomials of Jacobi, Laguerre and Hermite. In fact polynomials defined by
(8.1) have a long history and many of their properties appear in Tricomi
(1955). He showed not only the orthogonality mentioned in (3.4), but also
derived the form of g(u) in the case of finite, semiinfinite and infinite
intervals. These forms correspond to the three classical cases. However, he
assumed special forms of V(u) which do not always hold for us. In particular,
V(u) may have a nonzero leading coefficient in some cases of infinite intervals.

All orthogonal polynomials satisfy a three-term recurrence formula of the
form [Szegd (1967), page 42]

(3‘6) /J‘rn(#) = Anrn+1(#‘) + Bnrn(/"’) + Cnrn—l("l')‘

The coefficients may be evaluated by observing that

[Pur(w)g(u) du = B, [r2(w)& (k) du = By,

b
[ rr(m)rae(w)g(n) du = Ayyn.s,
(3.7 b b o k,
[rrm) () g(w) di = [Tlup 1y (w)E(K) dp = 7= Yas1s
a a

n+1
kn—l

b
[ura(m)ra (w)g (k) dp = Coyps = =,
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In addition, the r,(u) are related to the P,(x, u) of Morris by the relation

n

d
[ £ 0P, m)e () dis = f.,b( e f(x,ﬂ))V”(#)g(u) du

d

(3.8) AS RGO

(V*(n)g(n)) du

- f:f(x,ﬂ)rn(#)g(ﬂ) du.

Then r,(u) correspond to particular classical polynomials in some of the
special cases (see Table 1). These classical polynomials usually are defined as
eigenfunctions of a second-order differential operator. Therefore, it is not
surprising that the following proposition holds.

TaABLE 1
Natural exponential families with quadratic variance functions, their conjugate prior distributions
and associated orthogonal polynomials

Name Normal Poisson
xX,—A
Density e~ x-M?/20% Xe
oV2mr x!
A
0 ? logA
w
o(u) s log u
o262
¥(0) 5 e
V(r) o? M
(a,b) (=, ) (0,)
Zero of V() — 0
Std. go(p)' e ue ™+
for m = 202 1
Mo = 0 a+1
I'(n+a+1)
= n, T 2n
vn = JV"80 7 T(a+ 1)
Standard polynomial Hermite Laguerre
Usual symbol H,(x) L(x)
n/2
m (= o n
) (3) omlv/5 ) o
ag
2T(n+a+1)
r.(a) — r2(0) = (-1) TTa+l)
k, m” m"
ng > maxn o o

"Up to a multiplicative constant and possible change of scale and/or location.
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TABLE 1
Continued
Name Gamma Binomial
r-1 —x/A
. x e "\ oxeq
Density (X) m (x)P (1-p)
0 — lo
A g( 1-p)
-r
0 — lo ( )
(») " g\
(8) —rlog(-9) rlog(1 + €%)
2 2
I I
V(w) - B
(a,0) (0,») 0,r)
Zero of V(u) 0 o,r
Std. go(n)* poe=t/k pB(r — w)*
-(2+a) a+pB+2
for m = _— _
r r
-1 B+1
Ko = -(2+a) m
= Jo"g,’ [(Z1-a-2n) "B(n+a+1,n+p+1
v, = "8 W r'B(n+a+1,n+p+1)
Standard polynomial . Bessel on (0, ») Jacobi on (—1,1)
Usual symbol Y,((x) P{B)(x)
- 2
" Ay i( e 1prpap| 2K _
r.(p) @2+ a) ppY (#0 . n!r"P{ . 1
0) = (2 + no. lnnl"(n+ﬁ+1) 0
ra(a) ra(0) = (2 + )" D'y = O
5 2T2n +a + 1) '2n+a+B+1)
" (=1 I'(n+a+1) I'(n+a+B+1)
nyg>maxn -1-a =

"Uptoa multiplicative constant and possible change of scale and /or location.

ProposiTION 3.1. Let v, = [2V™(u)g(u)du < » for n < ny. Then r(u),
given by (3.1); satisfy the differential equation

d
(3.9) E(g(u)V(#)r;(u)) =&,r(n)8(n),

where ¢, = n((n — Vv, — m).

Proor. Since r;, is a polynomial of degree n — 1, the left-hand side of (3.9)
may be expressed as
(V). + &V, =g(Vr;, — riry,) = g,
where p is a polynomial of degree less than or equal to n. Let £ < n. We shall
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TaBLE 1
Continued
Name Negative binomial Hyperbolic Secant
Density (" +tr-1 )p"(l -p) (1 + %) Zertan™iAf(x)
0 logp tan 1A
© “
! *(7)
0(”‘) Og( r+ w ) tan r
¥(6) —rlog(1 — €%) —r log(cos 6)
2 2
Vi + — +—
(@) B+ T+
(a,b) (0, ) (==,)
Zero of V(p) ,-r) : +ir
Std. go(u)" wP(r + p)* (r+ip)*(r — in)?
a+p+2 —(a+B+2)
for m = B — _—
r r
B+1 B-a
Ko = :
m mi
ngo! "B 1,-2 1 ary" LC2n e B2 1)
v, = [V"g, r*"B(n+p+1,-2n-a--1) (4r) T(-n—a)[(-n = B)
Standard polynomial Jacobi on (1, ) Jacobi on (—iw, iw)
Usual symbol P{B)(x) PP (x)
2”' .n _iIJ-
r(n) n!r"P,(L""B)(T + 1) (-i) n!2"P,$""B)( " )
© JJ(n+ta+l) . _nznl‘(n+a+1)
(e) A Y ) i) = (=0 2 e T
A ( l)nF(2n+a+[3+1) (-)'T2rn+a+B+1)
" '(n+a+pB+1) r'T(n+a+B+1)
nyg> maxn -1-a-p -1-a-p8

fUp to a multiplicative constant and possible change of scale and /or location.

show that

[ *g(n)p(n)u* du = 0

and hence that p(u) is orthogonal to all polynomials of degree less than n.
Thus p(u) is a multiple of r,(u), say £,r,(n). To see this we integrate by parts

twice,

[ @V i) st du = - [*&(u)V(w)r(w) b~ dp

(3.i0)

= kfabrn(u)(g(u)V(u)uk'l)' du =0,

since (g(u)V(u)u*~1Y /g(w) is a polynomial of degree less than or equal to k.
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The leading coefficient of p(u) is the same as that of Vr! — r;r., namely,
—mk,n + vyn(n — Dk, = nk,((n — v, — m). This in turn must be £,%,,
whence the conclusion. O

A more detailed version similar to this proof may be found in Tricomi
(1955).

CoRrOLLARY 3.2. The polynomials {r,} satisfy the differential equation
Vy' —m(u — o)y —n((n — 1)v; —m) =0.

We may also obtain an expression for the derivatives of r,. Indeed r.V is a
polynomial of degree less than or equal to n + 1; it satisfies the recurrence
formula

(3.11) nV=a,r,.1+Byrn+8,T_1,
where

a, = nv2kn/kn+l’

B =3[ "r2(u)r(w)g(n) du/y, = m(B, o),
5= [ P () () V()8 (1) A /v,y

-/ P8 T () () 8 () dps — [ V()1 () ()@ (w) du

= (kn—l/kn)Yn(m - (n - 1)v2)‘
All the coefficients of these two recurrence formulas may be given in terms
of k,, v, and B,,. This last coefficient may be found in terms of the others as
well if the polynomials are known at one point [usually a zero of V(u)]. Then

ar,(a) = A,r,,(a) + B,r,(a) + C,r,_,(a)
or
r,+i(a) C.rn_1(a)
"r(a)  r(a)

In Table A1, we give the values of k,, v, and r,(a) for each of the six
families. More detailed general calculations are found in Appendix A and for
particular cases in Appendix B.

(3.12) B, = -

4. A related biorthogonal sequence. In Bayesian simultaneous esti-
mation methods [see Leonard (1984) for references] it is assumed that the
density g belongs to a parametrized family, and then assumptions about the
parameters of g are introduced. As pointed out by Leonard (1984), the choice
of g very often involves a unimodal density with thin tails (e.g., normal or
gamma). While these choices of prior will be adequate in numerous situations,
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they will be less appropriate in many others. Dawid (1973) investigated prior
densities with thicker tails than normal and showed that it is unreasonable to
expect the same results from analysis based upon a normal prior. Alterna-
tively, g might possess more than:one mode, in which case fairly complex
analysis might be involved. In view of these observations due to Leonard
(1984), he studied the empirical estimation of the general prior density g, that
is, under no prior information about g. He pointed out that if some partial
information about g were available, then it could be used for smoothing
densities.

We are therefore interested in prior distributions which are not necessarily
conjugate distributions but are more general. In this section we shall denote
the conjugate density by g,(u) and shall allow g(u) to be any density in the
(topological) span of {r,} in L%(g,). This is not a restriction if the {r,} are
complete as they are for finite intervals.

In this case, if

(4.1) g(1) = ¥ anra(w)go(n),

n=0

then the marginal distribution is formally given by
b
f(x) = [1(x,0) L a,ru(n)go(n) du
(4.2) .
= ¥ a,f f(x,0)r(n)go(k) du,

times some fixed measure dF (x). We denote by [, the functions

(43) (%) = [ £, 0)r(w) go(n) di.

These may also be expressed in terms of Morris’s polynomials as

(4.4) L@ = [0 Poxm)go(w) du,

by (3.8).
We shall be interested in turning the problem around and going from f(x)
in (4.2) to g(u), that is, in finding coefficients a, such that

(4.5) f(x) = L a,l,(x),

which we may then use to recover g(u) by using (4.1). To do so we find a
sequence {A,(x)} of polynomials biorthogonal to {,(x)} by using (2.8) for r,(w).
The u, used there is taken to be the parameter in g,(u) given by (2.10). Thus
by (2.9) we have the unique minimum variance unbiased estimator of r,(u) in
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the form
3
n —
(4.6) r(w) = 5 ey b0
k=0 k!
given by
i cnk
(47) An(‘)() = Z ;;'Pk(X’#O)‘
E=0

Then we have

Bo(CO1(X) = [*4(2){ [*F(20)r(w) o) di) dFy(2)
(48) = [ B0 (X)) (w)8o() dp

= Lbrk(u)rn(u)go(u) dp = 8,4Yns

by Morris (1983), page 517.
Thus if f(x) dF,(x) denotes the marginal distribution, we may express f(x)
in the form (4.5) by taking

(4.9) a, = Eo(A(X) f(X))/Yn

and subsequently use (4.1) to find g(u).
We have been rather cavalier with questions of convergence in this section.
A number of problems may arise which we shall allude to in the next sections.

1. g,(n) may not have moments of all orders so that r,(u)g,(x) may not be
integrable for large n.

2. g(u) may not be identifiable. This may happen if the [, are not linearly
independent.

3. The topological span of {r,} in L%(g,) may not include all the prior
distributions of interest.

The variance of A,(X) may also be calculated from the general formula in
Morris (1983). It is

Var 4{A,(X)} = {ra(w) V() + {2 (0)}'V2(1) /2(1 + v,)

(4.10) + kis {r,(lk)(/.b)}zvk(li)/ak’

where a;, = k!l’l}’;&(l + jug).
However, we shall be interested in the variance of A,(X) when X is the
random variable with distribution

[ *£(x,6)2o( 1) du dFy(),

which we shall denote by Var, . We shall use repeated integration by parts to
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evaluate integrals of the form

b 2
(4.11) Ly = [{r®(w)} VE(p)go(n) dp.
The appropriate formula is ’

fabp(u)Q'(M)V(u)go(u) du =~ *p () g () V(1) &o( ) dis

(4.12) ,
+ [ r(w)p(w)a()8o(w) dr,

where p and ¢ are polynomials such that
b
[ 1p(1)a() V(1) lgo(r) du < .
For n = k, the integral (4.11) is easy to evaluate. It is

(418) I, = (nlk,)*[V"()go(w) dis = (nlk,)* s = nlkyy

For k = 0, I, = v,. In the other cases we apply (4.12) repeatedly to obtain:
LemMA 4.1. Let go(n) have a finite 2nth moment. Then

!
(n nk)rn(m (n+j-1vy)y,, k=12,...,n.

For k = 1 we use (4.12) with p = r] and ¢ = r,. Then we find that

[T V() 8o )

(4.14) I, =

f a(m)r, (P«)V(P«)go(#)dﬂ+/;b"1(#)"rl»(#)"n(#)go(#) du

= EnYn'
For general k& we take ¢ = r*~V and p = r{®V*~! to find

L9 (RO wVHw)V(w) go(w) du
=~ [ (R VA () V() go(w) di
415+ fabrl(,u)r,‘,"‘”(ﬂ)r,ﬁ")(#)V’“‘I(M)go(#) du

L a )
a

X{ré D(u)V(w) + riP(u)(k — 1)V (1) = ry(u)r(w))
XV () go(m) du,
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which is simplified by using the differential equation for r{*~?,
V' = (ri = (k-1V')y
(4.16) ={(n(n—-1) = (ki 1)(k - 2))vy + m(k — 1) — mn}y
=(n—k+1)((n+k—-2v,—m)y=m,4_1y.
By substituting (4.16) into the right-hand side of (4.15), we find that

[P (r® (1)) V(1) go() dps
(4.17) ¢

b
= = Mier [ {rE ()Y VE (1) go(4) dis
and the conclusion follows by induction. )

COROLLARY 4.2. The variance of A,(X) is given by

k=l (m— (n—1+j)vy)

(018)  Var, (10 = X () T 1575

Since the I,, of (4.11) must be nonnegative, it follows by (4.14) that
M, x < 0 and in particular that

Npn =n((2n — 1)v, —m) <0
or
(4.19) m > (2n — 1)v,.

This is not a contradiction, since in those cases in which v, > 0, the conjugate
prior distribution has only a finite number of moments. If v, < 0, the binomial
case only, then we must have 1 + jv, >0 for j=0,1,...,k — 1, that is,
r =k, where V(u) = u — u2/r.

5. Estimation. In this section we suppose that we have an i.i.d. sample
X,, X,,..., Xy of the mixture with the probability law given by

(51)  dF(x) = [F(x,0(1))& (k) du dFy(x) = f(x) dFy(x).

We shall first estimate f(x) by using density estimators similar to those used
with orthogonal functions. Then we estimate g(u) by employing the procedure
mentioned in the last section. Finally we obtain Bayes empirical Bayes esti-
mates of the moments.

If g(w) is a conjugate prior density, then the (Bayesian) posterior estimate
of the mean is a weighted average of u, and the sample mean X as is well
known. However, this assumption is excessively restrictive, since such conju-
gate priors are usually univalent. This excludes the common assumption that
mixtures consist of a linear combination of the f(x|6,). This in turn corre-
sponds to prior distributions of the form X p;5(6 — 6;). A “smeared’” smooth
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version of this would be ¥ p;5,(0 — 6,), where {3,} is smooth delta family
[Walter and Blum (1979)]. Prior distributions of this form arise from MLE
[Laird (1978)] and are the form considered in Leonard (1984). If g(u) is not
the conjugate prior density, this is no longer necessarily true and the posterior
mean is

(5.2) A= [a "wF(%,6)g(k) du / [a "f(%,0)g(k) du,

where f is the probability law of the sample mean which is also a NEF-QVF.
This can either be estimated directly or by first estimating g(u) from the
sample. We shall adopt the latter approach, which has the advantage of giving
estimates of other moments as well.

We shall assume that g,(u), an initial Bayesian conjugate prior distribution,
has been found and has moments up to 2n, which may be infinity. If our
Bayesian is reluctant to specify u, and m based on his subjective knowledge,
other procedures may be used. One such is to assume a noninformative prior
distribution as the initial guess for g,. This only works if the interval (a, b) is
bounded. Another procedure is to estimate u, and m from a portion of the
data by using MLE or other methods and then using the conjugate prior
distribution

8o(n) = Kexp{mio0(n) — my(6(1))}/V(r)
as the estimate. If the true prior density g(u) is of the form

(5.3) g(n) =h(n)go(n), nreEQ,

where h(u) is a polynomial of degree less than or equal to n, =
min{n o, card(supp F(x))}, if n; < », and an element of L*Q;g,), if n, = o,
but is unknown, we assume that f(x) is given by (5.1) with that g(u).

We use the sample to estimate the coefficients in the expression (4.1) of g
and (4.2) of f. They are

1 N
(5.4) ap= ﬁ Z A(X3)ve
The estimators of g(u) and of f(x) are, respectively,
1 p
(55) 8,(n) =hp(m)8o(n) = L Guri(m)go(n), P=0,1,...,ny,
k=0
and
. p
(5.6) fo(x) = Y G,0,(x), p=0,1,...,n,.
k=0

Here, as in the orthogonal function estimation, p is a smoothness parame-

ter with decreasing value corresponding to increasing smoothness. If one is

interested primarily in smoothness, p should be chosen as small as possible
consistent with the maximum number of anticipated modes in g(u). Since
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A »(1) is a polynomial of degree less than or equal to p, it can pick up p — 1
modes.

In general p = p(N) will increase with the sample size and may approach
infinity. This happens only if n; = », in which case we obtain mean-squared
consistency for general prior densities (below). However, it is also possible to
restrict p to some value less than n,. In this case the problem becomes
parametric with parameters ugy, m,aq, a,...,a »- The choice of p again may
be subjective, chosen on the basis of smoothness, or it may be data-based. For
the latter, the choice of p based on the penalized MLE method of Schwarz
(1978) seems the most promising, but has not as yet been explored.

ProposITION 5.1.  If h(w) is a polynomial given by
ng N
h(p) = X ayri(n), nyg < ny,
k=0

then

() @, is an unbiased estimator of a,, k = 0,1,.. ., ny;
(ii) ﬁp(p,) is an unbiased estimator of h(n), ny, <p < n;

(iii) f;(x) is an unbiased estimator of f(x), ny <p < n,.

Proor. By (5.4) we have
Egék = ')'k_IEgAk(X)

(5.7) =it [ [ 22 F(x,0) (1) 8o(w) dis dFy(x)

=yt /R re(m)h(1)go(k) du = ay,

where E, denotes the expectation with respect to the distribution given in
(5.1). The proofs of (ii) and (ii) follow from (i). O

The variance of @, may be obtained from that of A,(X), which in turn may
be based on (4.10). Indeed we have

n b
Var, 4, = Var, Ak(X)/Nvf = f Par(m)h(n)&o(n) du/Nvf,

where p,,(u) is the polynomial on the right-hand side of (4.10).
From this we obtain:

CoroLLARY 5.2. Let h(u) be a polynomial of degree p <n. Then the
integrated mean-squared errors (IMSE) of h p and f;, satisfy

[E[yw) = hw)] g (w) du = 0[5 )

LBl £) -~ F@)] do(a) = o[ 3
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However, if A is not a polynomial of degree less than or equal to p, then the
estimators (ii) and (iii) will be biased and the mean-squared error will not
converge at the same rates. In fact we shall now assume that A is not a
polynomial but is a bounded continuous function. This requires that g,(u)
have moments of every order if & is to be approximated by polynomials.

THEOREM 5.3. Let go(n) have moments of every order and let h(n) be a

bounded continuous function such that T'h € L*(g,), for some positive inte-
ger q, where T is the differential operator given by

T = V§' — ¢

Let ﬁ and f be given by (5.5) and (5.6), respectively. Then for some constants
C, and C, zndependent of N and p and each ¢ > 0, °

j;bE[ﬁp(/-L) - h(“)]zgo(ﬂ) du < ]_Vl-(m +p|v2|)P+1 +Cy(p + 1)1+e—2q’

b Ao 2 C, p+1 1+e—2q
LE[£(0) = F(@)] dFo(x) < Fp (m +plogl)™™ + Ca(p + )77

2
’
k=p+1

where now h is given by the convergent [in L%(g,)] series

(k) = ¥ aura(n).
k=0

Proor. The mean-squared error of A p is given by
2

E[ﬁp - h]2 =E[’éo(ék —ay)r,

The coefficients are given by

-/ *h()re( ) go(1) A1 /v,

(5.8)

-/ *Tah (u)ry() 8o( 1) it/ vséd
and
(5.9) il < [ P19 ()] go() dr /XYy,

by Schwarz’s inequality. Thus the integrated bias term satisfies

2 w
go(m)du= X aivk=0( Z s‘kz")

k=p+1 k=p+1

(5.10) fb[ki apri(n)

@ |k=p+1

Since by (3.9), £, = O(k) if v, = 0, m + 0 and £, = O(k?) if v, # 0, it follows
that (5.10) is dominated by (p + 1)1+8 24 for each £ > 0.
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The integrated variance (IV) term is given by

2

o | & .
=faE[ Y (6 —ap)rp(p)| go(n) du

k=1

(511) = X {E(d, - a)"/)

EL

In order to evaluate this expression, we use (4.18) to'find that for 1 + iv, > 0,
i=1L12,...,p,

T["]’u

k
L ([ V() /) (1) 8o( 1) d#} /Nyk.

J

|
I M'c

1

!y = (m_(k_1+l)v2)
IV < Nk{:lyk JE__; ( )I;I (]_ + i 2) k"h“oo
12 ko(p
N . - (k- 2) Al
(5.12) < ngl EI(J)('” (& = 1)v,)’lIl
1 P
- E,E (1 +m = (k= 1vy) IRl

1
< const. —(m +(p— 1)|v2|)p+1

Hence by combining (5.12) and (5.10) we reach the first conclusion. The second
follows from the first by Schwarz’s inequality. O

This IMSE can be made to converge to 0 as N — » provided p = p(N)
converges to infinity at such a rate that p?*!/N — 0 as N — « for v, # 0 and
at a rate of m?*!/N - 0 as N - » for v, = 0. In the first case the rate of
convergence will be extremely slow. However, in the case of vy, > 0 there are
only a finite number of possible terms in the expansion of A(u), while for
vy < 0 there are only a finite number of possible values of X. Hence in neither
case is it possible to allow p — .

If v, = 0, the convergence is more rapid, though still quite slow. Indeed, if
p + 1= 0(og N/2log m), we have:

CoROLLARY 5.3. Ifuv, = 0, then the IMSE satisfies
IMSE = O([log N]'~*)
for both h p and f;,, where p + 1 = O(log N/2log m).
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The estimates of the posterior mean and variance arising from the estimate
of g(u) = h(w)gy(w) are

a 1
P~ [meef(x,a)ﬁp(#)go(#) d#]

(a,bd)
and

p [f (x f 0 - 0 f(x70)i;’p(/-‘“)g0(l"’) dﬁ"'

a

(0, )

Both may be shown to be asymptotically optimal [see Walter and Hamedani
(1989)] with rate O(N~1/2*¢) by Corollary 5.2 if h(un) is a polynomial in
L*((a, b); gy). If vy, = 0 and h(w) is a bounded continuous function, then both
are again asymptotically optimal but with a slow rate by Corollary 5.3.

This is also true of the posterior mean estimate. We can use the properties
of the orthogonal polynomials to find an expression for the posterior mean
[A(n) a polynomial]

wa= [ uf(x,0) Z auri(1)8o(k) dp / L auli(x)
(5.13) =0

n

- T au(Aulaoi(®) + Bay(3) + Culaes() | T aulu(®)

The estimate can then be obtained by replacing a, by ¢, and truncating the
sum to p.
An alternative point of view is found by observing that

L(x) = E("k(#)p( =x)

and using the moment calculations obtained from Theorem 5.2 of Morris
(1983),

1
(514)  E((s — xo)ru(w)|X = %) = ——=E(r(w)V(w)IX = 2),

where x, = (x + muy)/(m + 1). This is useful when p is small, for example,
p = 1. Then we have

lo(x) =1, Li(x) = ry(x,), E(plX =x) =xg
and

E(ury(u)|X =x) = E((r — xo)ri(n) + xory(n)|X = x)

_ m"ff CE(V(1)|X = x) + xor(%0)

m
= V=) T Dm 1= 0y)

+ xo71(%0)-
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Hence for p = 1, the posterior mean is
agxg + ay(xory(x) + V(xo)m/(m + 1)(m + 1 — v,))

ag + ary(xg)

M1 =

(5.15) ayr(zg)m

TR T Tt 1) (m + 1 - vy)(ag + ayra(%e))

We have proposed a general method which encompasses six particular cases.
Our results have been primarily theoretical and of an asymptotic nature.
However, the small sample behavior of our method is potentially more useful.
A simulation study is being undertaken, but is not as yet complete. We present
here an example from our previous work and results of two simulations.

ExampLE 1. In the binomial case, since the interval (a, b) is bounded, the
use of a noninformative prior is possible. If the interval is normalized to (0, 1)
by using p = u/r (see Table 1) as the parameter, the setting is exactly the
same as in Walter and Hamedani (1987). The resulting polynomials are the
Legendre polynomials. These were used to estimate p from the past data
(5,4,5,5,0) and current value 5 from a binomial mixture with r = 5. The
results were

p,=0865  p,=0930, p,=0939, p,= 00945,

where the subscript denotes the number of terms in the estimator. This may
be compared to the estimates ranging from 0.886 to 0.936 from the same data
arising from an estimator based on a Dirichlet process [Berry and Christensen
(1979)].

ExamMPLE 2. A simulation in the binomial case r = 5 in which the prior was
bimodal was also done (J. Letelier, personal communication). The prior was
assumed to be the density

3
g(p) = —1—‘;(2 sin(mp) + sin(3wp)),

and samples of size 15 were taken from the resulting marginal distribution.
The results were

p,=0509, p,=0605  p,=0.769, p,= 0528,

in which the subscript denotes the number of terms in the estimate of g(p). In
this example a different sample was used in each of these cases as well as a
different current value. These were also generated randomly and were, respec-
tively, x = 3,5,5,3 for the four cases. The true value of the E(p) was of
course 0.5.

The expression for 2(p) was compared to that of g(p). For approximation
by a fourth degree polynomial (five terms in the series), the correct shape was
observed even when samples as small as 5 were taken.
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ExampLE 3. We consider a simulation in which the prior distribution has a
point mass at 0 and at 2, that is, g(u) = 38(u) + 38(p — 2), and the NEF-QVF
is N(u, 1), that is,

. 2
e o=

Since the conjugate prior is also normal in this case, it has the form
02
8o(K) = Kexp{mp,ot) - ?},
where 6 = p. In this case we cannot take the trial prior to be noninformative

since the interval (a, b) is infinite. Accordingly, we take it to be as simple as
possible with w, = m = 1. The polynomials r,(n) are by (B.1.3)

o= (3] )

for

1 —(p - 1)°
8o(n) = on P 7 .

The polynomials P,(x, u) similarly may be found to be

o)

n/2

P(x,p) = ('2‘

From this a simple calculation gives us

L(x) = [ ”(exp{xu - %}

— 0

1 x2\\(1 "H x—1 ) (x -1 )2
|2 P2 ( 2 ) "( 2 7P 2 | [
The biorthogonal system A,(x) which satisfies

| (@) L(x) dFy(2) = Su,

must satisfy

[ M=) () ‘/51; exp{— %} dx = 8,,2"n V.

— 00

Hence

Ay(x) = Hk(x—;—l)zkﬁ.
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The estimator of the prior, given a sample X;,..., Xy, in this case is
P -1 - 1)°
n _
dmw)= L dnz-n/an( )(2w) /2 g - 2D |
n=0 N 2
where

f;Hn(X"z_l)/n!E.

A number of samples of the mixture were generated and then used to try to
recover g(u). The first was (0.639, 0.0049, 1.456, — 1.083, 1.376). The resulting
estimates of a, were

do=1, @&, =-0521, d,=—-0419, 4,=0.191, &,=0.085,

which gave an estimator of

1 - 1)°
8(m) = E‘(exp{—w—z)'})
0.521 (u—l)_0.419 (,L—1)

X1 -

V2 V2 2 V2
0191 (p—1) 008 (u-1
*zﬁH3(¢5) 7 (ﬁ)]

This estimate is very crude given the small sample size and the small number
of terms used. The mean is just 1 pius the coefficient of H,, in this case,
i = 0.64. (This is not the posterior mean, but rather an estimate of the prior
mean.)

For a sample of size 10 with the same seed we have

do=1, 4,=-0.736, &,= —0.356,
dg = 0.402, é, = —0.0052,
while for a sample of size 20 we have
4o =1, é,=-0.015, d,= —0.140,
43=0.034, &,= —0.135.
In this last case, the estimate for u is 4 = 0.989, while the correct value is of

course 1.

REMARK. Leonard (1984) has proposed an estimator of the form
1 m
2(u(0)) = — L 5(0 - 6,)
i=1

for the prior density. The 6, are chosen based on a sample x,, x,,...,x,, by
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maximizing the likelihood function

L-T1Y exn(x6 - 6(68))

J=1li=}

with respect to each 6,. Since this estimator shares the shortcomings (and
advantages) of the empirical distribution, it cannot be mean-squared consis-
tent. However, a smoothed version should be. This can easily be obtained in
terms of our orthogonal polynomials by approximating 8(u — w;) by the
partial sums of its polynomial expansion,

o — ;) = Z ra(m) (1) 8o(1),

n=0

that is, since 8(6 — 6,) = 6(u — p,;)/V(w),
P

1 m
(5.16) & (r(8) = — X | X ra(r(8))7u(1(8:)) |£0(#(8))-

i=1\j=1

This approach has not yet been explored but shows promise.

APPENDIX A

Estimates of parameters associated with the orthogonal polynomi-
als {r,}. The basic relations are the Rodrigues formula

(3.1) ra = (=1)"(V"g0) "/,

the differential equation

(3.9) (Vgory) = €,1.80, €, =n((n — 1)vy — m),
the recurrence formula

(36) y'rn(/"') = An+1rn+1(/"’) + Bnrn(/"') + Cnrn—l(y')
and the derivative expression

(3.11) Vr, =a,r, .1+ Bl + 8, _1-

We have also taken the leading coefficient to be %, and the normalizing factor
to be y,. A central quantity that occurs repeatedly is the expression

(A1) LV (weo(w) du =,

which may be calculated explicitly if the QVF, V(u) and g,(n) are known (see
Table 1).
‘The normalizing factor may be calculated easily: It is given by (3.5),

(A.2) v, =k,nly,
and may be found explicitly if %, is calculated as well.
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A recurrence formula for the leading coefficients may be found by means of
(8.1) [Tricomi (1955), page 136],

kniy  (2n0p 5 m)((2n — 1)v, — m)
kE, (n—1v,—m ’

(A.3)

This gives us expressions for A, and C, in (3.1),

kn _ kn—l Yn nv,

b n M
Yn-1 kn Vp-1

A4 A, =
( ) k n+1
However B, involves both the leading coefficient and the coefficient %, of
p*~1in r(u). It is [Tricomi (1955), page 126]

K Rt
(A5 B,=— - .
) kn k n+1

By again using the differential equation, we can find %/, to be [Tricomi (1955),
page 137]

muy+ (n — v,
-m+2(n—1)v, |’

PR

R"la"

(A.6)

=n
n

The three coefficients in the other recurrence formula (3.11) may be found in
terms of %, and », by using these expressions. Alternately one can use (3.12)
which gives B, in terms of r,(a) if it is known.

Since the differential equation has as its highest order coefficient V(u), a
quadratic function, it is possible to convert it into a standard form by a linear
change of variable. This form depends on whether or not v, = 0 and, if it does,
whether v, = 0 as well.

In case v, # 0, we may divide (3.9) by —v, to obtain the differential
equation satisfied by y = r,:

v v\ d? m m d n
(A.7) (_“2___1#__0)_')214.(_#_ #0)_y+_§_y=().
Vg vy ) du Uy U,

du v,
We then chadnge scale and location by letting r =a + bt where a =
— (v, + d)/(2v,) [ie.,, V(a) = 0] and b = d /v, where d? is the discriminant

of V(n), d = y/v? - 4v,4v, . Then (A.7) becomes

d? +d+2 d
w1-nsy 1(% ”2“0)_ﬁ_t_y+ﬁy=o,
dt 2v, d Uy dt 2
| _=n(n_1-_)
Vg Uy

the hypergeometric equation of Gauss. Hence our polynomial r, is expressed
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as the hypergeometric function

m - u—a
(A9) r(p)=c,F|- -1-— S odu 2(d + vy + 2v5u0); el I
where c, is a constant. Since F(a, b; c;0) = 1, we find that
c, =r,(a).

In the case v, = 0, but v; # 0 the equation in (3.9) may be expressed as

A.10 (+ dy _m AL
(A.10) 7 )d# vl(u #o)d# n =0

By letting u =a + b¢, a = —v,/v,, b =v,;/m, we obtain the confluent
hypergeometric equation

d? mv m
(A.11) Y ( 0 Mo

t + t) 9 0,
dt? v v, dt —(mn)y =

whence it follows that

mvo m l‘LO I.L —a
rn(”’)=1Fl(_n; U% - vy 5 b )’
where | F; is the confluent hypergeometric function.

In case both v; and v, = 0, then V(u) is just a constant v,, and (3.9) may,
by the transformation u = a + bt, a = u,, b% = 2v,/m, be converted to the
Hermite equation

d% _ dy
— — 2t— + 2ny = 0.
dt? at "

These formulas can be used to obtain an expression for the derivative of r,.
Indeed in the case v, # 0, we use the fact that

d (a), (b) o
aF(a,b;c,x) = Vgl v'(c),,
> (a),+1(b),+1 o = ab = (a+1),(b+1), o
12 - Eo vi(e)y+1 - _;E’o vl(c+ 1),

ab
—;—F(a+1 b+ 1;c+ 1;x).

Hence fo. vur polynomials we have

_d m
ap (B ko) = (@, po)e, F| =n + 1,m = o=
(A.13)

mr—a
1 - _2d (d + vl + 202“0)
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where
2n(n — 1 — m/vy)vi
= m(d + vy + 2v,00)
But
d
"n—l(#,l-‘—o_ ',;)
d
="n—1(a’ll'o— '”7)
m —-m d L—a
xF(—n +1,n— 5;; sz(d +v; + 2v2(p,0 - ;)), 5 ),

since ¢ and b depend only on V(u) and not the prior parameters m and u,.
Thus we have

(A.14) d ( ) r.(a,py)e, ( d )
. —T. n M, B = r, n— N - 1.
dp O T (@, po — d/m) R T
The constant coefficients in (A.14) may be evaluated by using the fact that
the leading coefficients of both sides must be equal. Also, it should be observed
that this leading coefficient does not involve the parameter u,. Indeed by (3.3)
we see that

ra(s o) = (=1)" L (%) Paca(msso, ma)
(3.3) k=0

% {(V"_l(p.))(k)vprk—"(p.)},

where P,_,(mu,, mu) is a polynomial of exact degree n — & in both mu, and
w. Its leading coefficient in u does not depend upon u, [Morris (1982), (8.2)].
The expression (V™ {u))®V1+*#-"(4) is a polynomial of degree £ whenever
vy, # 0. Hence each term on the right-hand side of (3.3) is a polynomial of
degree n whose leading coefficient is independent of u, and so is 7,(u, ug).
Thus by equating the leading coefficients in (A.14) we find

d nkn. Mo

(A.15) ; 'd—l:rn(l-‘—;#o) = E:rn—l(/-‘"l"'o - ;)

Other formulas involving the derivative may be found in [Tricomi (1955),
page 136]. As before, the coefficients may be expressed in terms of v, and the
parameters of V(u), go(w).

For the case v, = 0, the polynomials are either Laguerre or Hermite and
the derivative expressions are well known. Another expression for the deriva-
tive of r, g, is easily derived from the definition

(A16) (rngO)’ = pn(rn—lgo), + np’n( rn—lgO)’
where p, =r; — (n — DV".



EMPIRICAL BAYES ESTIMATION 1217
APPENDIX B

The six individual cases. In this section we present detailed calculations
for each of the six basic NEF-QVF distributions by Morris (1982).

B.1. Normal. In the normal case we have u = 802, ¥(8) = 6%02/2 and
V(u) = 2. The conjugate prior distribution is a constant times

1
&o(p) = pr) exp(m(p,oﬂ - 0'202/2))
(B.1.1)

1
= —5 exp((mu/20%)(200 — 1))-
The polynomials satisfy the Rodrigues formula ‘
() = (—=1)" exp((mu/20%) (1 — 21,))

(B.1.2) . .
X dm(” " exp(—(mu/20%) (1 — 21,))).

For m =202 and p, =0, r,(u) = 0?*H,(u), where H, are the Hermite
polynomials. The polynomial r, may be obtained from H, by a change of scale
and location:

(B13)  ry(p) = (m/20%)" 20 H,((m/20%) (1 — no)).
The leading coefficient of H, is 2" and hence that of r,(u) is
(B.1.4) k, = mo®,

2n

Since V(u) = o2 is a constant, v, = o
The formulas for H, are well known; the recurrence formulas are

(B.1.5) xH,(x) = 3H, (%) + nH,_y(x)
and
(B.1.6) H)(x) = 2nH,_,(%),

while the normalizing factor is

(B.L.7) Vo= [ e *H,(x)dx =2"nln'/2.

B.2. Poisson. In the Poisson case the parameters 6 and u are related by
w = e’ =y(0) = V(u), where u may take values in Q = (0, ). There is an
immense literature in this case, most of which deals with estimation of the
parameter § [Hudson (1978)]. That their mean-squared error is often better
than ours is not surprising given the generality of our method. The conjugate
prior is a multiple of

1
(B2.1)  go(w) = - exp(mpuqlog p = mu) = pmho~l exp(—mp).
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The Rodrigues formula is
du”®

from which it follows that r, with a change of scale and normalization is
related to the standard Laguerre polynomial L with a = mu, — 1,

(B.2.3) r(w) = (=1)"n!LO(mp),

and hence r,(0) = (-D"I'(n + a« + 1)/T(a + 1), k, = m™.
The recurrence formulas are

xL{P(x) = —(n + 1)L (x) + (2n + a + 1) L9(x)

(B22) rn(/"’) = (_l)n#—mﬂ»o+lemp.

(I‘Ln+my.0—1e—mu),

(B.2.4) .
—(n +a) L2 (%)
and
(B.2.5) | x(L(x)) = nLP(x) — (n + a) L' (x).

The v, again are straightforward:
(B26) v,= fwu"/.b"e_“du/r(a +1)=T(n+a+1)/T(a+1).
0

B.3. Gamma. In the case of the gamma distribution, the parameter 6 is
given by 0 = —r/u, $(6) = —rlog(—6) and V(u) = u?/r. Hence the conju-
gate prior is a constant times

8o(n) = (r/w*)exp(—muor/un + mrlog(r/u))

=rm T "2 exp(—mpor/u), € (0,).
The Rodrigues formula is

(B.3.1)

n
du®

If we take muor/p = 2/x and let mr + 2 = —a, we obtain the Rodrigues
formula (with a different constant) for the generalized Bessell polynomials Y@
[Chihara (1978), page 183],

(B32) rn(“) = (_l)n“2+mremuor/p,

(”2n—mr—2e—muor/y.) .

n

(B.3.3) Y(x) = 2 nx2e?/*

0 (x2n+ae—2/x) .

Hence we have, since mr = —(a + 2),
ra() = (=(2 + @)o/2)"(~1)"2" Y2/ ~ (2 + a) o)

= ((2 + @) ) " Y, O((-2/(2 + @) /o).

Thus r,(0) = (2 + @)pe)"Y,“X0) = (2 + a)"u} and the leading coefficient %,
may be calculated from that of Y, or directly from (B.3.2). It is

k,=(-1)'T(2n+a+1)/T(n +a+1).

(B.3.4)
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In the normalized case w, = 1/mr = —1/(2 + a), the v, are found to be
vo = [ (winre/r)ent/ dp/T(—a = 1)

=I(-2n—-a-1)/r"I'(—a - 1).
The recurrence formulas for Y(* are given in Chihara (1978), page 183.
The r,(u) may also be expressed in terms of Laguerre polynomials which
satisfy the Rodrigues-type formulas [Szegt (1967), page 388]

B38)  enrpo) - Tl e,

(B.3.5)

where y = 1/u. Hence for mr + 2 = B + 1 and p, = 1/mr, we have
(B37)  r(w) = un! Z (2 Jreazmen

This last expression can also be given by [Tricomi (1955), page 218]
(B.3.8) ro(p) = wn!LE2D(1/p).

In this case only a finite number of the r,(u) belong to L%(0,®); go(u)).
Indeed

0 o n ~
LVn(#)go(”) du =_/;(#'2/") pmrtlyag-muor/i dy
=j,oormr+1—nx2n—a—2e—muo,-xdx

converges if —2n —a — 2 > —1 and diverges otherwise. Thus only those
polynomials with n satisfying this inequality have finite norms.

B 4. Binomial. In the binomial case, the appropriate interval is finite

=(0,7). The mean is p =r/(1 +e7%), y(8) =rlog(1l + e°) and V(u) =
u — u2/r. Here r is the total number of trials and 1/(1 + e %) =p, the
probability of success. The conjugate prior distribution will be

&o(n) = exp(m(po0 — rlog(1 + e®)))/(n — w?/r)
= exp(muolog(n/(r — p)) — mrlog(r/(r — u)))/(n — w?/r)

mr—mupo—1_1-mr

= pmom(r - p) r
= W (r = )T,
With a change of scale (i.e., 7 = 1), this leads to the usual Rodrigues formula
for the Jacobi polynomials on (0, 1),
' 1 1 _, ar

(B.4.2) an(#) = —(=D)"wP(1 - k) : a (BB - w)"*)

- PP ()

(B4.1)
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The Bayes empirical Bayes problem has already been treated for this case in
Walter and Hamedani (1987). They also considered the case of a noninforma-
tive initial prior which led to the Legendre polynomials. The more general
problem in which the indices r; ,of the binomial distribution are allowed to
vary was not considered, but may be attacked by the method of Leonard
(1976). The recurrence formulas for r = 1 are well known [see Szeg6 (1967),
pages 71-72] as is the differential equation. We observe merely that r,(0) =
I'(n + @ + 1)/T(a + 1), that the leading coefficient is

_T@2n+a+p+1)

kn = T(n+a+B+1)

and

1 I'n+a+1)I'(n+B-1)
Yn =f0r3(”)g°(”) dp = nl@n+a+B+D)I(n+a+p—-1)"

These Jacobi polynomials are related to the standard ones on (—1,1) by a
change of scale and location

PP (n) = PP(2u - 1).

The {r,(un)} are complete in L%((0, r), uP(r — n)*) but the corresponding
{{,(x)} given by (4.3) are not linearly independent since x has only r + 1
distinct values. Hence to avoid problems with identifiability of g(u) =
h(u)go(un), we must restrict 2(u) to the span of {ry,ry,...,r.}.

B.5. Negative binomial. In the case of the negative binomial the mean is
given by u =r/(e? - 1), ¢(0) = —rlog(1 — e°) and V(u) = u + u2/r. The
conjugate prior distribution may be expressed as a constant times

8o(r) = exp(muqlog(u/(r + p)) — mrlog(r/(r +u)))/(u + u?/r)

mun—1 mr—muog—1,1—mr
pTEOTH(r + ) ’

(B.5.1)
= pB(r + p) “p@rBED,

which is similar to (B.4.1) but the interval is Q = (0, ). Since g, € L0, =), it
is restricted to B > —1 which must hold since both u, and m are positive.
However, a + B < —1 as well and therefore a < 0. We can change the scale
again which is equivalent to setting r = 1 and find the Rodrigues formula to
be

n

du®

(B5.2) () = (~1) w71 +p) "o (WAL + p)"T).
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This can be converted to the Rodrigues formula for Jacobi polynomials on
(—1,1) by the change of variable x = 1 + 2pu, to obtain

(55 - () ()

r,
d™ ((x—1\"*B(x+ 1\
(B.5.3) de"(( 2 ) ( 2 ) )
= ((_21) )(x - Px+1)7" ‘Z:n ((x - )" Pz + 1))

= (-1)"n!P¥ 9 (x) = n!P{*P(x).
However, since the interval in x is (0, ), many of the standard calculations
do not hold. The moments », are given by

(B54) v, = ]:/.L"(l +u/r) uf(r+ /.L)adu/f:y.p(r +w)du,

which by the change of variable x = u /(r + u) are seen to be
(B55) v, =4"B(n+B+1,-2n—B—-a—1)/B(B+1,-B—a—1).

These moments clearly exist only if 8 > —1 and 2n + 8 + a < —1 and hence
we do not have a complete set of polynomials.

Other parameters may be calculated in terms of P{*®. We find r,(0) by
(B.5.3) to be

r(0) = (=1)"n!PE(1) = (-1)"n}(-1)"(" 5 )
=T(n+a+1)/T(a+1)

(B.5.6)

and the leading coefficient to be

E,=(-1)"T@rn+a+B+1)/T(n+a+p+1).

B.6. Generalized hyperbolic secant. The generalized hyperbolic secant dis-
tributions introduced by Morris (1982) have as their interval of mean values
Q= (—,o) with p =rtan8, y(0) = —rlog(cos8) and V(u) =pu + u?/r.
The conjugate prior therefore is

go(w) = (n/(r® + u?)) exp(mpgtan™(u/r)
+mr log(cos(tan~!(n/r))))
= (r/(r* + u*))(cos ) "™, @ =tan"'(n/r)

((r—ip)/(r +iw)) ™2,

(B.6.1)

= rmr+1(r2 + “2)—1—””/2
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The Rodrigues formula is

n

n mr, d n—1l—mr
r(p) = (—l/r) (r2 +”2)1+ /2e—mp,o ((r2 +”2) 1 /2em,;9)

. du”

(B.6.2) = (-1/r)"r™*(1/gq(m))

n

X
du®

((r _ i”)(muoi/Z)—(mr/2)—1+n(r + “") —(mp.oi/2)—(mr/2)—1+n)'

However, the differential equation is easier to interpret in this case. It is
(B.6.3) (r2+ p?)y” —mr(p — po)y =n(n~1-—mr)y.

This may be converted into the equation

5 4% . dy
(B64) (1-x )W+(mpoz+mrx)£+n(n—l—mr)y=0

by the change of variable u = ixr. But this is the equation of the Jacobi
polynomials on (—1, 1), with the solution
y= Prga’ﬁ)(x)’

where a = —(m/2Xr + poi) — 1, B = —(m/2Xr — pyi) — 1. Under the same
change of variable (B.6.2) becomes

r(xri) = (:—1—)(—1—)(7' —xr) “(r+ar)™?

r r

n

X ((r—-xr)a+n(r+xr)ﬂ+")

(B.6.5) dx™

n

S (- A0

((1 _ x)a+n(1 + x)ﬁ+n)
= (=i)"n12"P{P(x).

Since P{*A(1) = (" ¥ “‘), it follows that

(B.6.6) r(ri) =(=i)"2"T(n +a + 1) /T(a + 1).

The leading coefficient of P{*A)(x) is 2"‘( 2n Tat ’3) [Szego (1967), page 63].
Hence that of r,(u) is

(B6T) k,=((~1)"/r")[(2n+a+B+1)/T(n+a+p+1).

The recurrence formulas can be found from those of the Jacobi polynomials.
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The moments v, are given by
®os) A ) i) = i) du
" [2r +in)(r—ip)fdu,
and may be calculated by means of the formula [Erdélyi (1954), page 22]

2 in _
;[ /2(c0s0)" ' cos(y0) d

(B.6.9) 21 T(r)

CT((v+y+1)/2)T((v -y +1)/2)°
By the change of variable u /r = tan 6, we find the integral to be

Re(v) > 0.

1 (ny2 . -
—f"/ (cos 8)” " e?°r(cos 0) 2 d
T —/2

1 = _ r— l,LL /2
_ = 2(p2 4y w+1)/2
’Tr'[—mr (r ) r + " du

and hence by taking y=a — 8 and —(v + 1)/2 = n + (a + B)/2, we find
(B.6.8) to be

(B.6.10) = (4r)'T(=2n —a - B - YI(-P)T(~2)
" T(-n-a)l(-n-B)(—a-B-1).

Again the moments exist only when 27 + a + 8 < —1.
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