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ESTIMATION OF THE PARAMETERS OF LINEAR
TIME SERIES MODELS SUBJECT TO
NONLINEAR RESTRICTIONS?

By NEERCHAL K. NAGARAJ AND WAYNE A. FULLER

University of Maryland at Baltimore County and Iowa State University

Least squares estimators of the parameters of a linear time series
model, where the parameters are constrained by a set of nonlinear restric-
tions, are studied. The model may contain lags of the dependent variable as
regressors and the sums of squares of the explanatory variables may grow
at different rates as the sample size increases. The estimation procedures
can be applied to a regression model with an error process that satisfies
either a stationary or a nonstationary autoregression.

1. Introduction. We consider estimation of the parameter vector y for
the model

(1.1) Y,=Zy+e,
(1.2) f(v) =0,
where Z, = (¢,q, . .., /0 AEPTN Yt_p), v is a k-dimensional column vector,

¥, 1 =1,2,...,q, are explanatory variables and f(y) = [ f,(¥),..., f.(y)]' is a
vector of functional restrictions on y. Our interest centers on the case where
the fi(y) are nonlinear in y. An important feature of the model is that the
vector of regressors Z, contains lags of the dependent variable. The {¢,;} can be
fixed or random sequences. In Section 2, it is assumed that the e, and ¢,
satisfy conditions such that the properly normalized unrestricted least squares
estimator of y has a limiting distribution. For example, the {e,} might be a
sequence of independently and identically distributed (0, 02) random variables
or the e, might be martingale differences with 2 + §, 6 > 0, moments.
The characteristic polynomial associated with model (1.1) is

p
(1.3) mP— Y y,,mP7 =0.
. Jj=1
Let the roots of (1.3) be my, m,...,m, with [m,| > |my| = -+ > |m,|. The
properties of Y, depend on the nature of the ¢,;, on the distributions of the e,
and on the roots of the polynomial.
Fuller, Hasza and Goebel (1981) derived the asymptotic distribution of the
least squares estimator of the unrestricted vector y for the three cases:
m,l <1, |m,| =1 and |m,| > 1. The stationary case, when all the roots are
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1144 N. K. NAGARAJ AND W. A. FULLER

less than 1 in absolute value, has been studied by Mann and Wald (1943),
Anderson and Rubin (1950), Hannan and Nicholls (1972) and others. The case
when the largest root of the polynomial (1.3) is greater than or equal to 1 in
absolute value has been studied by Rubin (1950), White (1958), Fuller (1976),
Hasza (1977), Dickey and Fuller (1979), Phillips and Durlauf (1986), Chan and
Wei (1988) and others.

The linear model with nonlinear restrictions can also be written as a
nonlinear model with the restrictions incorporated into the model equation.
The limiting distribution of the nonlinear least squares estimator when the
error process {e,} satisfies some mixing conditions are derived in White and
Domowitz (1984) and in Wooldridge (1986). Wu (1981) considers nonlinear
estimation when the sums of squares of the partial derivatives increase at
rates that are not necessarily proportional to n. General discussions of nonlin-
ear estimation are contained in Gallant (1987) and Gallant and White (1988).

We consider least squares estimation of the parameters of model (1.1) and
(1.2). The results are an extension of those in Fuller, Hasza and Goebel (1981)
in that there are nonlinear restrictions on the parameters of the model. The
results represent an extension of existing nonlinear resuits in that the model
may contain some regressors, such as time trend, with sum of squares
increasing at a rate different from that of other variables in the model.

2. Asymptotic properties of the least squares estimator. In this
section we obtain the limiting distribution of the restricted least squares
estimator as a function of the limiting distribution of the unrestricted least
squares estimator. The vector Z, may contain polynomials in time, a random
walk or other variables whose sums of squares increase at a rate other than n.
Also if [m,| > 1 the sums of squares of Y,_; will increase at a rate other than
n. In such situations, it is generally necessary to transform the Z-vectors to
obtain a nondegenerate limiting distribution for the unrestricted least squares
estimator.

Let a sequence of nonsingular transformations of the vectors Z, be defined
by the sequence of, possibly random, matrices A ,,. Let
(2.1) X,,=ZA,.

Using the transformation A ,, the model given by (1.1) and (1.2) can be written
as

(22) th = thon + €

(2.3) fi(A,0,) =0, i=12,...,r,

where 0/, = yA; ! isa 1 X k vector, X,, isa 1 X k vector and k£ = p + q. The
matrix A, will depend on the nature of the explanatory variables and on the
form of the problem. Generally, A, is not unique.

Fuller, Hasza and Goebel (1981) defined a transformation for the model
with Z, containing different types of explanatory variables and for various
values of |m,| of characteristic equation (1.3). Related transformations have
been utilized by Fuller (1976), Section 8.5, Hasza (1977), Sims, Stock and
Watson (1990) and Chan and Wei (1988).
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The Fuller, Hasza and Goebel transformation accomplishes several things.
First, the sample correlation matrix of X,, will have a nonsingular limit in a
number of cases in which the correlation matrix of the Z, does not. Second, the
transformation isolates the largest roots of the characteristic equation as the
last elements in the transformed parameter vector. The limiting distribution of
the estimator of the largest root will sometimes differ from the limiting
distribution of the remaining estimators when the largest root is greater than
or equal to 1. In many cases the remaining elements of the vector have a
normal distribution in the limit. The transformation is illustrated in the
example at the end of this section.

We now introduce the assumptions used in our derivation. We require the
functions defining the restrictions to satisfy the usual smoothness conditions.

AssumpTION 1. The functions f(y), i =1,2,...,r, are continuous and
twice differentiable in a region about y°, where v° = (y?,v2,...,v?) is the
true value of the parameter vector.

The derivatives of the restrictions play an importanf role in the limiting
distribution. Let g,(0) =[g,,(0),...,g,,(0)], where g,;.(0)=/f.(A,0), i=
1,2,...,r,and 0¥ = y"A ! Let
3g,(9)

a0’

(2.4) D,(0) =

be the r X k-matrix of partial derivatives, where the ijth entry is the partial
derivative of g;,(8) with respect to 6;. If there is a redundancy among the
restrictions (1.2), then the rank of the matrix D,(0°) will be less than r.
Possible redundancies are removed by assumption.

AssumpTiON 2. The matrix D,(0?) is of rank r with probability 1.

Let the ordinary unrestricted least squares estimator of 6, be

-1 n

(2.5) 0, = (Z XX) ¥ XY,
t=1 t=1
The estimator defined in (2.5) minimizes the quantity
(2.6) @.(0) = ¥ (Y, - X,,0)".
t=1

A number of papers containing results on the limiting distribution of the
least squares estimator were cited in Section 1. Because different theorems
correspond to different situations, the regularity conditions for the theorems
are different. To cover a wide range of models, we simply assume that the
properly normalized unrestricted least squares estimator has a limiting distri-
bution.
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AssumpTiON 3. The matrix ¥} X} X, is positive definite with proba-
bility 1 for n > k. There exists a sequence of diagonal matrices
{H,, = diag(h,,,,, ..., h,)} such that () h,;,, »>p o as n — o for each i,
(ii) Hl/ 26, — 09) converges in distribution to a nondegenerate random vector
and (111) the roots of B, and B! are order 1 in probability, where

B, - H;"? Y X, X, H;".

t=1

In many applications H,, is chosen to be diag{X}_,X},X,,}. Then the matrix
B, of the assumption is in the form of a correlatlon matrix.

Let 0, denote the least squares estimator obtained by minimizing the sum
of squared errors given in (2.6) subject to the restrictions (2.3). Then 8, is a
value minimizing the Lagrangian

2.7) Qu(0) +2 Y A;8,0(0).
j=1

We first prove the consistency of the nonlinear least squares estimator 0,
defined in (2.7). Consistency follows from the fact that the order of the error in
0, is no greater than the order of the error in 8, where 0, is the unrestricted
least squares estimator.

LEMMA 1. Let Assumptions 1, 2 and 3 hold. Then
H}/z(én - 02) = 0,(1).
Proor. Note that
IH}L/z(én - 6n)‘2 < ¢k_n1(6n - én),H}t/anH}z/z(én - 6n):

where ¢,, is the smallest root of B,. The inequality also holds if 6, is
replaced with 02. Because

Qu(0) = 3 (¥, - X,.0,)" + (6, - 0YHY2B, HY2(4, - 0),
t=1

because 0° satisfies the restriction and because 0,, minimizes Q,(0) subject to
the restrictions (2.3), we have

(6, - 6,)HL?B,HL/2(8, — 8,) < (02 - 8,YHY?B,HY?(0° - 8,).
Hence,
|HL2(6, - 00)| < 26716,/ HY2(8, — 0°)[".

By Assumption 3, ¢, = O,(1), ¢;,} = 0,(1) and HY/%(82 — 8,) = 0,(1). There-
fore, HY/%(9,, 00) =0 (1) m]
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The system of equations associated with the Lagrangian (2.7) can be written
as

n n
t=1 t=1

g.(0)=0

where A, ()tl,,, ,A,.,) is the vector of multipliers. Expanding each compo-
nent of g,,(o) in a ﬁrst order Taylor expansmn around the true value 02 and
using the facts that g,(8°) = 0 and that 8, is a solution for (2.8), we have

(Elx'm )(o - 6)) + Dy (o A, = Z X, e,

(2.8)

(2.9)
D,(6,)[d, - 03] =0,

where D (0,) =D, = (d,,,, ... (im) d,; jn is_the partial derivative of g;,(0)
with respect to 6, evaluated at 6 = 0,,, and ﬂm, =1,2,...,r, are points on
the line segment Jommg 0% and 6.

We normalize the system (2. 9) so that we obtain the error in the unre-
stricted least squares estimator 0 on the right-hand side and so that the
system can be solved for the error in the estimator 0,. To this end we rewrite
(2.9) as

0/ 1/2 a 0 - n ’
(2.10) B, R, H”/ (o” - 0") — [Hn 1/2Zt=lxtnet]’
n O G, 2\, 0

where G, = [Do,(ZX},X,,)"'Dy,1"% R, = G/?D,H;', R, =
GY2D, H‘l/2 D,, = D,(0°), D, =D,(, ) D, is defined in (2.9), D (0) is
defined in (2. 4), B, is defined in Assumptlon "3 and GL/? is the symmetric

positive-definite square root of G,,.
Because the elements of H, are not necessarily of the same order in
probability, some additional restrictions on the matrix D,(0) are required. Let

Qn = [G}L/z(ﬁn - DOn)Hr_Ll/z’ G}L/z(f’n - DOn)Hr_Ll/za
G1/2(D Don)H 1/2]
where D, = D,(§,) and D, D, and f)n are the matrices defined in (2.10).

(2.11)

AssumpTION 4. The sequence {Q,} defined in (2.11) converges to 0 in
probability.

" If the regressors {i,;: i = 1,2,...,q} and the Y-process are such that the
transformation A, = I produces a nondegenerate limiting distribution for On,
Assumption 4 will hold Assumption 4 is verified for the regression model with
first-order autoregressive errors in the example at the end of this section.
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To derive the limiting distribution of the estimator 0 in terms of the
limiting distribution of 0,,, the following lemma is requlred

LEMMA 2. Let .
B, R B, R
(2.12) [T,,T.] = ( " ") ,
Rn 0 R, O

where R, = G/2D,,H; Y2 and B,, R, and R,, are defined in (2.10). Under
Assumptions 1, 2, 3 and 4,

() T;' = 0,() and T; = 0,(D),
Gi) T, - 11 5, 0.

Proor. We have

T—1=(1 —B;IR',,) B, 0
" o I 0 -(R,B;'R,)

I 0
x( -R,B;! 1 )
By the definitions, R, B, 'R’, = I. Also by Assumption 3, B, ' = O,(1).

Since R, B, /2B /2R, = I, the sum of squares of the elements of R, B, /2
is bounded above by r, where r is the number of restrictions. Therefore,
R,B.?=0,1 and R,B;' = R,B; /2B, /2 = 0,(1). Hence, from (2.13),
it follows that T, =0 (1) To prove that 'i' =0 ),(1), we observe that

(2.14) Prob{(|T; )" > [T, - T.[} - 1
as n — « because |IT, — T,/ = 0 in probability and [T} = O ,(1), where IIBII
denotes a matrix norm of B. By (4.24) of Kato (1966), page 31 Iyt >
IIT, — 'i‘ |l implies
R -1

|14 < (2 =T = T IT ) (T,
and we conclude that ’i‘n' 1= 0,(1). See Lemma 3 of Section 3.2 of Nagaraj
(1986). Finally, (ii) follows from (i) by the identity,

Tt -1t =1,Y(T, - T,)T; % m|

(2.13)

We now give the limiting distribution for 8.

THEOREM 1. Under Assumptions 1, 2, 3 and 4,

() HY%(8, — 0°) has the same limiting distribution as
(2.15) M, H/%(6, — 02).

(i) G, '/2\,, has the same limiting distribution as

(2.16) G, *(D,,H;/?B;'H; 72D}, ) 'D,,(, - 02),
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where
(217) My, = [I - B;'H; /2D, (D, H; /B, 'H; *D;,) "Dy, H; 2,
where B, and H, are defined in Assumption 3.

Proor. By Lemma 1, (8, — 0°%) -, 0. Using (2.10), Assumption 3 and that
v is in the interior of the parameter space, we obtain

(2 18) H}l/z(én - 0?!) —_ Bn R’n i H;l/zm;net
' G2\, R, 0 0

by Lemma 2. Using the expression for the inverse of a partitioned matrix, we
have result (i).
Also from (2.18),

(2.19) G;/2\, = (R,B;'R,) 'R, HY?(8, - 00) + 0,(1)

and result (ii) follows. O

+0,(1)

Because H1/2(§, — 6°) = 0,(1), the residual mean square obtained from
the nonlinear regression is a consistent estimator of the variance of the
process {e,}. We state the result as a corollary.

CoroLLARY 1. Let s2=(n —k + r)" L7 (Y, — X,,0,)%, where 8, is the
estimator defined by (2.10). Let {e,} be a sequence of independently and
identically distributed (0,0%) random variables. Then under Assumptions 1
through 5, s? converges to o® in probability.

A common test for the validity of the restrictions imposed on the regression
coefficients is the ratio of the difference between the residual sum of squares
for the full model and the residual sum of squares for the restricted model to
the residual mean square for the full model. The limiting distribution of this
test is given in Corollary 2.

COROLLARY 2. Let Q@,) denote the residual sum of squares from the
unrestricted model and let Q,(8,) denote the residual sum of squares from the
restricted model. Let Q(8%) denote the residual sum of squares from the model
satisfying d of the r restrictions, where 0 <d <r. Let Dy, = (D},, Dj,2),
where Dy, contains the restrictions associated with 0. Let

anij = DOniHr_L 1/2B; IH; 1/2]),0n,j
and let ®,,, be the r X r matrix composed of the four submatrices ®,,,11, ®,,12,
&, 01 and ®,,0,. Then under the assumptions of Theorem 1,

(2.20) 672[Q(8,) - @(8,)] - 07X, G A, = 0,(1),
572[Q(8,) - Q(o})]

(2.21) -2(a oy ar -1 a 0
=0 (en - on) Anﬂvnn22An2(°n - °n) + Op(l)’



1150 N. K. NAGARAJ AND W. A. FULLER
where A,n2 = D:)n2 - D;)nlq)r:nlllq)nnm’
Vnn22 = (pnn22 - q)nn2lq)n_n111(pnn12’
and 6% = (n — k)"1Q(8,) is the residual mean square for the full model. It is
understood that V,, 05 = @, ,90 = P, if d = 0.

Proor. We have
Y (Y, - X,8,) = L (%, - X,,b,)
t=1 t=1

where we have used the fact that the residuals from' the unrestricted regres-
sion are orthogonal to the columns of the model matrix. Then, using (2.18),

(222) Q(5,) - Q(8,) = (8, - 00D}, ;1D (6, - 62) + 0,(L).
Also from (2.19),
G; 1/2An = (DOnHr_z 1/2B; 1:H:r_z1/2D,0n)_1/2l)0n(én - og) + Op( 1)

Because the mean square error from the unrestricted model is a consistent
estimator of o2, (2.20) and (2.21) for d = 0 follow.

The sum of squares on the right of (2.22) can be partitioned into that
associated with the first d restrictions and that due to the remaining (r — d)
restrictions after adjusting for the first d restrictions. This partition gives
result (2.21) for d > 0. O

For many applications, B, is converging to a constant matrix and
HY/2(8, — 0°) is converging in distribution to a normal vector. In these cases,
the statistic of (2.21) has a chi-square distribution with r — d degrees of
freedom in the limit.

ExampLE 1. To illustrate some of the ideas associated with our results, we
consider the regression model with autocorrelated errors. To treat a nonstan-
dard case, we let the explanatory variable be a random walk. The model is

(2.23) Y,=pZ2,+ U, and U, =pU,_, +e,

where Z, = L * ,d;, {d,} is a sequence of independent identically distributed
(0, 03,) random variables, {e,)} is a sequence of independent identically dis-
tributed (0, 0,,) random variables and {d,} is independent of {e,}. The model
can be written as

(2.24) Y.=v1Z,_ 1 + v2Z, + v3Y,_1 t e,
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where y, = B, v3 = p, Y1 = —pp and the restriction is y; + y,y3 = 0. Because
the correlation of Z, and Z,_; is tending to 1, it is necessary to transform the
variables to obtain a nondegenerate limiting distribution for the ordinary least
squares estimator. For purposes of defining the limiting distribution, let

X = (xtl’th’ ﬁt—1) =(Z4-1,2,— 2 1,Y,_1 — 8,2,_,),

tn
where 8, = (£"_,Z2 )"'3" ,Z, ,Y,_,. The transformed model becomes
(2.25) Y,=X,0, +e,

Where 0,,=B—pB+b,p, 0,3 =8, 0,3 =p and the restriction is 6,; — 6,,, —

6,30, + 0,20,5 = 0.

If |p] < 1, it can be shown that Theorem 1 of Fuller Hasza and Goebel
(1981) is applicable. It follows that the limiting distribution of HL/2(8, — 62),
where H, = diag(Z7_ %2, L7 ,x3, 27 ,U2)), is that of a normal (0 Io-ee)
vector, Where 0, = A, 'y. The use of the 8, part of the transformation is not
required to obtaln the limiting distribution when lpl < 1.

If p = 1, the first two elements of H/2(8, — 6°) are converging to N(0, g,,)
random variables. Using the transformatlon given in Dickey and Fuller (1979),
the third element, divided by the square root of the residual mean square,

1/2 -
(E Ut2 1) ( n3 1) %(Tl% - 1) - FZZIFZUTZU
(2.26) . - VR
(FUU I'zz FZU)

where

(FZZ’FUU’FZU’TU) = Z [fiz(a%’biz,aibi)’21/2§ibi]’

i=1

=% ¥ 2[g+ 4] anb,

i=1j=1

(a;,b,) ~ NI(0,1), {; = (—1)'*'2[(2i — )] ! and s? is the regression resid-
ual mean square. See Phillips (1986) for integral representations of I, I'yy,
Iy and Tyy.

The vector of partial derivatives of the restriction with respect to 0, is
D,(0) =(1,6,—1,0,—35,).If p = 6,5 = 1, then D,(02) = (1,0,6?, — §,) and

G, = (Z z:,y U)( > U;il)— - 0,(n?).

The error in 8,5 is O,(n™1) and the error in 6,, is 0,(n~'/2). The three
diagonal elements of H,' are 0,(n"2), O,(n™") and O,(n"?) in that order.
Hence, G1/2(D,, — Don)H‘l/ 2= 0 ), (n~Y 2)'and Assumptlon 4 is satisfied.
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Because B, — I in probability, the error in the normalized restricted least
squares estimator of 09 is approximated by

[H}L/Z - H;1/2D6n(D0nH;1D:)n)_IDOn]Ln’

where L, = H,!L?_ X, e,. The last two elements of @, are the restricted
least squares estimators of B and p. The large sample distribution of the
restricted estimator of B is the same as that of the unrestricted least squares
coefficient for 6,, in model (2.25). If the coefficient estimating p is normalized
with (£ U2 ))/?, the limiting distribution is that of # described by Dickey and
Fuller (1979). Because the sum of squares of the derivatives of model (2.25)
with respect to p divided by n? is converging to the limit of n =2 "_ U2 |, the
limiting distribution of the regression “¢-statistic” for p is that of 7.

From (2.16), the limiting distribution of the test statistic for the restriction
computed by analogy to the usual regression F-statistic has the limiting
distribution

[TZU - %rﬁlllrzv(rlzf B 1)]2
Izz — rﬁllrrzzu

y

(2.27)

where the variables are defined in (2.26).

In summary, the estimator of p in the unrestricted problem has a distribu-
tion that depends on the nature of the regressor variable when p = 1. In the
restricted problem, the distribution of the estimator of p is free of that
dependence. In the restricted problem the standardized estimator of 8 has a
limiting normal distribution and is uncorrelated with the estimator of p in the
limit. The test of the restriction has a rather complicated distribution when
p = 1. Nagaraj and Fuller (1989) give some Monte Carlo results for the model.

REMARK. We have discussed the estimation problem for a single equation.
The results extend immediately to the parameters of a system of equations.
Let the multivariate problem be written as

(2.28) Y, =X,,0, +e,

where Y, is a c-dimensional row vector, X,, is a k-dimensional row vector and
0, is a & X ¢ matrix of parameters. Let

n

Q.(0) = X (Y. - X,,0,)S; (Y, — X,,.0,)
t=1
be the quadratic form to be minimized, where S, is a fixed matrix or a
consistent estimator of a fixed matrix. Then if the ordinary least squares
estimator of 0, has a limiting distribution, Theorem 1 applies for nonlinear
restrictions on vec 0.
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The vector autoregression

M~

(2.29) Yt = Yt—lAl + et,

1

~a
I

where the A; are ¢ X ¢ parameter matrices is a specific example of a multivari-
ate model Let 0 be the vector of least squares estimators of the elements of
A;,i=1,2,...,c. Under certain conditions, the properly normalized elements
of 0 have a 11m1t1ng distribution; see, for example, Hannan (1970), Phillips and
Durlauf (1986), Sims, Stock and Watson (1990) and Chan and Wei (1988). The
limiting distributions and our results can be used to obtain the limiting
distributions of restricted estimators and of tests of the restriction. The
restriction that there are m, where m < ¢, unit roots of the characteristic
equation is an example. Johansen (1988), Phillips (1988), Fountis and chkey
(1989) and Reinsel and Ahn (1989) have given results for the vector autore-
gressive model with unit roots.
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