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BOOTSTRAPPING UNSTABLE FIRST-ORDER
AUTOREGRESSIVE PROCESSES

By I. V. Basawa,! A. K. MaLLIK, W. P. McCORMICK,
dJ. H. REEVES AND R. L. TAYLOR

University of Georgia

Consider a first-order autoregressive process X, = BX,_; + &, where

{e,} are independent and identically distributed random errors with mean 0
~and variance 1. It is shown that when B = 1 the standard bootstrap least
squares estimate of B is asymptotically invalid, even if the error distribu-
tion is assumed to be normal. The conditional limit distribution of the
bootstrap estimate at B = 1 is shown to converge to a random distribution.

1. Introduction. Consider the first-order autoregressive process {X,},
t=1,2,...,defined by

(1'1) Xt = BXt—l + &, Xo =0,

where {ft} are independent N(0, 1) random variables. The least squares esti-
mator B, of B, based on a sample of n observations (X,,..., X,), is given by

n n -1
(1.2) B, = { Z XtXt—l}{ Z Xt2—1} .
t=1 t=1
The asymptotic validity of the bootstrap estimator corresponding to ﬁn for the
stationary case, viz., |8 < 1, follows from the work of Bose (1988), and the
validity for the explosive case [8| > 1 has recently been established by Basawa,
Mallik, McCormick and Taylor (1989). Both these papers consider the general
case when the distribution of {¢,} is not necessarily known. The limit distribu-
tion of B, in the unstable case |8| = 1 is known to be nonnormal with a
complicated density. See, for instance, Rao (1978). It is therefore of special
interest to consider the bootstrap approximation for the distribution of ﬁn for
the unstable case. We shall show that the standard bootstrap fails in the
unstable case, even if we assume the error distribution to be known (normal).
We show that the conditional limit distribution of the bootstrap estimator
converges to a random distribution when B = 1. The case B = —1 can be
treated in a similar fashion since the distribution for 8 = —1 is a mirror image
of that for g = 1. '
In a different context involving estimation of the eigenvalues of a covariance
matrix, Beran and Srivastava (1985) have noted that the standard bootstrap
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validity breaks down when the multiplicities of the eigenvalues exceed unity.
Another instance of the invalidity of the naive bootstrap has been discussed by
Athreya (1987) in the context of estimating the mean of a population when the
variance is infinite.

_2. Invalidity of the bootstrap estimator. Let Z, = (L}, X7 )'/?
(B,, — B), where B, is defined in (1.2). It is well known [see, for instance,
Anderson (1959)] that when g8 = 1,

1 -1/2
(2.1) Z, >4 Z=HW?1) - 1}{/0 W2(t)dt} asn — o,

where {W(¢)} is a standard Wiener process. The bootstrap sample {X,} is
obtained recursively from the relation

Xt* = ﬁAnXt*—l + 3?’ X(;k =0,

where {¢}} constitutes a random sample from N(0, 1). The bootstrap estimator
B* of B is then defined as in (1.2) with X’s replaced by X*’s. Let Z) =
7. X J*_Ql]l/ 2(B* — B,) denote the bootstrap version of Z,. It will be shown
that Z, and Z' do not have the same limit distribution, thus invalidating
the bootstrap. To that end consider a triangular array {X, ,, £ >1, n > 1}
satisfying

(2.2) X, ,=b,X,_1,*¢, X,=0,

with independent ¢, ~ N(0, 1) and where {b,} is a sequence of numbers such
that n(b, — 1) — vy. Let

fol(l -t + te—27)_1W(t) AW(t)
(B -t + e Wy ar)

(2.3) Y(y) =

where (W(¢): 0 <t < 1}isa standard Brownian motion and

(2.4) H(y,x) =P(¥(y) <x).
Then by Theorem 1 of Chan and Wei (1987) we have
(2.5) lim P, (7, <x) = H(v,x),
where

)1/2(ZZ=1Xk,nXk—l,n _b )

n 2
k=1Xk—1,n

Th = ( Z sz—l,n

k=1

and where P, signifies the distribution induced by the model in (2.2).
Define

(2.6) H,(B,,x) = P(Z} <a|X,,..., X,}

which is taken to be a regular conditional probability distribution function.
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Therefore we may define a random measure
A) = [ H(B,,dx).
1.(A) = [ Hi(B,, dx)
Since H(y, x) given in (2.4) is continuous in y for each fixed x, we have
A)=| H(Z, dx),
n(4) = [ H(Z', dx)

where Z' is the random variable defined in (2.1) with the exponent — 3 for the
second bracket replaced by —1, also defines a random measure. We refer to
Kallenberg (1975) as a basic reference on random measures and particularly,
for criterion for weak convergence of random measures.

If the bootstrap approximation were valid then along almost all paths H,
given in (2.6) would converge in distribution to the distribution of Z given in
(2.1). However, we have in fact that

(2.7) n,=™mM asn —>x

in M,(R), the space of probability measures on R topologized by weak conver-
gence. Indeed, by almost sure representations of convergent laws, it is possible
to define B,, n > 1, and Z with B, =; B,, Z' =; Z and

(2.8) n(ﬁn —-1)>Z as.asn—>o.

See, for example, Billingsley (1971), Theorem 3.3, page 7, and recall [Anderson
(1959)] that

n(ﬁn —1) >4 Z asn >
Therefore by (2.5) and (2.8) we have
(2.9) H,(B,,x) > H(Z,x) as.asn - .

Hence for sets of the form
mJ
Aj= U (%i55i5)
i=1

representing a disjoint union of intervals, (2.9) implies that

(210) (Hu(ar 8o Ho(Br 4,)) = (H(Z, 4).... H(Z, A)
a.s.asn — o,
Since

(M(A1), s 1a(AL)) =4 (Ho(Brs Ar)s - or Ho(Brs As))

and

("7(A1), ey n(Ak)) =d(H(Za Al)w L) H(Z’ Ak))a
(2.7) follows from (2.10).
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REMARK. A similar invalidity of the bootstrap procedure occurs
when considering the distribution of n(8, — 8). An analysis similar to that
in Chan and Wei (1987) determines the limit corresponding to (2.5) of
n(Cro1 Xy X1 0/Tr-1 X721, —b,). Details may be found in Basawa,
Mallik, McCormick, Reeves and Taylor (1990).
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