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ASYMPTOTIC THEORY OF SEQUENTIAL ESTIMATION:
DIFFERENTIAL GEOMETRICAL APPROACH

By IcHl OKAMOTO, SHUN-ICHI AMARI AND KEI TAKEUCHI
University of Tokyo

Sequential estimation continues observations until the observed sam-
ple satisfies a prescribed criterion. Its properties are superior on the
average to those of nonsequential estimation in which the number of
observations is fixed a priori. A higher-order asymptotic theory of sequen-
tial estimation is given in the framework of geometry of multidimensional
curved exponential families. This gives a design principle of the second-order
efficient sequential estimation procedure. It is also shown that a sequential
estimation can be designed to have a covariance stabilizing effect at the
same time.

1. Introduction. The higher-order asymptotic theory of statistical infer-
ence has been developed mostly for these ten years by many researchers, for
example, Rao (1962), Akahira and Takeuchi (1981), Pfanzagl (1982), Chibisov
(1974), Ghosh and Subramanyam (1974) and Bickel, Chibisov and van Zwet
(1981). It has given rise to the differential geometrical theory of statistics [see,
e.g., Efron (1975), Amari (1985)], which is proved to provide statistics with a
new framework [Barndorff-Nielsen, Cox and Reid (1986), Kass (1989), Amari
(1987), Amari, Barndorff-Nielsen, Kass, Lauritzen and Rao (1987), Barndorff-
Nielsen (1988), Vos (1989)]. This framework may be called information geome-
try and is applicable not only to statistics but also to more wide areas of
information sciences such as control systems theory or time series analysis
[Amari (1987)], information theory [Amari and Han (1989), Amari (1989)].

Main results of the higher-order asymptotics of estimation are summarized
as follows.

1. Information loss: The square (Hj,)? of the e-curvature (which is a general-
ization of Efron’s statistical curvature) of a statistical model gives the
amount of loss of Fisher information by summarizing observed data into
the m.l.e. or other second-order efficient estimators.

2. Estimation error: Let #* be the bias-corrected version of an efficient
estimator. Its covariance matrix is asymptotically expanded as

1
Covariance matrix = NEI + el

where N is the number of observations and E, is the inverse of Fisher

E, + O(N73),
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962 1. OKAMOTO, S. AMARI AND K. TAKEUCHI

information matrix. The second-order term E, of the covariance is further
decomposed into the sum of three nonnegative terms

E, = 3(If)% + (Hi)® + 3(H)™

The first term is the square of the m-connection of the model (the
Bhattacharya bound), the second is the square of the e-curvature of the
model and the third is the square of the m-curvature of the estimating
submanifold of the estimator (which vanishes for the m.e. or other
second-order efficient estimators).

3. Observed information and ancillary: The observed information (which is the
negative of the second derivative of log-likelihood) is different from the
(expected) Fisher information by the amount of the e-curvature direction
components of the asymptotic ancillary statistic. The covariance of an
estimator is evaluated more accurately by the observed information rather
than the expected one [see Efron and Hinkley (1978); Cox, (1980);
Barndorff-Nielsen, (1980); Amari (1985); see also Barndorff-Nielsen (1988)].

Among the second-order covariance term E, in 2, the Bhattacharya bound
term (I';7) can be made equal to 0 locally by choosing an adequate parameteri-
zation. The mixture curvature term (H]*) can be made equal to 0 by taking
the second-order efficient estimator such as the m.l.e. Therefore, the statistical
curvature (H§;) of the model represents the essential information structure
inherent to the statistical model, as is also manifested in 1. However, as is
shown in 3, the information loss due to the statistical curvature is included in
the asymptotic ancillary statistic, so that it might be recovered by some
statistical procedure which makes use of the ancillary. This suggests a sequen-
tial estimation procedure of continuing new observations until the observed
Fisher information reaches a prescribed (large) value, instead of fixing the
number N of observation. Such an estimator is expected to have a uniformly
better characteristic on the average [see, e.g., Sgrensen (1986)]. Takeuchi and
Akahira (1988) formulated this scheme rigorously and analyzed the higher-
order efficiency of sequential estimation procedures in the scalar parameter
case [see also Akahira and Takeuchi (1989)]. They showed that the e-curvature
term in the second-order covariance can be eliminated by a second-order
efficient sequential estimator, where the expected number of observations is
put equal to N for comparison. The m.l.e. with the best stopping rule gives
such a sequential estimator. This shows that sequential estimators are supe-
rior to (nonsequential) estimators in the asymptotic sense.

It is important to know the reason why the e-curvature term vanishes from
the geometrical viewpoint. We can then easily generalize the results to the
multiparameter case by using the geometrical method and moreover we can
analyze characteristics of more general sequential estimation procedures. A
statistical manifold is uniformly enlarged by N times when we use N observa-
tions, keeping the intrinsic features of the manifold unchanged. However, in a
sequential estimation procedure with an adequate stopping rule, the observed
number N is a random variable depending on the position of a statistical
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manifold. This causes a nonuniform expansion of a statistical manifold. Such
an expansion is called the conformal transformation in geometry, since it
changes the scale locally and isotropically but it does not change the shape of a
figure (it does not change the orthogonality). It is easy to understand intu-
itively that, given a curve, the curvature decreases if the positive side (inner
side) of the curve in the enveloping plane is enlarged while the outer side is
not. The result of Takeuchi and Akahira is interpreted such that it is possible
to reduce the e-curvature of a statistical model to 0 by a conformal transfor-
mation. This implies that a stopping rule of a sequential procedure gives a
conformal transformation by which the e-curvature of a statistical model is
modified. The conformal geometry gives an adequate framework for the analy-
sis of the sequential inferential procedures if we extend the concept of the
conformal transformation to the statistical manifold (Riemannian manifold
with a dual couple of affine connections).

The present paper is devoted to the mathematical analysis of the higher-
order asymptotics of sequential estimation procedures in the multiparameter
case in the framework of conformal geometry (see Appendix 1). The conformal
geometry of a statistical manifold (manifold with dual affine connections) itself
is a new interesting geometrical problem which will be studied elsewhere.

We use a multidimensional curved exponential family as a statistical model
and show that the mean exponential curvature can be eliminated by the
conformal transformation associated with a stopping rule. This implies that
the e-curvature term is always reduced by taking an adequate stopping rule
and that the characteristics of estimators are improved by sequential proce-
dures. The e-curvature can be reduced to 0 in the scalar parameter case, but
this is not always so in the general multiparameter case. It is the mean
e-curvature that can be reduced to 0. In addition to the elimination of the
e-curvature, there is another possibility of improving the characteristics of
estimators by sequential procedures. By choosing an adequate stopping rule, it
is possible to get more covariance stabilized inferential procedures. Greenwood
and Shiryaev (1985, 1988) also treated this effect in an AR model of time
series.

2. Geometry of curved exponential family.

2.1. Curved exponential family. Let S = {p(x,0)} be a full regular mini-
mally represented exponential family of distributions, where

p(x,6) = exp{6'x; — ¥(0)}

is a density function of a vector random variable x = (x4,..., x,) parameter-
ized by a vector parameter 6 = (8%,...,0™), 6 € O, with respect to a common
measure u. The Einstein summation convention is assumed throughout the
paper, so that summation is automatically taken over indices repeated twice so
that 6‘x; automatically implies 3 6x;. We also assume that ® is homeomor-
phic to R”.
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The family S can be regarded as a statistical manifold [Amari (1985)]. The
natural or canonical parameter 6 is a coordinate system to specify a point, that
is, a distribution p(x,0) € S. The expectation parameter n = (7,), defined by

n; = Eg[x;] = 0,9(8),

also plays a role of another coordinate system, where E, (subscript 6 is often
omitted) denotes the expectation with respect to p(x, 6) and 9, = 9,/96".
The geometry of S is determined by the following two tensor quantities

g:;(0) = E[ail(x,e) ajl(x,o)] =0,0,%(9),
T,;5(0) = E[8,1(x,0) 8;l(x,0)3,1(x,0)] =9,9;3,%(6),

in terms of the #-coordinate system, where [(x, 8) = logl p(x, 8)]. The first is
the Fisher information metric and the second is called the skewness tensor by
Lauritzen (1987), from which a pair of dual affine connections are defined
[Nagaoka and Amari (1982); Amari (1985)].

A family M = {p(x, u)} of probability distributions parameterized by an
m-dimensional vector parameter u is said to be an (n, m)-curved exponential
family embedded in S, when

p(x,u) =p(x,0(u)) = exp{Bi(u)xi - ‘P(B(u))}, uelU,

where U is homeomorphic to an m-dimensional Euclidean space R™ (m < n).
We assume that 6(u) is a smooth injection from U to S, so that M is regarded
as a submanifold of S. We use indices i, j, k2, to denote quantities in terms of
the coordinate system 6 or n of S and indices a, b, ¢, and so on to denote
quantities in M. Therefore, the parameter u is written as u® (e = 1,2,...,m)
in the component form. The geometry of M is defined similarly and is identical
with that induced from the enveloping manifold S.

2.2. Estimators. Let °
x = (2@, x@, .. x®)

be a set of N independent vector observations from the same distribution
p(x,0) € S, where the sample size N is fixed. The probability density function
of x is written as

N .
p(X, 0) = l:.[lp(x(l)’ 8).

It is easy to show that the metric tensor and the skewness tensor become Ng;;
and NT;;, respectively. This shows that the geometry of SY based on N
observations is similar to S based on one observation, except that the basic
quantities are enlarged by N times. '

Let

oL
¥=—=2 x%.
N
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Fic. 1.

Then, x is a minimal sufficient statistic. Let us define a point (i.e., a distribu-
tion) 9 in S, whose n-coordinates are put equal to %,

=X
Let 6 be the corresponding 6-coordinates of the same point. Obviously, 6 (or 4)
is the maximum likelihood estimator in S. We call this probability distribution
p(x, 6) the observed point in S determined from the observation.
When the true distribution is p(x, u) = p(x, 6(x)) belonging to M, we need
to estimate u. We consider an estimator

i = e(%),

which is a function of the sufficient statistics X, or equivalently the observed
point 74 € S. Given a function e, we can define the following subset of S

A(u) = {n € Sle(n) = u}

attached to a point u € M. The set A(#) consists of those points in S such
that the value of the estimator is # when and only when the observed point
belongs to A(#). One may write

A(D) = e~ X(1).

We call A(#) the estimating submanifold or ancillary submanifold attached to
#i. We assume that each A(#) forms a smooth (n — m)-dimensional submani-
fold of S, the A(x)’s forming a smooth foliation (a smooth partition) of S. An
estimator # is then regarded as a projection from S to M through A(u)’s (see
Figure 1).

An estimator # is characterized geometrically by the properties of the
family of estimating submanifolds A(uz) associated with it. Let us denote by
P,,(S) the set of all the smooth projections from the S to M, which is
equivalent to the set of all the estimators we treat here. We characterize
projections or estimators in terms of the associated A(u)’s.

DEerINITION 2.1.

(i) A projection from S to M is said to be consistent, when 6(u) € A(u)
for any u, that is, when A(z) includes the distribution specified by «. The set
of consistent projections is denoted by P,;o(S).
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(ii) A consistent projection is said to be orthogonal when A(u) is orthogo-
nal to M at their intersection 6(u). The set of orthogonal projections is
denoted by P,(S).

(iii) An orthogonal projection is said to be locally m-flat when A(x) has
zero m-embedding curvature on M. The set of locally m-flat projections is
denoted by P,,(S).

The definitions of the orthogonality and m-flatness are given in Appendix 1.
Let us introduce a coordinate system v = (v™*1,v™*2 ... v") to each sub-
manifold A(u) € P,;,(S) such that the origin v = 0 is at the intersection of
A(u) and M. Since u is a coordinate system of M, the combined system
w = (u,v) gives a new coordinate system of the entire S, where u designates
that the point w is in A(x) and v denotes the position of w in A(u). We use
indices a, B, v, and so on for quantities related to the coordinate system w and
indices k, A, 1, and so on for quantities related to the coordinate system v. We
may write w = (w*) = (1%, v*). The coordinate transformation from w to 0 is
written as

6 = 6} (w®),
with the Jacobian matrix
Bi_ 26"
* qwe’

The geometrical quantities of S, M and A(u) can be easily obtained with the
help of the new coordinate system. We give the definitions and some results in
Appendix 1.

3. Sequential estimation and conformal transformation. In a se-
quential estimation procedure, the number N of observations is a random
variable determined from the result of observations. In other words, it has a
stopping rule which decides whether to stop observation or to continue it
further depending on the result of the past observations. A stopping rule is
given by a scalar function v(n) called the expansion factor or the gauge.

Let K be a large number playing the role of the average number of
observations and let »(7) be a smooth positive scalar function defined on S in
the mn-coordinate system. We adopt a stopping rule by which the random
sample size N satisfies

(3.1) E[N]=Kv(n) +0(1),

where 0 = 0(n). This implies that, when the true distribution is p(x, @), the
expectation of the sample size N is required to be approximately equal to
Kv(n). The gauge function v(7n) is called an expansion factor, because the
manifold S is expanded about Kv(n) times at n by this stopping rule, where
K is a large number such that asymptotic results hold as K tends to infinity.
This nonuniform expansion gives rise to a conformal transformation of S.
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A rough idea of a stopping rule is as follows. Let x be the observed point by
N independent observations. Since X converges to the true point n as N
increases, the required expected number E[N]= Kv(n) is approximated by
Kv(x). Therefore, the stopping rule is such that we stop observation when the
number N of observations becomes larger than Kv(X). More precisely, we
assume that the number of observations is determined by our stopping rule
such that

(3.2) N=EKv(Z) +c(%) +¢

holds, where x is the observed point by N observations, ¢(¥) is a function of
order 1 and ¢ is a small order term asymptotically independent of x satisfying
E[e] = 0(1). These terms ¢ and ¢ are introduced for N to satisfy the require-
ment (3.1), because

(33) E[v(%)] = v(n)

does not hold exactly. The term c is due to the bias of ¥ from the true n and
will be explicitly given later. The term ¢ includes a rounding error, because N
is an integer. Following Takeuchi and Akahira (1988), we further assume that
the ¢th moments of N (¢ = 1,2, 3, 4) are of order K°,

(3.4) E,[N'] = O(K").

Since the higher order asymptotic theory of statistical inference is con-
structed on the geometry S of a statistical model in a unified manner [Amari
(1985); Amari, Barndorff-Nielsen, Kass, Lauritzen and Rao (1987)], we show
how the geometry of S is changed by introducing a stopping rule and then give

an example.
Let
N
(3.5) p(x,0) = LI—IIp(x(i), 0),

where N is a random variable under an expansion factor »(n). By this
sequential rule, we have an extended statistical manifold

'S = {p(x,0)}.

The metric and the skewness tensor of 'S is calculated by using Lemma 1 in
Appendix 2 as

8ij = KVgij,
T;jn = Kv(T,j, + 385k
where

5;(0) = 9; logv(6),

38:jSky = 8ijSk + &jrSi + 8riSj-
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Normalizing the magnitude, the geometry of 'S is defined as
(3.6) 8ij = 8ij»
(3.7) Tije = Tijr + 385wy

The a-connection of 'S is defined therefrom. This defines a conformal
transformation of the statistical manifold S induced by the gauge or expan-

sion factor v(n) (see Appendix 1).
Let us decompose s; into the a- and k-components,

(3.8) - s, =9, logv(w),

(3.9) s, =9, logv(w)

in terms of the w-coordinates. The m-connection of 'M is then given by
(3.10) abe = Labe T 8caSp + BepSa-

When A(u)’s are orthogonal to M, the e-curvature of M is changed into
(3.11) HS), = HS,  Zasse

while the m-curvature of A(x) is kept invariant

(3.12) HG) = HYY.

EXAMPLE OF STOPPING RULE. Takeuchi and Akahira (1988) developed the
second-order efficient sequential m.l.e. for a one-dimensional model by using
the following rule: Given v(u), stop the observation when the following
criterion is satisfied,

1
g( i=1

where # is the m.le., " = d?/du? l(x,0(u)) is the second derivative of the
log-likelihood, g(u) is the Fisher information and c¢(u) and ¢ are determined
from

(3.14) E,[N]=Kv(a).

The previous rule implies that observation stops when an observed Fisher
information reaches the prescribed amount, because — X I"(x®, (%)) is the
amount of observed Fisher information. The Fisher information is a tensor in
the multiparameter case, so that we cannot apply this rule (3.13) directly to
the latter case. However, we can generalize it by evaluating the trace of the
observed information as

”

(3.13)

(3.15) - i Y 9,9,l(x,0(4))g*®(a) = Kv(&) + c(&) + ¢,
i=1

where (g?%) is the inverse of the Fisher information matrix (gab). Expanding
(3.15), we have

(3.16) N =Kv(a)(1 + HO0* + 0,(1)),
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where (%, 0) is the w-coordinates of the observed point ¥ and
1
(3.17) HY® = —HQg
m

is the mean e-curvature. Therefore, when the expansion factor v(u) is speci-
fied on M, the stopping rule determines the expansion factor v(w) in the
entire S (or in a neighborhood of M) as

v(w) =v(u)(1+ HS(u)v"),

extending the given »(«) in a tubular neighborhood of M. The vectors s, and
s, are

S, =9, logv(u),
s, =H®

on M. We can calculate the geometrical quantities of 'S by using them.

4. Characteristics of sequential estimators. We study higher-order
properties of sequential estimators and show how they depend on the expan-
sion factor v(w) or the associated stopping rule. This gives a design principle
to the sequential estimator. We assume that estimators are functions of
observed points ¥ accompanied by smooth estimating submanifolds A(xz). The
observed point x is not the sufficient statistic in the sequential case, but the
loss of information by using only X instead of the whole sequence of observa-
tions is proved to be of order 1/K. The second-order asymptotic properties of
an estimator are then proved to depend only on A(u)’s and v(w).

We first give a theorem on the consistency and first-order efficiency of
sequential procedures. Since the result is similar to the nonsequential case, the
proof is omitted.

THEOREM 4.1. (i) A procedure is said to be consistent when the estimator G
converges in probability to the true parameter u as K tends to infinity. A
procedure is consistent if the estimator 4 belongs to Py;,(S), that is, each A(u)
includes the point n(u).

(ii) A consistent procedure is said to be first-order efficient when VK v(4i — u)
converges in distribution to the normal distribution N(0, g) with g = (g2°), the
inverse of the Fisher information matrix as K tends to infinity. A procedure is
first-order efficient if and only if the estimator belongs to Py (S), that is, the
associated manifolds A(u)’s, are orthogonal to M.

ReEMARK. In many cases A(u) depends on the number of observations N.
In these cases, it is necessary that A(w) includes n(u) as K — « and that
A(u) is orthogonal to M as K — . We do not mention it, because the
situation is the same as the nonsequential case [see Amari (1985)].

In the following, we treat first-order efficient procedures. We first give the
asymptotic bias of the estimator in order to obtain its bias-corrected version;
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we then give the second-order asymptotic covariance of the bias-corrected
estimator.

THEOREM 4.2. The asymptotic bias of a sequential estimator is given by

(4.1) E[VKv(2® — u®)] = b%(u) + O(K™Y),
where
(4.2) b%(u) = — T(rmﬁagaf3 + 2s5°%).

We obtain the bias-corrected estimator ii* as

(4.3) a*e = go — 2‘/_ ——b%(1).

THEOREM 4.3. The asymptotic covariance of a bias-corrected first-order
efficient sequential estimator is given by
E[Kv(&*® — u®)(&*° — u®)]
(4.4) 1 (1 1
— gab 4+ — _/F(m)2ab+ rH(e)2ab + _H(m)2ab + 0 K—2 ,
8 Kv{ 9 M M g tA ( )

where the primed quantities 'T{{ and so on are those obtained by the confor-
mal transformation of S.

ProOF OF THEOREMS 4.2 AND 4.3. Let w be the parameter («, 0) of the true
distribution and let us define
W = VK v(* — w),
i = VEv(2° - u®),

= VK vv*~.
Denoting the log-likelihood of x by I(x, 8(w)), we have
(4.5) 9;l(x,0(w)) = Nx; — Nn,(w),
where 7,(w) = 3,¥(6(w)). Expanding ¥; = n,(i) = n,(&, 0), we obtain
w1 0P
X, =mn(w) + Baim + ECaBi—KV_
(4.6) 1 DWW
+ —éDanW + 0,(K™?),
where
B, = dm;,
Copi = 9o 9pM;s
Dan O aﬂ 3777!



GEOMETRY OF SEQUENTIAL ESTIMATION 971

On the other hand, we expand (3.2) into
wewh

(4.7 N=Kv(w)+Kdy ‘/_ + Kaa

Substituting (4.6) and (4.7) in (4.5), we have

+c(w) +e+0,(1).

1
0;1(x,0(w)) = VKvB_,w" + 5 (Cagi + 25 By, ) 0”

(4.8) +1B aauM+B.(c+e) w
27 B LKy o VK v
1 wrwPwY 1
+§Caﬂi87 \/I?V + OP(E)
When we put
B 1
i = TRy 9,l(x,w),

it is rewritten as

1
(49) .’fi = BailZ)a + 2—@(001‘” + 2s(aBﬂ)i)w“wB + OP(K_I),

1
(4.10) W™ =g*“*B}%; - K (Cg, + 25, 850“wP) + O,(K1),
where
Bg = 9,6°
a @ 1, a=8,
Cg, = CyyiBig 9 = {0’ a + B.

Since we have
gaBBLi%x"i = gaﬂ aﬂl(x7 w)a

by Lemma 1 and Lemma 2 in Appendix 2, the moments of @& are obtained as

1
4.11 E[o*wP] = —g** + O(K™Y),
(4.11) [5°5#] = =g + O(K ™)
1
(4.12) Elw*wPw?] = — E’T"‘ﬂ"’ + O(K™ Y,
(4.13) E[0*wPwYw®] = 3g@Pg® + O(K™),
where

3g(aﬂg7‘s) = gaﬂg’ya + ga‘)/gﬁts + gaﬁgﬂ‘y'
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Substituting (4.11) in (4.10), we obtain the expectation of i as

(4.14) E[w*] = — Cs,8%" +25%) + O(K™1).

1
2VK v (
Since Amari (1985) showed that

G, = Ty = Tipg™,
(4.14) is rewritten as
1
~al . m)a a -1
E[w ]— —W(Féy)gﬂy+28 ) +O(K )
(4.15) _1
— — _(rTm)a4B -1
= 2\/EV(PB’ g "’) + O(K™1).
This completes the proof of Theorem 4.2.
In order to obtain the covariance of the bias-corrected estimator #*, let
a*e = VKv(0*® — u?).
Since
E[a**] = O(K™Y),
we obtain (4.4) using Lemma 2 in Appendix 2. Hence, we proved Theorem 4.3.
0O

It is noted that the scalar function ¢(n) is given explicitly by
(4.16) c(n) = 5(8s, — TiMes, — 555,)8%,

which is shown by substituting (4.11) and (4.14) in (4.7).

For practical readers, it is remarked that Akahira and Takeuchi (1989)
made a comment on how the stopping rule is designed so that sample size N
satisfies (3.2) for given v(w).

We now evaluate the procedures from the point of view of information loss.
The amount of information loss by summarizing whole the data in an estima-
tor & is given by

(4.17) Ag,, = E[Cov[d,I(x,0(u)),d,l(x,0(u))|a]].

THEOREM 4.4. The amount of information loss of a first-order efficient
sequential estimator is given by
(4.18) Agay = (HiP)wp + 3(HL™) oy

The proof is straightforward and is omitted. It should be noted that the

second-order term of the covariance of #* is written as

(TG)* + agee.
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It should be noted that, when v(w) is fixed, the loss of information or the
covariance of #* is minimized when and only when A(w) is m-flat, that is,
H{™ = 0, implying that the estimator belongs to P,(S). It should be noted
that H{™ does not depend on »(w) or s,. Therefore, given »(w), an estimator
whose estimating function belongs to P, ,(s) is second-order efficient. The
m.le. satisfies H{™ = 0. We hereafter treat only estimators belonging to
Pyo(8S).

The term T} depends only on s,. Hence, when v(w) is fixed on M to be
equal to a given function v(u,0), T{® is also fixed. On the other hand, 'HS}
depends only on s,. Therefore, the problem of designing a good sequential
estimator is divided into two separate problems: one is to choose a stopping
rule which is effective for reducing the 'H{? term and the other is to choose a
function »(u, 0) effective for stabilizing the first-order covariance »~*(z)g*®(u)
of estimators. The second problem is how to choose v(x) on M and the first
one is how to extend it in S to give the entire »(w). The first problem is solved
in Section 5 and the second one is solved in Section 6.

5. Second-order efficiency of sequential procedures. Now we fix
v(w) on M, such that

E,[N]=Ekv(u,0).
The properties of estimators belonging to P,,,(S) depend on
s, =90, logv(u,v)

at v = 0. This implies that they depend on how we extend v(«, 0) in a tubular
neighborhood of M.
Let us define the mean e-curvature of M by

1
(5.1) HO = —HY.g®

and the scalar mean e-curvature by

(5.2) IHPI = VHOH g .
We further define the conformal e-embedding curvature of M in S by
(5.3) HY. =HS). — g, HY.

This is a conformal invariant, which does not change under any conformal
transformations.

THEOREM 5.1. The loss of information is minimized by the stopping rule
satisfying

(5.4) s, = H®,

where the minimality is measured by the trace of Ag,,. The minimized loss of
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information is given by the square of the e-conformal curvature,
— 2 _
Ager = (Hiy)ay + O(K™).
Proor. We have
’ e 2 ’ e 2 a
tr(HiP)ay = (HiP) 18"

5.5 = (Hi?)as8™* + m{(s, ~ HO)(s, — H®) - HOHO)g~
> tr(HP):, — mHOHOg
= tr(H)?, — mIHI.

The equality holds if and only if

s, =H®.
Hence, Ag,;, attains the minimum when
'Hef = Hip — 8o H = HE).. O

It is significant to compare sequential procedures with nonsequential proce-
dures. Since (H{{")Z, is the least information loss of nonsequential estimators
[Amari (1985)], m| HS?|l corresponds to the maximal attainable information
recovered by a sequential estimation. When the e-mean curvature vector
vanishes, a submanifold M is said to be e-minimal. There is no recovery of
information by a sequential estimation when the submanifold M is e-minimal.
On the other hand, when the conformal e-curvature vanishes, all the loss due
to the e-curvature is recovered by the best sequential estimation.

A bias-corrected first-order efficient estimator is said to be second-order
efficient when the second-order asymptotic covariance of the procedure attains
the minimum. The following theorem is a direct consequence of Theorem 5.1.

THEOREM 5.2. A sequential estimation procedure is second-order efficient if
and only if its estimator and stopping rule are defined such that s, = H®
holds in (3.2). The asymptotic covariance of a second-order efficient estimator
is given by

E[Kv(2* — u®)(2** — u®)]
(5.6)

a 1 (m)) 240 1 T e)) 2ab _
=g b+2—KV(F,§, ’) +E(H}w)) + O(K™?).

The Bhattacharya-type bound for the second-order asymptotic cov ‘riances
of sequential estimation procedures [Takeuchi and Akahira (1988)] is given by

a 1 I (m)\2ab

A second-order efficient procedure attains the Bhattacharya-type bound when
the conformal e-embedding curvature vanishes on M. In particular, when M
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is a one-dimensional manifold, the Bhattacharya-type bound is surely attained
by some second-order efficient procedure.

6. Covariance stabilization. The first-order term of the covariance
matrix of an efficient estimator is given by N~! times the inverse g° of the
Fisher information matrix. When g?%(x) does not depend on u, in particular,
when

gab( u) — 5ab’
where §°° is the Kronecker delta, we say that the covariance of an estimator is
stabilized. We say that a model M is covariance stabilizable when there exists
a covariance stabilized parameterization.

The following theorem is known in the case of nonsequential estimation
[Yoshizawa (1971), Amari (1985)].

THEOREM 6.1. A model is covariance stabilizable, when and only when the
0-Riemann—-Christoffel curvature (RC curvature) RS , vanishes (see Ap-
pendix 1).

In the case of sequential estimation, we have additional degrees of freedom
of covariance stabilization; choosing v(u, 0) adequately as well as choosing a
suitable parameterization.

When we have a function »(u,0) on M and a parameterization ©® such
that

v(u,0)8,u(1) = 844y,
the covariance of an efficient estimator is uniformly stabilized by an efficient
sequential estimation procedure. The following theorem comes from conformal
geometry.

THEOREM 6.2. A model M is covariance stabilizable, when and only when
M is conformally 0-flat (see Appendix 1).

Obviously, when the 0-RC curvature vanishes, the model is conformally
0-flat. It is known that the RC curvature vanishes for any one-dimensional
model. It is known that any two-dimensional model is conformally 0-flat.

COROLLARY. Any two-dimensional ‘model is covariance stabilizable by an
adequate sequential estimation procedure.

Even when M is not conformally covariance stabilizable, it is always
possible to choose »(u) such that the trace or the determinant of vg,, does
not depend on u, so that the parameter becomes more stabilizable.’

7. Conclusion. We have studied the asymptotic theory of sequential
estimation procedures for curved exponential families. It has been shown that
statistical manifolds are conformally changed according to the stopping rules
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in sequential estimation procedures. We have obtained the asymptotic covari-
ance matrix and information loss of sequential estimation procedures up to the
second order. We have also proposed second-order efficient procedures. Stop-
ping rules and information losses of second-order efficient procedures are
closely related to the geometrical structure of the underlying manifold.

Covariance stabilization is another effect which sequential estimation proce-
dures enjoy. We have also shown the relation between the conformal change
and covariance stabilization by the sequential estimation.

APPENDIX 1

Geometrical quantities. Given an exponential family S = {p(x, 6)}, the
basic geometrical quantities are defined by

8ij =E[8ilajl],
T, = E[0;10;19,1].

The a-connection is then defined by

I = B[,0,00,0] + ——T.

The a-RC curvature is given by
R, = aTf) — TS + g* (TR — TOTS).
An (n, m)-curved exponential family M is given by
0=0(u), 77=77(u),

in the 0- and n-coordinate systems, respectively. Let us divide S into a family
of smooth (n — m)-dimensional submanifolds A(z). When an A(u) intersects
M at 6(u), we have a w-coordinate system w = (u,v) in the entire S, by
introducing a coordinate system v = (v*) in each A(u). The basic tensors are
written as

8.p = 8i;B.Bj,
T, = kaBiBény
in the w-coordinate system and the a-connection is given by
I{2) = BiBIBET) + g,,B; 93 B,
where
B! =030 /ow*.
The tangent space of M is spanned by m tangent vectors,

d,=BLd

a i

a=1,2,...,m,
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and the tangent vectors of A(u) are spanned by n — m tangent vectors
=Bld, A=m+1,...,n.
The submanifolds M and A(u) are said to be orthogonal when the tangent
vectors are mutually orthogonal,
(95,0,) = &g = gichiB){ =0.
It should be noted that
B,; = g;B] = om;/0w®

holds, if we use the n-coordinate system.
The m-connection of M is given by

T§5 = Bo(9 Bei)-

a

The (embedding) e-curvature of M is given by
H\. = B,;,B,

and the (embedding) m-curvature of A(u) is given by
H(™ = Bid B,,.

KAa

When this vanishes at v = 0, A(u) is said to be locally m-flat.
The square of these quantities are given by

(T47)s = TGI8,
(HSP)as = HH{h8* 8",
2
(HA™)a = HSLH 8™ 8™,
where
8ap = B.iBy;8”, & =B.B,g",
and all indices can be lowered or uppered by using these metric tensors or

their inverse, for example,

(i)™ = g*g* (T )oa

Suppose that two statistical manifolds (S, g,T) and ('S,’'g,'T) are diffeo-
morphic and that their fundamental quantities are related by

'Bap = 8ap>
Tapy = Tapy + 38apSyy

where
s, =0, logv(w).
The diffeomorphism from (S, g,T) to ('S, 'g,'T') is then said to be a conformal

transformation of the statistical manifold induced by the gauge or expansion
factor v(w). The conformal change of a Riemannian manifold implies that the
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manifold is expanded or contracted isotropically but that an expansion rate
depends on each ~point [Schouten (1954)]. Our transformation is a statistical
counterpart of this change. A conformal transformation changes the a-connec-

tion into
3(1 - a)

(@) — Ty o 2\ @) _
Ty = Tgys + o BBrSs) T 8pySs-

Accordingly, the m-connection of M, the e-curvature of M and the m-curva-
ture of A(u) are changed into

T‘é;)nc) = I‘é;)nc) + 8caSh + gcbstn
1 ET (e)

abk

(e) _
abk gabsm

'HW = HO.

KAa
The square of these quantities are calculated as before.
The Weyl-Schouten curvature (0-WS curvature) of M with dim M > 4 is
given by
1
CR = C9 - ———(s¢RY - 61RY + RPg,, ~ BO,,)

1
+ 838, — 82
(m_ 1)(m_2)( b8ca cgba)’

where
RO =R, ,g°° and m = dim M.
When dim M = 3, the 0-WS curvature of M is given by
CY = (VORD ~ VORE) - 4(80 %R — £,.4,R?),
where
RO - R%g® and VORY - 3,RY - R, - TORY,

A manifold M is said to be conformally equivalent to a manifold M’, when
there exists a conformal transformation of M onto M’'. A manifold which is
conformally equivalent to a Euclidean space is said be conformally 0-flat. The
following theorem is well known in conformal geometry.

THEOREM [SCHOUTEN (1954)].

() If dim M < 2, then M is conformally 0-flat.
(i) If dim M = 3, then M is conformally 0-flat when and only when the
0-WS curvature CS9, vanishes.

(iii) If dim M > 4, then M is conformally O-flat when and only when the

0-WS curvature CY., vanishes.

It is noted that the statistical model M is covariance stabilizable if and only
if M is conformally 0-flat.
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APPENDIX 2

The following lemmas are due to Takeuchi and Akahira (1988). These are
useful for the calculation of geometrical quantities and asymptotic covariances.

LEMMA 1. Suppose that T is a function of observed samples x and of he
true parameter 6. The sample size is assumed to be determined according to
some stopping rule and to have a finite expectation. Let 1(x,0) denote the
log-likelihood of x. Then we have

Ey[T0,1(x,0)] = ,E[T] — Eo[5,T].

LEMMA 2. Suppose that the estimator @i of the procedure satisfies the
following equations:

1
VKv(2® — u®) = E{gaba,,l(x, 9) + Q%) + O(K™Y)

and
E[VEv(2® - u®)] = O(K™Y).

Then we have

E[Kv(2® — u®)(2° - u®)] =g + —I%;COV[Q“,Q”] +o(K™),

where
Cov[f,g] = E[fzg] - E[f]E[g].
Proor. Let
a° = VKv(2° — u®),
then
E[a°3b] =E (aa - T_%g“alc(x, u))(ilb - %gbdald(x, u))]

+iE[ﬁ(“gb)°8 I(x,u)] - ——I—E[g“gbdal(x u)dyl(x,u)]
VKv e Kv et TR

1 1
= EE[Qa,Qb] + Tﬂg‘”E[ﬁbacl(x, u)]

+ LgbcE[iZ"a I(x,u)] — g°°.
VK v o
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Because of Lemma 1,
1
—E[i%d,l(x,u)] =8 + O(K™?),
——E[2° 3,(x,u)] = 8 + O(K"?)
where 87 implies Kronecker’s delta. Hence, we complete the proof. O
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