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SHRINKAGE DOMINATION IN A MULTIVARIATE
COMMON MEAN PROBLEM

By EpDwARD 1. GEORGE
University of Chicago

Consider the problem of estimating the p X 1 mean vector § under
expected squared error loss, based on the observation of two independent
multivariate normal vectors Y; ~ N,(0,a%I) and Y, ~ N,(6, \o®I) when
A and o2 are unknown. For p > 3, estimators of the form 8, =nY +
(1 = 7)Y, where 7 is a fixed number in (0, 1), are shown to be uniformly
dominated in risk by Stein estimators in spite of the fact that independent
estimates of scale are unavailable. A consequence of this result is that
when A is assumed known, shrinkage domination is robust to incorrect
specification of A.

1. Introduction. This paper considers the following multivariate com-
mon mean problem. Suppose we observe two independent p X 1 multivariate
normal vectors, p > 3:

(1.1) Y, ~N,(6,0%I) and Y,~ N,(6,rc%]),

where Y; = (Y;;,...,Y,;), 6 =(6,,...,6,) and A and o are positive scalars.
The problem is to find an estimator § = 8(Y,,Y,) of & when A and o? are

unknown, under the risk criterion of expected squared error loss,
(1.2) R(y,8) =E,l5 - 6l?,

where the expectation is taken over the sample space under the distribution
determined by ¢ = (6, A, 02). It is desirable to keep the risk small over the
entire parameter space

(1.3) V= {y:0 €RP, A €(0,0),0% € (0,0)}.

Note that by linear transformation, this problem is identical to estimating 6
based on observing Y; ~ N,(6,0®3) and Y, ~ N,(6, Aa®Z) under the criterion
Rs(,8) =E (6 - 0)'S "6 — 6), where 3 is a known covariance matrix.

This common mean problem might arise when p different items are mea-
sured by each of two unbiased measuring devices which have unknown and
possibly different measurement precisions. For example, suppose the value of
each of p parcels of real estate was assessed by two independent assessors.
Letting Y;; be the assessment of parcel i by assessor j and letting 6; be the
“true” value of parcel i, the setup (1.1) might be appropriate if one assessor
was better (less variable) than the other. Note that it might be necessary to
use transformed units to obtain constant variance for each assessor.
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The problem of estimating 6 in the setting (1.1) is also discussed in detail by
Zellner (1971). Numerous authors have studied related versions of the above
problem in which independent variance estimates are available. References for
this work include Bhattacharya (1980), Brown and Cohen (1974) and Cohen
and Sackrowitz (1974) who consider the univariate common mean problem
(p = 1), Chiou and Cohen (1985), Loh (1991) and Krishnamoorty (1989) who
consider the multivariate common mean problem and Box and Tiao (1973) and
Yancey, Judge and Miyazaki (1984) who consider the problem of making
inference about a common vector of regression coefficients based on two
independent regressions with unknown and possibly different residual vari-
ances. The proposed solutions to each of these problems rely on the availability
of independent variance estimates. As will be seen, our multivariate common
mean problem is distinguished by the feature that independent variance
estimates are unavailable.

The main point of this paper is to show that any estimator of the form

(14) 8,=nY; +(1- n)Y,,

where 7 is a fixed number in (0, 1), can be uniformly dominated by a Stein-like
shrinkage estimator with respect to the risk in (1.2) for all values of € V.
Note that the risk of 3, is

(1.5) R(y,8,) = po? where ¢? = [172 +(1- ’:7)2)t]cr2

is the variance of 3, .

When the variance ratio A is known, &, for which n = A/(1 + A) is the
minimax estimator, the MLE, the BLUE and the best translation-equivariant
estimator for #. Indeed, in this case the setup (1.1) can be reduced to observing
the sufficient statistics

(1.6a) L= gh+1o;% and S =Y, - Y,|?,
which are independently distributed as
A
(1.6b) Y, ~N,(6,02I), where g2 = m(rz
and

2
(1+2)
S ~ —A——~a')\2)(§.

(1.6¢)

Thus, if the parameter space can be restricted to
(1.7 Y, ={y: ¢y eV, A/(1+)) =17}

on which 3, =Y,, then our problem can be reduced to that of estimating a
multivariate normal mean based on a single observation in which case the
estimator 3, = Y, has the aforementioned properties.

Of course, a consequence of such a reduction is that 5, =Y, is inadmissible
(on ¥,), with respect to the risk (1.2), and can be dominated a Stein estimator
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of the form

(p —2)67
1.8 85=11- —-"115_,
( ) n |: ”6»,,”2 n

where &2 =n(1 - n)S/(p + 2) is an estimator of o (Note that on ¥,,
o = o, ) The known proofs of this dominance [see Stein (1981) or Lehmann
(1983)] exp101t the independence of 6, =Y, and S on V¥, [a consequence of

Cov(s,,Y, -~ V) =(n -1 - MAe?2 =0 when n = A1 + A)], by first condi-
tlonlng on S, and then making use of the same results used to dominate
=Y, when ¢? is known.

What distinguishes our multivariate common mean problem from the set-
ting above is that A is unknown, and hence Y, is unavailable. The MLE does
not exist. There is no sufficiency reduction; Y; and Y, are the minimal
sufficient statistics. Furthermore, the statistics 8, and S will be dependent for
any ¢ ¢ V,. However, in spite of this dependence, it is shown in the next
section that any estimator of the form &, will still be uniformly dominated by
a shrinkage estimator similar to &7 for all y € .

Aside from the surprising fact that uniform domination by a shrinkage
estimator is possible even when independent estimates of scale are unavailable,
this result establishes the following robustness property of the Stein estima-
tor. In some situations, it will be useful and plausible to assume A is known,
rather than treat the general case. For example, an equal variance assumption
where A = 1 might be justified by symmetry considerations. In this case, one
might want to use the Stein estimator 57, which is known to dominate the
minimax estimator 8, ,. However, if A is incorrectly specified, one would (or at
least should) want to know the consequences. The main results of this paper
show that shrinkage estimators continue to dominate §, for all A so that
shrinkage domination is robust to incorrect specification of A.

It is important to emphasize that this paper does not settle the question of
how to select a good estimator of § when A is indeed unknown. In this case, it
is probably more reasonable to consider adaptive alternatives to &, of the form
8, =vY, + (1 — y)Y,, where y is an adaptive estimator of . We have ob-
tained such adaptive 8, which dominate &, everywhere except for a small
neighborhood around 1 = A /(1 + A) where they are practically as good. The
main results of this paper suggest that analogous shrinkage domination
results may also apply to these adaptive &,. We plan to report separately on
this problem

2. Shrinkage domination. In this section, we prove that any estimator
of the form 8, = nY; + (1 — 7)Y, from (1.4) will, for certain choices of c, be
uniformly dominated by a shrinkage estimator of the form

”Y1 - Y2”2
(2.1) 8 =11 —-c——|5,.
" s, Iz |
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It may be of interest to note that our proof is initially directed toward deriving
an unbiased estimator of the risk; see Berger (1985). However, this unbiased
estimator of the risk turns out to be unbounded, and so must be averaged to
obtain a bound. The details regarding the bounding of this average, which may
also be of independent interest, have been presented as lemmas in Section 3.

THEOREM 2.1. Let C(n,3) = 2k/13 and C(n, p) = 2(p — 2)x/(p + 8) for
© p =4, where k = min{n® (1 — n)%. Then for n €(0,1), p>3 and 0<c <
C(n, p), 8; uniformly dominates 8, in risk, that is, R(¢, 8;) < R(y, 8,) for all
e,

ProOF. Letting S = [|Y; — Y,||” as in (1.5), rewrite 8¢ in (2.1) as

C
(2.2) On =0y 8y where g, =g,(Y), V) = — 150,
n

The risk of 8; can thus be expressed as
(2.3) R(¥,57) = E,l15, + g5 — 6l° = po? + E,[2(5, — 6) g + lg2l?].

Using the fact due to Stein (1981), that E(X — w)h(X) = 02Eh'(X) for
X ~ N(u,0?) and any differentiable function % satisfying E|h'(X)| < =, it
follows that

E,[(5, - 0)&:]
= E,[(n(Y; - 0) + (1 — n)(Y, - 6)) g5
(24)  =E,[(no?V;* +(1 - n)Aa?V, - )gl]

= E,|-co(p - Do 2ertn = (1 - my T2 % ”5:;) 2,
where V, - g7 = L?_(dg; /3Y;,). Thus, the risk in (2.3) may be expressed as
(2.5) R(4,85) = po? + (c®A, — 2¢(p — 2) Ay)o? — 4cA,,
where
(2.6) A, =0 °E,[S%/16,1%], A, =E,[S/lIs,I?],

(2.7) As=(n - (1-m)A)o’E, (—Yl];:”%i

By Lemma 3.1, A;/A;, <13k~ ! for p=3, and A,/A, <(p.+ 8« ! for
p < 4. Furthermore, A; > 0 by Lemma 3.5. Thus, for 0 < ¢ < C(n, p),

R(y,8;) <po?+ (c*A, — 2¢(p — 2)Ay)0?
<po;+ (c(p+8)k~' = 2(p - 2))cAy02 <po?. ]
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Although there is no minimax estimator for the general problem where A is
unknown, it may be useful to regard 8, ,, = (1/2XY; + Y;,) as a benchmark
competitor for the general problem. Note that 3, , is the “safest” estimator of
the form §,, in the sense that RR(8, 5, ) < RR(8, /4, 1), where we define
RR(5,,A) = R(4,8,)/R(¢,Y,), the risk efficiency of 5, at A. The following is
just Theorem 2.1 applied to 5, /.

CoroLLARY 2.1. Let C*(8)=1/26 and C*(p)=(p —2)/2(p + 8) for
p = 4. Then for p > 3 and 0 < c < C*(p), 85, uniformly dominates &, ,, in
risk. '

Evidently, the bounds on ¢ in Theorem 2.1 and Corollary 2.1 are not the
largest possible. It appears from strong simulation evidence that the bound on
A,/A, given in Lemma 8.1 can be lowered to at least A;/A, < 6x~! for
p=3,and to A, /A, < (p + 2)x~ ! for p > 4. If this is the case, the bound for
¢ can be increased to C(n,3) =«/3 and C(n,p) =2(p — 2)x/(p + 2) for
p = 4 in Theorem 2.1, and to C*(8) = 1/12 and C*(p) = (p — 2)/2(p + 2)
for p > 4 in Corollary 2.1. However, even these bounds are probably conserva-
tive since the amount of risk reduction captured by the term Aj in (2.7) has
not been exploited by the proof of Theorem 2.1.

Simulation evidence also suggests that for n = 1/2, A,/A, is bounded
below—by 4p when # =0 and A —» 0 or », and is close to its apparent
maximum of about 4(p + 2) in the rest of the parameter space. Because of this
relatively small variation of A,/A, over ¥, it follows from (2.5) that a good
choice for the constant in 87 , would be ¢ = (p — 2)/4(p + 2). This is exactly
the choice in (1.8) recommended by Stein (1966) for the situation when it is
known that A = 1. Unfortunately, the choice of ¢ for other 8¢ is less clear,
especially when 7 is close to 0 or 1, where A, /A, can have large variation. Of
course, in all these cases, a positive-part version would probably be better.

To get some sense of the amount of improvement available by 4, over §,,
we simulated the risk of 55 in (1.8) for n = 0.5, 0.75, 0.9 when |6|> =
0,10,1000 and A = 1,3,9. The results are presented in Table 1. The risks of
the corresponding 8, [which can be computed exactly from (1.5)] are also given
for comparison. Of these §,, 35 is best when A = 1, §, ;5 is best when A = 3
and 8,4 is best when A = 9. What is most striking in the table is that 8;?
dominates the corresponding 3, in every setting, sometimes substantially.
This underscores the shrinkage domination robustness of the Stein estimator
discussed in the previous section. Finally, note that when n = 0.75 or 0.9, the
choice ¢ = n(1 — n)(p — 2)/(p + 2) for 8: is larger than C(n, p), the bound
for domination given in Theorem 2.1. The observed shrinkage domination in
these cases further supports the conclusion that the bounds on ¢ given by
Theorem 2.1 are conservative.

3. Lemmas for proving Theorem 2.1. In this final section, we present
the details required for obtaining the risk bounds in Theorem 2.1. These are
organized as a series of interconnected lemmas which may also be of indepen-
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TABLE 1
Simulation estimates of risk R(y, §)
p=10,02=1
3 0|2 n=0J5 n=0.75 n=09
A=1
0. 1.66 2.64 6.03
85 10. 3.99 4.95 7.25
1000. 4.99 6.23 8.19
8, 5.00 6.25 8.20
A=3
0. 2.69 2.50 4.59
85 10. 6.52 5.51 6.76
1000. 9.94 7.47 8.38
s, 10.00 7.50 8.40
A=9
0. 4.52 5.47 3.01
87 10. 10.42 8.48 6.33
1000. 24.58 11.20 8.96
b 25.00 11.25 9.00

n

Note: All standard errors are less than or equal to 0.004 for A = 1
and A = 3, and they are less than or equal to 0.012 for A = 9. The
risk entries for &, are computed exactly using (1.5). The simula-
tion was based on 1,000,000 repetitions.

dent interest. Related results can be found in Casella and Hwang (1982). Note
that many of the bounds provided by the lemmas here are not the tightest
possible.

LemMma 3.1. For A; and A, in (2.6) and k = min{n2,(1 — )3},
6] A /A, < 13k71 forp =3,
(ii) A /A, <(p+8)k™! forp=>4.
Proor. A, and A, may be expressed as
A =1+ 1) E(IUIY/IVIZ),  Ay=(1+ Ao, 2E(IUIP/IVIP),
where U and V are two p X 1 normal vectors such that
(V) ~mel () (ar 7))
\%4 \\u)\al 1))
with u = 6/0, and a = (n — (1 — 7)Ao /(1 + A)'/?0,. Thus
AJA, = (1 + )t)crzcrn_zh(p,,a),
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where
E, (IUI*/1VI?)
E, (lU/IvI?)

Since (1 + Mo?0,2 = (1 + M[n® + (1 — n)®A]"! < k™%, it suffices to show that
h(u,a) < 13 for p =3, and h(u,a) <p + 8 for p > 4. Conditioning on V
yields

h(w,a)

CE(IUIFIV) = a?IV - ull® + (1 - o®)p,
E(IUIMV) = a*IlV — ull* + 2a%(1 — a®)(p + 2)IV — ull?

+(1-a%)’p(p +2).
Thus, letting

x, = E(1/IVI®), x5 =E,(IV - ul®/IVI?),
x5 = E,(IlV - ul*/IVI?),

h(w, a) may be rewritten as

(3.1)

a'xy + 2021 — a?)(p + 2)x, + (1 — a?)’p(p + 2)x,

h(p, ) = a2x2 + (1 - az)pxl

x pt2ux,
=a?B2 +(1-B)——22|+ (1 +a?)(p +2),
PR Gt )( )

where B = a®x,/(a’c, + (1 — a®)px,). The desired bounds on A(u,a) now
follow directly from this last equality and Lemma 3.2. O

LEmMA 3.2. For V ~ N (u, I), let x, x, and x5 be as in (3.1). Then

(i) forp =3, x,/x, <5 and x3/x, <13,

(ii) forp >4, x,/x,<p and x;/x, <p + 8.

PrOOF. As in Lemma 3.3, define ¢(q) = E[q + 2Z]7! for ¢ # 0, —2, —4,

..., where Z is a Poisson random variable with mean A = [|u||®/2. Making
use of Lemma 3.4, x;, x, and x; may be expressed as

(3.2a) X =¢(p - 2), ‘

%= E,[1 - 2V /IVI® + Iul®/IVI?]
=[2(p-2)+2Me(p-2) - 1,

x5 = E,[IVI? + 4(V'e)*/IVIZ + Il IV

(3.20) —4V'u — 4PV AVIE + 2]

=[4(p - 1)(p—2) +8A(p — 2) + 42%]e(p - 2)
+4—-3p—2A.

(3.2b)
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For p = 3, applying (3.3b) to (3.2a)-(3.2¢) yields.
x=0(1), x=2¢(1) +o(-1), x3=8¢p(l)+4p(—-1)+3¢(-3).
Applying (3.3d) to x,/x; here yields x,/x, < 5. From x3/x, here, we obtain

x 3¢(—3
T gy 3009 g
X @(1)
where the first inequality follows from —1 < ¢(—1)/¢(1), and the second
inequality follows from (3.3e).
For p > 4, applying (8.3¢) to (8.2a) and (3.2b) yields x, < px,. We also
obtain

x3<[12(p—2) —2M(p —4)]e(p —2) + (P —4)
(32d) <[12(p-2)—-2Mp—4) +(p—4)(p—2+2))]e(p —2)
=(p—-2)(p+8)xy,

where the first inequality follows by applying (3.3¢) twice, and the second
inequality follows by applying (3.3a). Coupled with the fact that (p — 2)x, < x,
which follows from (3.3a), (3.2d) yields x; < (p + 8)x,. O

The proofs of Lemmas 3.3, 3.4 and 3.5 have been omitted for the sake of
brevity. These proofs can be found in George (1990).

LEmMA 3.3. For a Poisson random variable Z with mean A, define ¢(q) =
Elqg+2Z1 ! forq+0,-2,—4,.... Then

(3.3a) @ 1<(g+2)0)¢(q) forq = 1,

(3.3b) G)  2xe(qg+2) =1-qe(q) forg #0, -2, —4,...,
(3.3¢) () 20p(g+2)<1-gqe(qg+2) forq > 0,

(3.3d) (iv) o(—=1) < 2¢(1),

(3.3e) & e(—=3) < 3e().

LEMM2A 3.4. ForV ~ N, (u, I) and a Poisson random variable Z with mean
A =llull®/2,

1
. -2 _
(i) E|VI| —E[~—-—p — 57|
2Z
. , -2 _ e
(i) E(V/)IV] E[p ——57 |

(i) E(Vw)?IVIT2=21 - (p - 1)E[

p—-2+2Z
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LemMa 3.5. For A, given in (2.7) and a Poisson random variable Z with
mean A = ||0||2/2a,,2,

Ay

_ (n—(l—n))\)zo"*E[ p—2

o} p—2+2Z
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