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ON MAXIMUM LIKELIHOOD ESTIMATION IN INFINITE
DIMENSIONAL PARAMETER SPACES?
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An approximate maximum likelihood estimate is known to be consis-
tent under some compactness and integrability conditions. In this paper we
study its convergence rate and its asymptotic efficiency in estimating
smooth functionals of the parameter. We provide conditions under which
the rate of convergence can be established. This rate is essentially governed
by the size of the space of score functions as measured by an entropy index.
We also show that, for a large class of smooth functionals, the plug-in
maximum likelihood estimate is asymptotically efficient, that is, it achieves
the minimal Fisher information bound. The theory is illustrated by several
nonparametric or semiparametric examples.

1. Introduction. Let Y,,Y, --- be ii.d. random variables with density
P4 () in a o-finite measure space (2, &, ). Assume ¢, € ® C ., where .~ is
a linear space and write [ ,(y) = log p,(y). We are interested in estimating the
true parameter ¢, which by assumption is the maximizer of yo(¢) = E, [ ,(Y)
over ®. To estimate ¢, we may attempt to maximize an empirical approxima-
tion to y,(¢), that is, choose ¢ to maximize y,(¢) = E, ,(Y). Here and in the
sequel the notation E, f(Y) stands for expectation with respect to the empiri-
cal distribution of Y, that is, E, f(Y) = (1/n)X?f(Y}). Often, especially when
® is infinite dimensional, exact maximization is impossible and we can only
find a ¢, which maximizes 7y,(¢) up to some small constant ¢, > 0, that is,
¥.($,) = v,(¢) — &, for all ¢ € ®. Such a , is called a &,-MLE. It is natural
to choose the sequence of constants ¢, such that ¢, » 0 as n — » and this is
assumed to be true hereafter. Note that the MLE, if it exists, is a special case
corresponding to ¢, = 0.

In this paper we develop the following properties of ¢,-MLE: consistency,
convergence rate and asymptotic efficiency in estimating smooth functionals.
Of course, consistent estimates are often obtainable by optimizing an empirical
criterion different from the log-likelihood. For example, in nonparametric
regression we may choose [ (y,x) = (y — ¢(x))?, that is, we use the least-
squares criterion y,(¢) = n" 'L (y; — ¢(x,)). Our consistency and convergence
rate results apply also to these cases, see the remarks after Theorem 2.
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604 W. H. WONG AND T. A. SEVERINI

An ¢,-MLE is known to be consistent under some compactness conditions
on & and integrability conditions on 7,,. This was first proved in Wald (1949)
for euclidean ® and was later extended to the case when ® is a metric space
[Bahadur (1967), page 320]. We state a convenient variant of this result for
later use in this paper.

TueoreM 1 (Consistency). Suppose || - |5 is @ norm in £ and

() ® is relatively compact w.r.t. |l - lls, with closure dc. /.
(i) 14(y) is continuous in ¢ € ® with respect to || - |ls for almost all y
under P,

(iii) yo(d)) has a unique maximizer ¢, € ® among ¢ € ®.
(iv) For each ¢ € ®,

I(A,,) = <bsup 14(Y)

€A &,
is measurable and
Eyl(Ay,.) = vo(d) asT—0,
where
= {¢' € @:ll¢' — olls < 7}.
Let ¢, —» 0 and (f;n be an ¢,-MLE, then <f>n — ¢, in probability.

Proor. Same arguments as in Wald (1949). O

Thus, under compactness and integrability conditions, an ¢,-MLE is gener-
ally consistent. The next question is: What is the rate of convergence? Surpris-
ingly, this natural question appears not to have been studied adequately:
There do not exist general methods and conditions that allow one to calculate
the rate of convergence.

Special results from density estimation and nonparametric regression, how-
ever, do suggest some qualitative information on the rate of convergence. For
example, Stone (1982) proved that to estimate a regression function belonging
to the class of functions on a bounded domain contained in R¢ with their first
p derivatives bounded by a given constant, the best possible rate of conver-
gence is n"?/2P*9_Since maximum likelihood may be used to obtain nonpara-
metric regression estimates if the error distribution of the model is specified,
the previous result suggests that (i) the rate of convergence of &,-MLE is
typically not as fast as n~'/2 when the parameter space is infinite dimensional
and (ii) some conditions on the size of the parameter space are needed in order
to establish bounds for the rate of convergence, since the previous optimal rate
can be made arbitrarily slow by decreasing p and increasing d, that is,
increasing the size of the class of functions which constitutes the parameter
space.

In this paper, the (local) size of the parameter space will be indexed by the
metric entropy of the space of score functions. Theorem 2 shows how the
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convergence rate depends on this index: If the L, entropy of the space of score
functions is of the form H(e) < ce ™'/, then the rate of convergence of an
¢,-MLE (in terms of the Fisher information norm) is n~¢/@**D  provided
¢, — 0 faster than the square of this rate. This agrees well with the optimal
rate mentioned before for nonparametric regression although we have not
proved that this rate is generally optimal under the condition of the theorem.
We use the L_ entropy here because the theory of uniform convergence rates
for empirical processes, a main technical tool used in our proofs, is most
well-developed for bounded variables [Alexander (1984)]. By a truncation
argument, however, the convergence rate result can be extended to some
situations where the score functions are unbounded (Theorem 3). It may be
argued that L, entropy conditions are more natural than L. entropy condi-
tions. Indeed, our method for obtaining convergence rates can be applied
under L, entropy conditions when sharp exponential bounds analogous to
those of Alexander (1984) become available.

A second property of ¢,-MLE we study in this paper is its efficiency in
estimating smooth functionals of the parameter. When ® is finite dimensional,
it is known [see, e.g., Bahadur (1967), Lehmann (1983)] that under some
conditions the MLE d;n possesses the remarkable property that the plug-in
estimator p(¢,) for any smooth scalar functional p(¢) is asymptotically nor-
mally distributed with asymptotic variance (Vp)i~ '(Vp), where Vp is the
gradient of p and i is the Fisher information matrix (all evaluated at ¢) and
that this asymptotic distribution is the best possible one achievable by a
regular estimator p of p(¢). Now, when ® is infinite dimensional, Stein (1956)
and Levit (1974) had obtained the generalization of the second part of the
previous statement, namely that no regular estimator p, will achieve an
asymptotic distribution more concentrated around p(¢) than a normal with
variance v,, where v, is a suitable generalization of (Vp)i~'(Vp). For complete-
ness, we state a convenient variant of this result in Theorem 4. The outstand-
ing question is, of course, whether there is any regular estimator which
achieves this asymptotic distribution, in particular, whether a plug-in ¢,-MLE
p($ ), where &, — 0 at some suitably fast rate, achieves this optimal asymp-
totic distribution under more or less general conditions. In Theorem 5, a
positive answer to this question is provided for a large class of smooth
functionals. It is noteworthy that, according to the previous results, although
an ¢,-MLE ¢, in general may have a convergence rate slower than the
familiar n~1/2 rate, the plug-in estimate p(¢,) generally converges at exactly
the n~1/2 rate whenever p is smooth and nonsingular at ¢,.

The following is a brief review of some related work. The theory of maxi-
mum likelihood in general parameter spaces has received relatively little
attention. Although conditions for the consistency of the MLE, as described
previously, are well known, there does not exist a general method for calculat-
ing its rate of convergence. Several authors, among them Le Cam (1973), Birgé
(1983) and Yatracos (1985) have considered a variation on maximum likelihood
in which the maximization is performed over a finite subset of the parameter
space which is allowed to grow as the sample size increases. The rate of
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convergence of these estimators is available and has been shown to be optimal
in a number of examples.

The problem of estimating a functional defined on a general parameter
space was first considered by von Mises (1947) who considered estimation of a
functional defined on the space of all distribution functions. The estimator he
considered, the evaluation of the functional at the empirical distribution
function, is related to the estimator proposed here, since the empirical distri-
bution function may be viewed as the nonparametric MLE of the distribution
function of the data. Furthermore, that estimator has optimal properties in
many cases. However, the optimality properties of the estimator depend
heavily on the fact that the set of all distribution functions is taken as the
parameter space. See Serfling (1980) for an account of the work that has been
done since von Mises’s original paper.

For the problem of estimating a functional defined on a general parameter
space there does not exist a general method for obtaining an optimal estima-
tor. Pfanzagl (1982) and Ibragimov and Has’'minskii (1981) both show how to
construct optimal estimators in a number of specific examples. Pfanzagl
considers the general method of estimation by evaluating the functional at a
suitably chosen estimate of the underlying probability distribution. If the
estimate of the distribution satisfies certain requirements, then the estimate of
the functional is shown to be optimal. However no general methods for
estimating the underlying probability distribution are proposed.

Finally, the theory developed in this paper can be applied to semiparametric
models. The literature in this area has been rapidly expanding since the
appearance of Bickel (1982). For a comprehensive account, see the forthcoming
monograph by Bickel, Klaassen, Ritov and Wellner (1991). The usual approach
requires the estimation of the efficient score function, which is itself a difficult
problem. The ¢,-MLE method studied in this paper may thus be a useful
alternative and the associated theory (Sections 2.3-2.4) may offer additional
insights to the structure of the problem.

The outline of the paper is as follows. In Section 2 a method for obtaining
the rate of convergence of the ¢,-MLE for a general parameter space is given
and conditions under which the estimator of a functional obtained by evalu-
ating the functional at an ¢,-MLE are stated. Section 3 contains several
examples: nonparametric density estimation, nonparametric regression in an
exponential family setting and nonparametric estimation of a transformation
in a normal-theory linear model. Technical proofs are deferred until Section 4.

2. Main results.

2.1. Regularity conditions. Before stating the main results, we need to
formulate some regularity conditions. A k-dimensional family of densities
{p(y); 1t <M,i=1,...,k} wrt. a o-finite u is called a smooth family if for
almost all y (w.r.t. u), {,(y) = log p,(y) is two times uniformly and continu-
ously differentiable in t and that expectation and differentiation can be inter-
changed. Here uniform differentiability of /,(y) means that, for any e € R*,
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the difference quotient (I, ;.(y) — {,(¥))/8 converges as § — 0 and the con-
vergence is uniform in t. For t lying on the boundary of the set It| < M,
derivatives are taken only along admissible directions.

ConpiTiION Al. For any linearly independent hy, hy, hg € ® — ¢, define
$o(t) = by + L3t,h,, then there exists an & > 0 s.t. {P, ) It| < &} is a smooth
three-dimensional subfamily of {P,: ¢ € ®}, with nonsmgular Fisher informa-
tion matrix near t = 0.

For any h € ® — ¢,, write I}, [h] = (d/d7)l,,,.4l-—0 and define
(hyyhy) = (L [R1] [h5]).

Here and in the sequel E(-) means expectation under ¢,. Under Condition Al,
{,> is an inner product on the space of displacements V spanned by ® — ¢,
and ||k|l = (h, h)? is the corresponding norm. These are called the Fisher
information inner product and Fisher information norm, respectively.

CoNDITION A2. 3 £, > 0, such that if h, € ® — ¢, lh,ll <&, i =1,2,3,
then {P, ) It| < 1} is a smooth three-dimensional subfamily of {P,, ¢ € ®}.

Under Condition A2, it is then possible to define (see Lemma 1 in Section 4)
forall hj,h, €V, hy€ ® — ¢,

)
t=s

l:#o(S)[ hy] = aldio(t)

02

lio(s)[hl, hz] =

]
oty o, *o©®

t=s

for all sufficiently small |s|. In this way, so+halB1l Ly +n R 1, ho] have precise
meaning if ||kl is sufficiently small. Note that (h,, hy) = —E, I3 [hy, h,)
under these conditions.

ConDITION A3. b, — ¢oll =p O.

Let @y ={¢ € ®: ll¢ — ¢oll < &o} and U, = @, — ¢,, where ¢, is as in
Condition A2. Write u, = ¢, — ¢,, then by Condltlon A3, $, € @y, u, €U,
with probability approaching 1. We assume that &, can be chosen so that the
following condition holds.

ConpITION A4. 3 ¢, 8, 8,5, 85, 8,, all greater than or equal to 0, with
26, + 8, < 1and 265 + 8, < 1, such that if h,, h, € V, h5 € U,, then

@ 1B, p [k Uy, oplho)) — B LRy - 1 [hoDI
< cllh I~ 3ilh ol Pl g 2,
@) |EQY, g oy koD — BQY [hyy koDl < cllh =250kl %8l gl 2,
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REMARKS. (i) Condition Al is needed to define the Fisher norm which is
used in the definition of Condition A2. Condition A2 is stronger than Condi-
tion Al, it implies, for example, that U, is convex and balanced.

(ii) In smooth problems, Condition A4 will be satisfied with §;’s close to
zero. In the finite dimensional parameter case, they are usually zero.

(iii) In applications, it is often possible to apply Theorem 1 to conclude that
|I¢ — ¢olls = 0 for a norm | - ||; which dominates the Fisher norm || - |. In
this case, we can replace || - || by || - |ls in the previous definition of U, and ®,
without affecting the validity of the later theorems.

2.2. Convergence rate. Our approach to the derivation of the convergence
rate of the MLE is to turn the problem into one of obtaining uniform rates of
convergence of certain empirical processes. The key to the implementation of
this program is the following.

Basic LEMMA. Suppose Conditions Al-A4 hold and &, is an &,-MLE,
€, 10. Forany 8,8’ > 0, let G, 5 = {g,: u € Uy, lull > n™%), where

8.(y) =Ly lu/llull(y),

then, with probability approaching 1,

||d;n - ¢0|| < max{n_S,(2 + 6')(23nn8 + sup |(E, - E)gl)}

g€G, s

If ® is finite dimensional, it is true under smoothness conditions that
supg (E, — E)gl=0,(n~ 1/2) for all 8 > 0, hence, if ¢, | 0 fast enough, the
best rate given by the lemma is n™12 as expected. If <I> is infinite dimen-
sional, however, sup; (E, — E)g| typically depends on & and is slower than

n~1/2 In this case, our strategy is as follows: For each §, obtain as sharp a
bound as possible for sup; [(E, — E)gl, denote this by, say, n ~7® then we
choose 8 to optimize the bound provided by the lemma, that is, choose é to
minimize max{n % n~"®)}.

The next two theorems are obtained by carrying out this program, using a
result in Alexander (1984) to control the term supl(E, — E)gl. In principle, the
conditions on the space of score functions can be further relaxed if one can
generalize Alexander’s result to cover unbounded variables. We will not under-
take such a task in this paper. Theorems 2 and 3 seem already adequate for
many applications. To state Theorem 2, let S be the set of score functions

8 = {s():5(») = 14[u)(¥), ¢ € By, u € Uy).

Suppose all s € S are uniformly bounded and let H(¢) be the L., metric
entropy of S, that is, H(e) is the logarithm of the minimum number of e-balls
(in terms of L_ metric) needed to cover S.
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THEOREM 2. Suppose Conditions A1-A4 hold and
H(e) <ce”Y* forsomec>0,a > 3,

also, let £, = o(n=22/@«*Y) and & be an &,-MLE, then

6, — ol = O, (ne/@=+D),

REMARKS. (i) In the proof of Theorem 2, the assumption that [ (y) =
log p4(y) is not really needed, hence the theorem can be applied, after suitable
modifications of Conditions Al, A2, more generally to estimates obtained by
optimizing an empirical criterion vy, (¢) = E,l,(y), where [,(y) need not be
related to the log-likelihood function.

(ii) Condition A4 implies that, as |l¢, — ¢oll =p O,

Y0(60) = Yo($) <l 6 — b0l (1 + 0,(1)).

Hence, the convergence rate in terms of the intrinsic norm || - || at once tells us
how well the estimate ¢, is doing in terms of maximizing the ideal criterion
Yo(¢).

(iii) In particular, if 1,(y) = log p4(y), then according to the previous Re-
mark (ii), the Kullback-Leibler pseudodistance between the densities p, (y)
and p; (y) is bounded by ll$, — doll’ + 0,(1)). Thus we also have a conver-
gence rate in terms of Kullback-Leibler distance.

The condition of uniformly bounded score functions in Theorem 2 may be
too restrictive in applications. However, it is often the case that when the score
functions become unbounded, they do so in a region of increasingly small
probability. To cover such cases, we can use the following truncation argu-
ment. For example, suppose the score functions increase polynomially as
|yl = o, that is,

(T1) lyl <% = sup|s(y)| <ck™ for some r, > 0.

seS

Then we can consider the truncated score functions

s®(y) =I({lyl < k})s(y).

[Here I(A) denotes the indicator function of the set A.] Let H ®)(g) =
H(e, S® || - |l.) be the L. entropy of the set of truncated score functions
S® = {s®. s € S}. Here and in the sequel H(-, S, | - |) denotes the entropy
function of a space S with respect to a norm | -|. For fixed &, H®X¢)
increases as k increases. We suppose that this increase is no faster than
polynomially in &, that is,
ry 1/a
(T2) H®(¢) SC(T) for some 0 <a < ®©,0 <r; < .
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THEOREM 3. Suppose (T1), (T2) hold in addition to Conditions Al-A4
and that P(IY| > k,) = o(1/n) for a sequence of constants k,, < cnf,0"<p <
1, also, let &, = o(n~=22/@a*D*Bro+2np/CGa+ ) gnd ¢ be an ¢,-MLE, then

” d‘;n _ ¢0” _ Op(n—a/(2a+1)+B(r0+r1/(2a+1))).

Here we have used the convention that n®® = (log n)* when g =07,

REMARKS. (i) The remarks following Theorem 2 apply here also.

(ii) This theorem is useful mainly when g is small relative to ry; ! and rj!.
For example, if Y has density with exponentially decaying tails, then we can
choose B = 0" and hence ¢, — ¢oll = O,(n~*/Z=*D - (log n)") for some r.

(iii) If the score function becomes unbounded as y — y,, then we have to
truncate in the region |y — y,| < 1/k and the theorem can be modified in the
obvious manner.

(iv) Since the result is intended to be used for small B, we have not
attempted to optimize the multiplier in the exponent of the rate.

2.8. Estimation of smooth functionals. The class of smooth functionals
studied in this paper is specified in the following definition.

DEFINITION. p: ® — Ris differentiable at ¢, with Holder constant w > 0 if

() V h eV, p(d, + th) is continuously differentiable in ¢ near ¢ = 0.
(i) There exist constants ¢ > 0, ¢ > 0 and pj € V' such that

vl < & =|p( 0 + v) = p($0) = Py,v]] < clil**.

Here (V', || - |*) is the dual space of (V, || - |) where the dual norm is defined by

glv
llgl* = sup —~——| (o1l forge V.
vev vl
v+0
If (i) holds, then pj is the Fréchet derivative of p w.r.t. || - |. However, (ii) is

stronger than Fréchet differentiability: suppose pylv] = (d/dt)p(¢ + tv)l;¢ is
defined for ¢ near ¢, and p;,[~] e (V|| - ID, then (ii) is satisfied if the deriva-
tive map ¢ — p, is Holder continuous in ¢ with constant w > 0.

Since p;, € V', it has a representer v* € V, the completion of V w.r.t. | -,
such that

Py, [R] = (v*, h) VheV.
This element v* € V is called the gradient of p at ¢, and it is easy to see that
, *
lo*l =[]

The quantity [[v*||"2 is called the minimal Fisher information (at ¢,) for
estimating p. [This name was first introduced by Lindsay (1980)]. The next
theorem is a reformulation of the results of Stein (1956) and Levit (1974); see
also Lindsay (1980, 1983), Bickel (1982), Begun, Hall, Huang and Wellner
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(1983). It says that the minimal Fisher information provides a bound on how
well p(#) can be estimated by any regular estimator. To be precise, an
estimator T, is said to be pathwise regular at ¢, if for all h € V, t € R, the
limit of P, (Tn p(¢,)) exists and is independent of ¢, where ¢, = ¢, +
t,h/Vn and ¢, - t.

THEOREM 4. Suppose Conditions Al and A2 hold. Let p be Fréchet
differentiable at ¢,, 0 <llp, I* <=, and T, be a pathwise regular estimate of
p at ¢, then, for any > 0,

lim sup P, (V7| T, - p(do)| < 7) < P(|N(0, 3] ") | < 7)-

Proor. Apply the argument in Bahadur (1964) to each smooth one-dimen-
sional subfamily; for details, see Wong (1991). O

Thus, if a pathwise regular estimate T, is asymptotically normal with
standard deviation |[lpy II*, then it possesses the best possible limit for its
probability of concentration around p(dy). Such an estimate, if it exists, can
justifiably be called an asymptotically efficient estimate. Our next theorem
shows that, for a large class of smooth functionals, the (plug-in) ¢,-MLE p(¢,,)
is asymptotically efficient.

THEOREM 5. Let p: ® —» R be differentiable at ¢, with Hélder constant
w > 0. Let v* be the representer of p; in V. Suppose Conditions A1-A4 hold
and that

|6, = doll = O,(n7™7)
(F1) 1 1
for some T > max 21+ w)’ 22 =0, —5,)

(F2) vt eV,
(F3) (i) s (B, - E)ij[u,]] = 0,(n"1/2),
@ wol(E - Bl )| = 0p(n717?)
oD 0
(recall that u,, = &, — by),

(i) sup |(E, - E)lj[u,u]|=0,(1).
dpedy, uel,

Let ¢, =o0(n™!) and ¢ be an ¢,-MLE, then, for any fixed h € V and
b, —¢o+(tn/\/_)h where t, —+tER we have
*2)

—4n(\/'7(p(¢n) - p(¢>n))) - N(O, ”p;o
Here and in the sequel, -£,(X) denotes the distribution of X under P,.
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REMARKS. (i) Thus, under the previous conditions, we have an extension of
the usual optimality of the MLE: smooth functionals of an &,-MLE provide
optimal estimates of those functionals of the parameter if ¢, | 0 fast enough.

(ii) In smooth problems, 8; and 8, of Condition A4 are both close to zero
and by Theorem 2 or 3, one can typically obtain 7 close to 3, then Theorem 5
applies to any differentiable functions with w > (3 — 7)/7. Thus, in smooth
problems, the derivative p; does not have to be very continuous in ¢ (that is,
it can have a very small w).

2.4. Semiparametric models. One important application of Theorem 5 is
to semiparametric models. In these models, the parameter ¢ has a specific
parameterization ¢ = (8, A), where 8 € ® C R* is the parameter of interest
and A € A is an infinite dimensional nuisance parameter. The space of dis-
placements V has the form V = R* X V,, where V, is generated from vectors
of the form A — A. For simplicity, assume £ = 1. Thus, p(¢) = 6 is the scalar
functional we want to estimate. It is clearly linear. Let ¢, = (64, 1,) and
h =(a,h,) € V. Then

Ps[h] =p(do + k) —p(d) =a,
1

4| -

P = sup =T

%0 @ hp=o I(a, B inf ||(1,hA)||2 ,
(1,h)+0

lou " ™" = ,inf 11(1,0) = (0, R)I” =(1,0) = (0, A1) I” =I(L, =AD) I,

where (0, h*) is the projection of (1,0) onto the closure (w.r.t. || - |) of the
linear space {(0, #,): k, € V,}. Note that in general, 2} need not be an element
of V,. The vector h} is often called the least favorable direction (in the
nuisance parameter space). We call the quantity IIp",,OII"‘_‘2 the minimal Fisher
information for estimating 6 (recall that p(¢) = 6) and denote it by i,. Since
there is a natural isomorphism between h = (a, h,) € V and the score func-
tion

(dl al N al B
7 ¢0+th)t=0-03% m[ NE

the previous definition agrees with the usual definition of the minimal Fisher
information as the squared length of the residual of the 6-score d/d6, after
L,-projection onto the space of nuisance parameter scores (3l/dA,)h,],
h,eV,.

LEMMA. The representer in V of Py, Where p(¢) = 0 in a semiparametric
model is given by v* =i, (1, —h¥).
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Proor. Let h = (a,h,), we need to show that (v* h) =p; [h]. To see
this,

(v*, k) =iz {(1, =h}),a(1,0) + (0, k,))

aiz (1, k), (1, k%) + (0,07 'k, + h}))
aif;l((l’ —hf),(l’ _ht)>

a=py[h] O

This lemma is useful for the verification of condition (F2) in Theorem 5,
since it implies that (F2) is satisfied if the least favorable direction h¥ is
actually an element of V,. In applications, this usually amounts to requiring
that h¥ satisfies some regularity conditions. As will be seen in the examples,
this can often be verified without explicitly finding h}.

It is interesting to note that, for Theorem 5 to apply, it is not enough only
to have positive minimal Fisher information i,. Indeed, there are examples,
first given in Ritov and Bickel (1990), where i, is strictly positive, but there
does not exist any estimate achieving the minimal Fisher information bound.

3. Examples.

ExampLE 1 (Density estimation). Let Y have density f(y) =e?®®), ¢ €
® = (¢ € CP10, 1} 9Py < L, j = 0,1,..., p; [§e*® dx = 1}, p = 1. Thus
we are concerned with density estimation with the log-density as the parame-
ter [Silverman (1982)]. Theorem 1 then applies in a straightforward manner
and yields the consistency result ||¢, — ¢¢llsup =p 0. Theorems 2 to 5, how-
ever, cannot be used directly because of the nonlinear constraint fe® = 1. We
must, therefore, first reparameterize so that the constraint becomes linear
locally.

Write f=e®*’, where v € V= {v € C?[0,1]: [[v¥llgup < L, j =0,..., p;
fe#o™? = 1} and let U = {u € CP[0,1]: [[uPllsup < L}, j = 0,..., p; Jetou = 0}.
We now show how U can provide a parametrization which is locally equivalent
to the original one in terms of V.

Foreach u € U,v eV, let

S(u)=u-a,, au=llog(1+fe¢°(e“—1—u)),
R(v)=v-b, b,= fe“’“v,

then it follows from direct calculation that (with L7 suitably defined)

G S:U-»Visl-1,
(i) 8 is also “locally onto”, that is, if v € V and |lvllsyp is small enough,
then u = R(v) € U and v = S(u).
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Thus, we obtain the desired local reparameterization by writing f(y) =
e+ UM% where a, = log(l + fe®o(e* — 1 — u)). With this parameteriza-
tion,

l=¢o+tu-—a,,
Je*o(e* — 1)h
1+ feto(e* —1—u)’

Loorul R1(¥) = R(¥) -

l$0+u[h}a hz](y)
Je®oe“h h, (Je®o(e* = 1)h,)(Je*o(e* 1)h2)
1+ Jeo(e* —1—u) * (1 + fe?o(e* —l—u))
Note that {j [h] = h, hence

E(Ly[h]) = Ik = BR(Y)? = [e*h(y) dy.

Conditions A1-A3 are easily verified.
For Condition A4,

@ E[(tgen[n])(FograLha])] = E[(25,[h11) (15[ o))
(je"’°(e"3 — 1)hy)(Je?*o(ems - 1)h2)
(1 + fe®o(ers — 1~ 3))
(M) E(lya R hs]) = E(15[Ry, )
) (fe®o(e?s — 1)h,)(fe*o(es — 1)h,)
(1 + fe®o(ehs — 1~ h3))2
(fe¢°h hy)(fe®o(es — 1 — hy)) — Je*o(ePs — 1)h, h2
1+ fe®o(e?s — 1 — hy)

It follows that, for some ¢ > 0,
|| + () | < cllhy Al Agllsup

' 1
< cllh i IRyllIlRgl1*~°  for any & > —,
2p
by Lemma A. Hence Condition A4 is verified for §, = 63 = 0, (1/2p) < 8, =
8, < 1. (Lemma A is stated at the end of this section.)

To apply Theorem 2, it remains to calculate the L, entropy of the set of
score functions S = {l ., [hl: u € U, h € U}. This is bounded by the L,
entropy of the set U and hence is of order &~ /7. [Kolmogorov and Tikhomirov
(1959)]. Thus, by Theorem 2, we obtain the rate [|Z,ll = O,(n"?/@P*D) if
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g, = o(n~2P/@P*D) To translate back to the original parameterization, note
that

$n—¢0=ﬁn=ﬁn—aﬁn’
from which it follows that
1/2

"d’;n - ¢0" = I:f(d;n - ¢0)2e¢0] = O(”ﬁn”) = Op(n—P/(2p+1)).

Finally, let us consider the estimation of differentiable functionals. We will
assume p > 2 in the rest of this example. Condition (F3ii) and (F3iii) of
Theorem 5 are automatically satisfied since I . ,[h,, h,] is nonrandom. To
verify (F3i),

sup |(E, — E)l4[u,]| =|(E, — E)u,|
PP,

<llu,llo - supf{|(E, — E)ul: llulls < 1}
= llu,lle - O,(n""?).

(F3i) follows since by Lemma A, [lu,ll.t < cllu,If/P™2 = cn=@/9-0X2/5) for
any & > 0. As for (F1), we have 7 =p/(2p + 1) 81 =68;=0,8,=06,=1/2p
and p > 1, hence (F1) is satisfied if w > 1/2p. It then follows from Theorem
5 that, if ¢, = o(n™1), then p($,) is asymptotically efficient for any p which is
dlﬁ'erentlable at ¢, with Hélder constant w > 1/2p and whose derivative p;,_
has a representer belonging to U as defined earlier.

As an example for such a functional, consider the entropy of the dens1ty
p(d) = jf log f= [pe® = [(¢g+u—a )e"’“*“ %, Using the fact that a,
O(|u|®) as |lull = 0, we obtain by Taylor expansion that

l .
<cllull®

p(do +u) —p(do) — folufﬁoed’o

for some ¢ > 0. Thus p is differentiable with Holder constant w = 1, the
representer of py in U is simply ¢, — E¢(Y) and the asymptotic variance of

p(¢ ) is given by Var(¢,(Y)).

ExampLE 2 (Conditionally exponential family model). Suppose Y follows an
exponential family distribution with natural parameter w, that is,

p(ylw) = exp{wy — A(w) + ¢(y)}

(with respect to either Lebesgue measure or counting measure), where w €
Q c R, O denoting the natural parameter space of the exponential famlly
Let Q, be an open subset of () satisfying
(a) sup, o |AV(W)| < for j = 1,2,3,
() inf, <o, °A'(w) > 0,

Q,=1[0,1] x --- x[0,1] cR¢
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and, for some p > 2d,

= {¢ € CP(Qy): ¢(x) € Qo Y x, lI$llcr < L},

where L is a constant.

Our goal is to estimate the unknown parameter ¢ based on a random
sample (x;,5;), j =1,...,n from the distribution (X,Y), where X has a
known density g on @, and conditional on X = x, Y has an exponential
family distribution as noted earlier with natural parameter w = ¢(x).

For this model we have

I(d) =yd(x) — A(d(x)) + ¢(y) + log g(x),
Lalhi] = (v — A(6(x))) hy(x),
Lglhy, kol = —A"(¢(x))hy(x)hy(x),
Chyy hy) = E[A($( X)) ho(X) ho( X)],

where h,, h, € CP(Q,).
Note that since 0 < inf, A"(w) < sup,, A"(w) < ,

AL, < ciliAll

for some constant c,, where IIhIIL = E[h%(X))]. Hence, a rate of convergence
for |I¢ — ¢,ll implies a rate of convergence for IIqS — ¢ollL,

We now apply Theorem 3. Conditions Al and A2 are easily shown to be
satisfied and since ® is relatively compact with respect to the sup norm on
C(Q,), it follows easily from Theorem 1 that

” $n - 4’0 ”sup = Op(l)’
establishing Condition A3. We now consider Condition A4.

|E[Lygrn,[ha)lpgsngl B2l = Ly [Bi105 [ 25]]|
=|E[(A(6(X) + ho( X)) = Ao X)))*hy( X) ho(X)]|
< cE[lhl(X)hz(X)h3(X)2|] for some constant ¢
< cillh, Il 1Al ||h3||§llp for some constant c,,

|E[14,n,[h1, hol = Ly [ By B
=|E[(A"(¢o(X) + hy(X)) = A($o( X)))hy( X ) ho( X)]|
< collhqll Al TR 5l sup-

Thus, by applying Lemma A, it follows that Condition A4 is satisfied for
8,=983=0,d/p—1<8,<land d/2p <§,< 1.

Since Q, is an open subset of 2, we have E(e’’) < = for some ¢ > 0 and we
may take B = 0" in Theorem 3, furthermore, since the score function in-
creases linearly with y we may take r, = 1 in Condition T1.
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Fix ¢,u and £>0. Let ¢,,u, be such that (¢ — dllsup <& and
lu — u 4 llsup < €. Then, there exists a constant M independent of ¢, ¢ and u,
such that for |y| < k,

|2, [u 1) = Llul()] < (M + K)e,
hence,
Is®(s dus ) = 8356, u) lsup < (M + x)e.
It follows that
E

M+ «’

and since [Kolmogorov and Tikhomirov (1959)]

H(87 D, - ”sup) < cog—d/p

H(e) < 2H| @11l

for some constant ¢, for sufficiently small ¢, we have

K

d/p
H®(¢) < c( ) for some c,

&
that is, we may take r;, =1 and a =p/d in condition (T2). Therefore,
applying Theorem 3 we obtain that, if ¢, = O(n™7"), 7 > 2p/(2p + d) and ¢,
is an ¢,-MLE, then

b, = dollz, = 0,(nr/@r*(log n)z(”+d)/(2p+d)).

Finally, suppose that x = (x,, x,) € [0,1] X [0, 1] and we have a semipara-
metric model under which ¢ has the following additive decomposition.

d(x) = 0xy + A(xy),
where 6 € O, ® a compact subset of R and
AEA= {)t: [0,1] - Q, Cﬂ,llA(j)Ilsup sLj,j _ 1,.“,4}

for some constants L;, j = 1,...,4. Assume that ® and () are chosen so that
forany 6 € ©, A € A,

0x, + AM(xy) €Q, ¥V (xq,x,) €[0,1] x [0,1].

Hence the parameter of the model is (8, A); we are interested in estimating 6 in
the presence of the nuisance parameter A.

Note that this model is a special case of the model considered earlier (taking
d = 2 and p = 4). Hence, it is easily established that

16, — doll = 0,(n=%%(log n)*"®).

It should be noted that Theorem 3 could be applied directly to this new model
to obtain a faster rate of convergence, using the special structure of the model.
However, for the purpose of estimating 0 this is unnecessary.
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We now apply Theorem 5 to the functional p((6, 1)) = 6. For this model
U[h] = (y — A(6x; + A(%3)))(ax; + hy(x2)),  where k= (a, h,),
l;’,[h, v] = _A”(axl + )t(xz))(axl + h)\(x2))(bx1 + UA(xz))’
where v = (b,v,).

Conditions A1-A4 are satisfied as in the more general case shown earlier.
Condition (F1) is easily verified since we can take 83 =0, 8, = ; + & any
8 > 0 and w can be taken to be arbitrarily large.
To verify (F2), note that according to the lemma in Section 2.4, v*
i;X(1, —h?), where k¥ is the minimizer in V, of

1L =k )P = E[A($6( X1, Xa))(Xy = hu(X5))’]

= [ [po(x1, 22) A"(B0%1 + Ao(%2)) (%1 = ha())” ity dixy.

Assuming that the density po(-) of (X;, X,) is nondegenerate and very smooth,
then clearly the minimum value is positive and the smoothness of h}(:) is
determined by that of AO( ). Since A, € A, it follows easily that A% €V, =
lim, . kA and hence v* € V=R X V,.

Finally, condition (F3) follows from an application of Lemma B which is
stated at the end of this section. (For a more detailed application of Lemma B,
see Example 3.) Thus, it follows from Theorem 5 that On, obtained by
approximate maximization [up to &, = o(n™1)] of the log-likelihood 7,(6, A)
simultaneously over 6 and A, is a pathwise regular estimate that achieves the
minimal Fisher information bound.

ExampPLE 3 (Transformation models). Let (X,Y) denote a random vector
satisfying
h(Y) =6X + ¢,

where ¢ is a N(0, 1) random variable, § € ® C R is an unknown parameter, ©®
is a compact set, h: R > R is a strictly increasing, unknown function and
X €[0,1] is a random variable with known density g, and X and ¢ are
independent. We assume that h(y) = ‘)t(y) + y, where

. M ) 9 1/2
AeEA= {A:R—)R:l)\(f)(y)ls‘]lely,[f()\(”(y)) dy] SLJ"

Jj=0,...,p,N(y) + 1250>0forally};

here M, Ly, L,,..., L,, &, p, vy are constants, y > 1, p > 3.
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Hence, the transformation A(-) is restricted to behave like h(y) =y for
very large values of |y|. There are two reasons why we believe this restriction
is not too severe:

1. Since 6X is bounded, by choosing M to be very large the previous restric-
tions will have a substantial effect only for very large values of |y|, which
are observed with very low probability.

2. If it is believed that another type of behaviour at + is more appropriate,
say h(y) ~ sgn(y)log(1 + |y|), we may always begin the analysis by a pre-
liminary transformation of the Y values.

We want to estimate the unknown parameter ¢ = (6, A).
For this model, the space of displacements V is of the form V=R X V,,
where

_ /. ) o .
v, {A.R—»R.3M>O,|A = 1555

f(A(J)(y))zdySM’j= 071,""p}

and we have

1(6)=1(8,1) = —5(y + A(y) — 0x)" + log(1 + X'(y)) + log g(x),

. R,
Lolhe] = (y + A(y) — 6x)(a1x — hy(y)) + T#()y)
where hy = (ay,h,),a, €R, h €V,
- . Ri(y)Ro(y)
l”h1’h2=_ 1% = hy 2X — hy t
ol ] (a1x = hy(y))(azx — hy(y)) @+ 4())

hy(Y)Ry(Y)

(hy, hy) = E[(a:X — hy(Y))(asX — hy(Y))] + E 5
(1 +X5(Y))

To establish a rate of convergence for ||, — ¢oll, we will use Theorem 3.
Conditions A1-A3 are easily shown to be satisfied. Condition A4 is verified
(with 6, =86;=0, 6, =68,=3/2p + § any § > 0) in the same way it was
verified in the last examples. _

Since X is bounded, ¢ is normally distributed and the unknown transforma-
tion behaves linearly near 4+ «, we may take 8 = 0% in Theorem 3. Further-
more, the score function increases linearly in y (for sufficiently large y) so we
may take r, = 1 in condition (T1).
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We now consider condition (T2). To do this we will first calculate the
entropy of A with respect to || - |2, where

liAllz = sup |[A(y)| + sup|[X'(y)].
y y

Choose Y, = Ce~1/7 with C large enough, then for all small ¢ we have

M
1+Yy

€
< —=.
2

Let A(Y,) denote the set A with each function restricted to [-Y,, Y,]; let
Il - lly, denote the restriction of || - ||z to [ Y, Y,], that is,

IAlly, = sup  [A(y)|+ sup |N(p)]
yel-Y,, Y] ye[-Y,, Yol

It follows that
H(e, ANl ll2) < H(e/2, A(Yy), Il - lly,) = O(e~@/7+1/ =10y,

The last expression being obtained from standard results on entropy of smooth
function spaces [Kolmogorov and Tikhomirov (1959)]. Hence,

b

K )1/y+1/(p—1))

H®(e) = O(H(f,cb,u : ||)) - o((—
K €
so we may take r; = 1 and
= 1 _y(p-1)
1/y+1/(p-1) y+p-1’
The conditions of Theorem 3 are now satisfied, yielding the result that, if
2(p - 1)
2p—1+(p-1)/y’

e, =0(n77), T>

then
18, = doll = Oy((log n)**1/ =+ e/
_ OP((log n)(2p+2(p—1)/‘y)/(2p_1+(P_1)/‘Y) . n—(p—l)/(2p—1+(p-1)/7)),

We now consider the estimation of the functional p(¢) = p(6,A) = 0. For
definiteness, take p = 4, then the previous convergence rate becomes

”(Z;n - d)O” = Op(n_s/m)'

Since 6, =0, 8, = 2 + & for any 6 > 0 and w can be taken arbitrarily large,
condition (F1) of Theorem 5 is satisfied.
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To check that p has positive minimal Fisher information, recall that
*—2 . ~ 2
i, =|p, = inf ||(1,—-h
0 ”quO” hev, ”( )”
= inf E[e(X — A(Y)) + R(Y) /(1 + Xo(Y))]".
hev,
This is positive unless there exist a & such that, for almost all x, y,
R'(y) = =(1+ Xo(3))(5 + Ao(¥) = 8ox)(x — R(¥)),

which is clearly impossible. Therefore i, > 0. Furthermore, the minimum is
achieved by h satisfying

(*) R(y) = gu(»)h(¥) + &2(9),
where
g1(y) = (L +X(y))E(ely),
82(y) = (L + X (y))E(eXly).

We assume that the density p,(x) of X is very smooth in x, then it is not hard
to see that both gl( ) and g,(-) belong to the same smoothness class as A'(-)
and hence A*(-) is in the same smoothness class as A(-), that is, A* € V.
Thus, v* = (1, —h*) € V = R X V,, satisfying condition (F2).

To show that, for example, (F3ii) is satisfied, we will use Lemma B which is
stated at the end of this section. First note that if we define || - IIs by

"4)”8 = |0| + "/\"sup + ”A,“sup + ”/\””sup,

then it follows from Theorem 1 that

To apply Lemma B, let
liplls =161 + lAllsup + A Nlsup;

and define U = {u € V, |lulls < 1}. By standard results on entropy of smooth
function spaces [Triebel (1975)],

H(e,U,ll-llg) = 0(e™Y).
Thus by Lemma B, we have

A, =4 sup  |(E, - E)lj[v*,ul|=0,(n"?)
dpedy,uclU

and hence

sup |(E, — E)ly[v*,u,]| < llu,lsA, = 0,(n" /%),
PpeD,

This verifies (F3ii), the verification of (F3i) and (F3iii) are similar.
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Thus, the conditions of Theorem 5 are satisfied, implying that 6, = p(,) is
pathwise regular and asymptotically efficient, in particular,

Vn (6, = 80) ~p N(O’ el *2)'

The following two lemmas have been used in the previous discussions. They
are often useful in the verification of the conditions of the theorems in
examples.

LEmMMA A. Let WP(A) denote the Sobolev space (of order p) over a domain

A, where either
A=[0,1] X --- x[0,1] cR?
or
A=R?

and let CP(A) denote the space of continuous functions on A with p bounded
derivatives. '

Let # denote a subset of WP(A) N CP(A) such that ||hllwr < K for all

h € &, for some constant K. Then, for any 0 <r <p — d/2, there exists a
constant ¢ such that

sup | A" (x)| < cllh|ly, @ /2P0
xE€EA

for all h € &, for any & > 0.

Proor. The proof follows from two facts regarding Sobolev spaces; see
Theorems 4.17 and 5.4 of Adams (1975).

First, for any r=0,1,... and s such that s — r > d/2, there exists a
constant ¢ such that

lAllcr < cllhllwes

for all h € C"(A) N W*(A), where | - ||c- denotes the norm on C"(A). Note
that s need not be an integer.
Second, for any j, 0 <j < p, there exists a constant ¢ such that
IRllws < Rl PIRIL

for all h € WP(A). ,
Combining these two results, together with the assumption that ||i|lwr < K
for all h € &# yields the result. O

LEMMA B. Suppose there exists a norm || - |lg on V and random variables
M,, M,, satisfying EM? < , i = 1,2, such that for any v € V,

() supyeq llylv, u; — ull < Mylluy, — u,llp forall u,,u, €eUCV,

(ii) Supueul(lgl - lgz)[vy ull < M2"¢71 - ¢2“B for all b, 9, € (DO:

where M, and M, may depend on v. If
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(i) H(, U, Il - llg) = 0(e™®), a < 2,
then sup{l(E, — E)ljlv,ull: ¢ € ®y,u € U} = 0,(n"?). A similar result
holds for 1 ¢[u]

Note. The sets ®, and U need to be suitably defined in each application.

Proor oF LEMMA B. For fixed v, let
Wi(¢,u) = Li[v,u](Y;)
and let
d((¢1,u1),(¢2,u2)) =|é1 — ballp +1lu, — Usllp-

We may think of W, j =1,... as continuous functions on the metric space
(&, X U, d). It suffices to show that

1 =n

satisfies the central limit theorem as an element of C(®, x U).

From Jain and Marcus (1975) it suffices to show that the following condi-
tions are satisfied:

(@) Wy, uy) — Wiy, un)l < Md((¢y, uy),(¢y, u,)) for some random vari-
able M satisfying EM? < o,

(b) H(e, ®, X U,d) = O(e™), a < 2.

Condition (b) follows easily from condition (iii) of the lemma. To show that (a)
holds, note that

|25 [v,w,] = 1) [v, u,]|

<|tylv,uy —u,]| +

lglv,us] = 15 [v, u,]|

SMi|luy — uy|l + My||¢y — bl < (M, + M,) d((¢1,u1),(dg,usy)).

The result follows since

E(M, + M,)” < 2(EM? + EM}) < . O

4. Technical proofs. To prepare for the main proofs, some consequences
of Conditions A1-A4 are first developed here.

LemMmA 1. Suppose Conditions A1-A2 hold and |l¢ — ¢,ll < &,. Then for
any hy,hy €V, 14[h,] and Uj[h,, h,] are well-defined and are linear in (h,)
and bilinear in (hy, h,), respectwely Furthermore, for any h € ® — ¢,
|r| < 80,

2

l$0+rh[h h] dt2 ¢0+th ’ l:ﬁo+rh[h] dt ¢0+th

=r
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Proor. Let ¢ = ¢, + shg, where ||[k|l =1 and [s| < ¢,. By Condition A2,
there are ¢; > 0, i = 1,2, 3 such that |¢;| < ¢; imply that ¢(t) = ¢, + L3t,h; €
® and [,y is uniformly and continuously differentiable in t. Hence the
previous derivatives are well-defined. To check linearity of I'y[A],

1
—t_ (l¢0+sh3+t(h1+h2) - l¢0+sh3)

1 1
= -t_(l(¢0+3h3+th1)+th2 - ld>0+sh3+th1) + —(l(¢0+sh3)+th1 - l¢0+sh3)'

The LHS converges to 1/ Bo+shs [~y + h,]. The second term of the RHS con-
verges to I ... lhi] The first term of the RHS converges, by uniform
dlﬁ'erentlablhty, to I/ o+shal P 2]. The proof of bilinearity of ” is similar. Finally,
let g(r) = (d/dt)l,, +,h|t - then

d

gt rhatihrtsh =g(r+ty).

tp=0

Hence

l¢0+rh[h h]= 3t1 o, T lgotrhttihttgh mty=0

2

=—1
d dt? Potth|,_

Now, under Conditions A1-A2, y,(¢, + L3¢,h;) and v,(d, + L3t,h,) are also
locally differentiable in t and we can similarly deﬁne Yol ki), vo (d)o)[hl, h,]
and so on. O

d
; ——g(r +1t)
1

£t,=0

LemmA 2. Suppose Conditions A1-A2 hold. Then the mean value theorem
can be applied locally to y, and v, and their first derivatives. To be precise, if
veV, ue®— ¢, llull<e, rel0,1], then there exist t, = {(r,u) and
£y = E(r,u,v), £y = £(r,u), r <¥f, < 1, such that

(1) ')’(,)(¢0 + u)[u] = 'Y(,)((ﬁo + ru)[u] + (1 - r)')'(,),(d)o + flu)[u, u]7
(D) y',(po + wlv] = y(dy + rwlv] + A — r)y, (¢y + Eu)lv, ul,
(i) y,(dg + ru) — v, (g + u) = —(1 — )y, (P + Fw)lul.

Proor. Under Conditions A1-A2, we can interchange integration and
differentiation, then if ||k]| < ¢,, we have

vo( o + rh)[h] = E[1} ., [R1(Y)],
Va0 + h)[h] = E,[1}, ., [R1(Y)].

By Lemma 1, we then also have

d
Yo(@o + rh)[R] = EYO(‘#O + th)

=r



MLES IN INFINITE DIMENSIONAL PARAMETER SPACES 625

and
2

d
Yo(do + rh)[h, k] =W70(¢0 + th)

t=r

Hence (i) is obtained by applying the mean value theorem to the function
g(s) = (d/dt)yy(¢, + tu)l;=s. The proofs of (i) and (iii) are similar. O

Proor orF Basic LEmma. Let u, ¢>n ¢,- Under Conditions A1-A2, it
follows from the definition of ¢, and $,, that

@ yo(dolu, <0, .
) y(dg + 2u,) — v (d,) <¢,.

By Condition A3, with probablhty approaching 1, |lu, || < &,. Hence by (ii) and
Lemma 2(iii), 3 s, = 5,(u,), + < s, < 1, such that, if we write , = ¢, + s,u,
then

(i) —v,($,)u,] < 2¢,.
Again by Lemma 2, there exists £, € [0, s,,] such that
Yo(Fn)lunl = v5(So)[wn] + 5,75 (S0 + Fue ) [, 1, ].
Hence
730 + Eyun) ]
52 [ (vo(@0)[ua] = 72 ()]) + (7a(Bn)lwn] = vi(Sa)[un])]
< de, + 2(va( ) [#,] — vo($a)u,])
by (i) and (iii). On the other hand, by Condition A4(ii)
Ml = (=7 (bo + Eyue, )2y, u,])] < cllue, [IP~2%72%,
Since ||lu |l =»p 0 and 285 + 8, < 1, we have, with probability approaching 1,

lu I < (2 + 67){ (Ga)2,] = vi(da)u, 1}

or
lu,ll < (2 + 8){2¢,lu, 7! +|(E, - E)g,,..|}-

Hence, either

lu,l <n? or IIunlls(2+6'){25nn5+ sup |(, E)gl} o
ge

ProorF oF THEOREM 2. Recall from the discussion in Section 2 that our
strategy is to obtain first the rate of convergence of supg, (E, — E)g| for

each 6 and then choose & to optimize the bound provided by the basic lemma.
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In this paper the bound for supl(E, — E)g| will be cbtained using a result in
Alexander (1984). Let

f.=n"’g,, F= {fu:u € Uo,llullzn_‘s},
a* = sup Var( f(Y)), H*(e) = L, entropy function of #.
F
For simplicity, let C,C,,C, and so on, be generic positive constants whose

values may be different in different expressions later. Under the conditions of
this theorem, it is easy to prove that

@) Supfeylflsup < C, 25

(i) ¢;n” 2 < a* <cyn” 2,

(iii) H*(¢) < H(e) < Ce™ V%,

I*(s,t)

It

ftH*(8)1/2d£ <C'? fts_l/z“‘ de

2a
20 — 1

It

Cl/2[t(2a—l)/2a _ s(2a— l)/2a]

[Recall that H(e) is the L, entropy of the score functions and H(e) < «
implies (i).] We can now apply Theorem 2.1 in Alexander (1984) to find values
of « such that

For any 6’ > 0,3 D > 0 such that

L 3
(+) P(supn1/2|(En -E)f| >Dn_") < &' foralllarge n.
7

If (x*) is true, then supg KE, — E)gl = Op(n™"), where 7= (3 — &) + «.
Thus, we must find the restrictions on « (equivalently, on 7) in order that the

conditions of Alexander’s theorem are satisfied. To apply Alexander’s result,
let

(ivi M=M, =Dn*, ¢ =1,
™) ¥(M,n,a*) = y(M,n,a*), that is, ¢ = Mn'/%h (M /(n'/?a*)), where
ho(A) = A/(2(1 + A /3)), [see page 1042 of Alexander (1984)], that is,

C1D2n(1/2)_2"
V= C,Dn=" + C3n(1/2)_2's ’

(vi) t, be the solution of H*(t) = 3¢(M, n, a*), then

ty < [(Cr/D)n* =D + (C,/D?)n-2+%]"
and let s, = (D/128)n~1/2~x,
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With these choices for M, ¢ and &, Alexander’s theorem can be stated as
follows:
If Dn—* > 219/2[*(s,, t,), then

P(sup|n/%(E, — B) f| > Dn~) < bema/avtne,
F

Thus, (* *) is true if the following two conditions are satisfied:

(@) liminf,, _,  liminf, ,, ¢(M,n, a*) = x;

(b) Dn=* > 219220 /(2a — D)[tEe~V/2« — gZa-D/2a] 5

It is easy to see that (a) is true if k < 6 < 1, thatis, r < 1 and 6 < 1 and
further analysis shows that (b) is true if a/(a + 1) — 8 < 7 < min(§, 2a/
(2a + 1) — §). Hence, we obtain the bound

sup|(E, — E)g| = 0,(n"") for 7 < 7(8),
n,8

where

5 < 7(8) = min| =, 5, —2 _
a+1 <T()_mm(§”2a+1_

Choosing 6* to maximize min(s, 7(8)), we obtain 6* = a/(2a + 1) and
7(6*) = 8*. Hence, by the basic lemma, if we choose &, = o(n~2%"), then we
have

|16, — ¢] = O, (n=/2a*D),

Proor oF THEOREM 3. For each fixed 6 > 0, let f, = n~@*7ofg  where g,
is as in Theorem 2.

F={f,:ueU,lul=n?}.
The basic lemma then provides that
18, = ¢l < max{n (2 +8") (e, + 12+ B sup |(E, - E) fl)}-
2

Let f*» =I({lyl < k,Df be the truncated version of f and = = {f*n.
f € F}. Our proof relies on the following truncation lemma.

LemMA 3 (Truncation lemma). Under the conditions of Theorem 3, if
supgalE, — E)f*2] = 0,(n™"), where 7 < } + & + ryB, then

sup|(E, - E) f| = 0,(n"").
F
Continue now with the proof of Theorem 3. For any f, € %,

fuy) = K n,s_”uﬂl:b(ﬁu[u]’
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hence by (T1) the truncated functions f{*») are uniformly bounded. Thus we
can apply Alexander’s result to bound supg«.|(E, — E) f*»)|. The rest of
the proof of Theorem 3 then follows the same arguments as the proof of
Theorem 2. O

Proor or LEMMA 3. We have
fu(y) =l o [@), i =n"CroPly| ™ y,
|l = n=G*roP, (E,-E)f,=(A) +(B) +(C),
where
(A) = E,(f, =), (B) = (E,~E)f*, (C)=E(f ~f,).
Now,

l(C)| = < [P(IY|> k,) Var( fu)]1/2 = o(n(W/D+8+reB))

[ f.dP(y)
{lyl>#,)
P( sup [(A)] # 0) < P{lY;| > k,, for at least one i}
foes

<nP(lY|>k,) =o0(1).
Thus, both (A) and (C) are ignorable and
sup|(E, — E)f,| and sup|(E, - E)f&|
u u

are of the same stochastic order O(n~"), whenever 7 < 3 + 8 + r,8. O

ProorF OF THEOREM 5. In the main proof we need the following two
lemmas whose proofs will be provided after the main proof.

LEMMA 4. Let &, = o(n™"). There exists a random sequencet,, 0 <, < 1,
such that, if ¢, = ¢y + t,u,, then

. 1
=¥ @) 0¥, 1, ] = va(do)[v*] + op(ﬁ),

LeEmMA 5 (Le Cam’s third lemma). Foranyh €V, let ¢, = ¢y + h/Vn +
o1/ Vn), then

1 2 *
Loy B eI —'<v*”‘>) = N0, i)

Now proceed with the main proof. By differentiability and (F1),
Vn (p(6,) = p(60)) = Vrpy [u,] + 0,(1)
=vVn{v¥,u,) + 0,(1)
= V;z—{—Elgn[v*, u,l+ rn} +0,(1).
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Here &, is as defined in Lemma 4 and by Condition A4 and (F1),
Iral < cllo* '™ lu |1 7%7% = 0,(n™1/%).
Furthermore, by (F3ii), Elgn[v*, u,l =y (¢ )v* u,l+ 0,(n"1/2), Hence,
v (p(6,) = p(0)) = —Vryy(a)[v*, u,] + 0,(1)
= Vn v, (do)v* + 0,(1).

On the other hand, Vr (p(é,) — p(d,)) = p:,,O[h] + 0(1). Thus, Vn(p($,) —
p(¢,) =1/ Vn)L 1 [v*]1 = (v*, h) + 0,(1). The proof is completed by the
application of Lemma 5. O

ProorF oF LEMMA 4. By Lemma 2, we can write

(@) 0] = 1 (G0)[0*] + 7 (b0 + Lpue) 0¥, u,], O <fy <1,

hence it suffices to show that ly (P v*] = 0,(n"Y 2). Since v* €V, it follows
from Condition A2 that there is an «a € (0,) and a u* € U, such that
v* = au*, hence it suffices to bound |y ($,Nu*]. Now ¢, + t(u* —u,) =
b +tu*+ (1 —tu, € &, for all ¢ € [0, 1], this is so because of Condition A2
and the fact that both ©* and u, are in ®,. Thus, by the definition of &,,

’yn(d;n + \/Z(u* - un)) - 'Yn(d;n) <e¢, whenO<eg, <1.

It follows from a result similar to Lemma 2 that there exists ¢, = &, +
s (u* —u,), where 0 < s, < ,/Z, such that

Y a) e —u,] < e, .
On the other hand,

yr:((i;n)[u* - un] - 'Yr:((ﬁn)[u* - un]
= sny,','(tzn)[u* —u,,u*—u,] byLemma 2
- s,,{yg(d";,,)[u* —u,ut—u,]+ 0,,(1)} by (F3iii)
= 5,{O(llu* = u,[*) + 0,(1)} by (A4) and (A3)

= 0,(s,) = 0,(Ve, ).

Combining this with the previous inequality, we obtain

Ya($a)u* —u,1=0,(ye, ).

Similarly, since —u* € U, by Condition A2, we have

Ya(@a)[—u* = u,]=0,(/e,)
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and hence finally,

[va (@) u*1] =|va(du)w,]| + O,(Ver )-

Since y/¢,, = o(n ~1/2), to complete the proof, it suffices to show that |y.($, ), ]
is also of this order. By (F3i),

Ya(@u)wn] = 75(d,)[u,] +0,(n712)

= 76(¢0)[un] + Y(I)I(d)o + tnun)[un’ un] + Op(n_l/z)
forsome 0 < ¢, < 1.

But yo(pou,]l =0 and yo(d, + t,u Nu,, u,]l = vo(dlu,,u,l + r,, where
7l = cllu,I>"27% < cllu,|I* by Conditions A4 and A3. Thus, finally,

lya(@)u, 1| <lvs(do) s u,| + 17l + 0,(n"1/2)
- Op(llunllz) +o0,(n"1?)

=o0,(n""?) by (F1). D

ProorF oF LEMMA 5. Let

R LS S WA
then
Z( X, W,) = N(0, %),
where

s = (R, (vt R)
Chyv*y, <(h,h) )

Now, under Conditions A1-A4, for some small ¢ > 0, the family {P, = Py i hs
7 < ¢} satisfies the local asymptotic normality condition, that is,

P «
dP¢n (Y,,. Y, = eWn—1/2)(h, kY +o,(1)
b0

Hence, for any s € R,

P, (X, — (v* h) <s}—> eV /22X gp. (X, W),
""‘{ } f{x—<u*,h><s) 2 )

where dP, (X, W) is the joint limiting distribution of (X,, W,) under P, ,» that
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is, it is the N(O0, ) distribution given earlier. After some calculation, this last
integral simplifies to

e~ (/227 /¥, v%) g,

1
V2’JT<U*, v*) ‘/(-z<s)

Since |v*| = IIp;,OII*, we have thus shown that e./j,,n(Xn - {v*, h)) »
N(O, || p;OII*z), which is the desired result. O
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