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Conditions are given which suffice for the assessment of a coherent
inference by means of a Bayesian algorithm, i.e., a suitable extension of the
classical Bayes theorem relative to a finite number of alternatives. Under
some further hypotheses such inference is shown to be, in addition, coher-
ent in the sense of Heath, Lane and Sudderth. Moreover, a characterization
of coherent posteriors is provided, together with some remarks concerning
finitely additive conditional probabilities.

.

0. Introduction. A few recent articles by Heath and Sudderth (1978),
Lane and Sudderth (1983) and Regazzini (1987) aim to define the concept of
coherent statistical inference. In particular, Regazzini’s paper introduces this
concept in conformity with de Finetti’s theory of conditional previsions, and
compares it with Heath, Lane and Sudderth’s definition. Actually, all these
approaches suit the Bayesian theory of statistical inference. However, unlike
the classical treatment of Bayesian methods which resort to o-additive proba-
bilities only, they, more generally, prescribe the use of finitely additive proba-
bilities. Hence, if the parameter space @ is finite and the probability of a given
observation x is strictly positive, then there exists a unique coherent posterior,
which is the one determined through the classical Bayes theorem. In line with
standard practice, given an arbitrary ©, we say that a posterior ¢, is assigned
by the Bayes theorem, if there exists a nonnegative function [ on Z°X 0@
(Z'= set of all the logically possible observations), such that

g.(B) = {/@z(x,a)f(da)}~ [ix,0)7(ds), Bce,

7 being a prior assigned on ®. Even if a coherent inference does exist (in fact, a
coherent inference, as de Finetti meant it, always exists), it is well known that
it need not be assessed through the Bayes theorem. There are even cases in
which the Bayes theorem does not hold.

In the light of the above remarks, the main purpose of the present paper is
to single out hypotheses from which one can deduce a Bayes theorem yielding
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coherent statistical inferences. Theorem 3.1 is a Bayes theorem which pro-
duces coherent inferences in the sense meant by de Finetti. Theorem 3.3
considers additional hypotheses in order to ensure that inferences, obtained by
means of the Bayes theorem, are ceherent in the sense meant by Heath, Lane
and Sudderth. The proof of these statements is based on Theorem 2.2, which
provides necessary and sufficient conditions so that a posterior turns out to be
coherent in line with de Finetti’s approach. From an operative point of view,
this proposition provides a criterion which is more useful than the one
deducible from Theorem 2.3 of Regazzini (1987). Theorem 2.2 is a direct
consequence of a more general proposition due to Rigo (1988), characterizing
coherent conditional probabilities in a very general context. Such a characteri-
zation is mentioned in Section 1, together with further remarks which provide
an up-to-date, concise survey of a few recent studies'in de Finetti’s theory of
coherence.

The analysis developed in Section 3 is useful in a milieu of completely
additive laws also. In fact, it allows us to decide whether an inference assessed
according to the o-additive generalizations of the Bayes theorem [see Kallian-
pur and Striebel (1968)] are coherent in comphance with our Definition 2.1;
see Example 3.5 and Section 4.

Finally, we recall that the present paper originates from a drastic revision of
an unpublished technical report by the second author [cf. Regazzini (1984)].
We have undertaken this revision in the hope of clarifying connections be-
tween coherent statistical inferences and posteriors obtained by means of the
Bayes theorem.

1. Preliminaries. The concept recurring more frequently in the present
paper is that of probability on a class % of conditional events. In order to
define it, we will use de Finetti’s betting scheme as in Regazzini (1985, 1987).
According to such a scheme, a person who wants to summarize his degree of
belief in each element E|H of ¥ with a real number, is supposed to be obliged
to accept any bet on E|H, on the basis of unit prices that he has fixed, and
with stakes arbitrarily chosen by an opponent. If these prices avoid sure losses,
then they determine a probability on J%". More precisely, indicating prices with

P: % — R, suppose an opponent resolves to put stakes s, ..., s, on the events
E\|H,,...,E,|H, belonging to %, with the proviso that the bet on E,|H,,
k=1,...,n,is called off whenever H, does not come true. Consequently,

adopting the useful suggestion of de Finetti that the same symbol that
designates an event also designates the indicator of that event, the random
quantity

(11 G(EH,, sk =1,...,n) = f;{p(ElH) E)H,

represents the gain from a combination of bets, on the events taken into
consideration, with stakes s;,...,s,. Roughly speaking, P is said to be a
probability on % if, provided that at least one H,, £ = 1,..., n, comes true, it
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avoids sure losses, and this holds for all choices of n, (s;,...,s,) and
(E\|H,, ..., E,|H,). After observing that an unconditional event E can be
regarded as a conditional one: E = E|Q), Q denoting the sure event, we make
precise the notion of probability on %"

DEeFINITION 1.1. Let % be a class of conditional events and P a real-val-
ued function on %" Then P is said to be a probability on % if and only if, for
every choice of n, (E\|H,,..., E,|H,) in % and (sy,..., s,) in R”, the gain G
defined by (1.1) fulfills the inequalities

inf(GlH,) < 0 < sup(GlH,),

where H, = U7_, H;, inf and sup are taken with respect to all the elementary
events relative to {E;, H;: i = 1,...,n} which imply H,.

It is well known that, if ¥ ={E|H: He #° E € &, #cC &, #° = H#\
{3}, # and & are algebras of events}, then P: ¥ — R is a probability if and
only if

(a) P(-|H) is a nonnegative, additive function on &, for every H in #°°;

(b) P(E|H) = 1 whenever E € &, He #° and H C E;

(c) P(ENH,|H,) = P(E|H, " H)P(H,|H,) whenever H,, H, N H, be-
long to #° and E belongs to &.

When -#° = {Q), P is a probability on ¥ if and only if it is a probability
charge on &, i.e., P is a nonnegative, additive function on & with P(Q) = 1.
We take the opportunity to recall that the term charge, in this paper,
designates any additive set function with values in [0, «], and which vanishes
at J.

Generally, if % does not possess the above structure, conditions (a)-(c) are
necessary for a real-valued function to be a probability on %, but they may
not be sufficient. The following proposition, which will be frequently used later
on, provides a useful necessary and sufficient condition in order that P be a
probability on
(12) #={EH:E€ &,He ¢,& isanalgebra, €C & and J & ¢’}.

It has been introduced into de Finetti’s theory by Rigo (1988) according to an
analogous condition discovered by Csaszar (1955) in order to represent a Rényi
conditional probability space by a suitable family of measures. In any case,
such a proposition can be proved by elementary arguments based on Defini-
tion 1.1. :

THEOREM 1.2. Let % be assigned in conformity with (1.2). Then P is a
probability on % if and only if

(a) for each H in ¢, E —» P(E|H) is a probability on &;
(B He¢, E€cfand HCE = P(E|H) = 1;
YEe& Het,i=1,...,n,and

H,.,,=H = I__[l P(E,NnH, |H,) = l__Il P(E,nH]H,,,).
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In a number of statistical problems, ¢ is the union of the sure event with
two of its partitions: the first one generated by the values of an observable
sample, the second one generated by the values of a parameter. We are
showing that, under such a circumstance, condition (y) of Theorem 1.2 can be
put in a different and, from a certain point of view, more convenient form.

CoroLLARY 1.3. Let 11,11, be partitions of Q included in the algebra &
and

£=11, U {Q} UIL,.

Then P is a probability on % if and only if, besides conditions (a) and (8) of
Theorem 1.2, it satisfies:

(yl) P(EN H) = P(EIH)P(H) whenever E € & and H € ¢;
(y2) condition (y) of Theorem 1.2 holds whenever E;, € &, H,e1l,,
H, ,ell,and P(H)=0,i=1,...,n;r,s =1,2;r #s.

Proor. Under conditions (a) and (B8), (y1) and (y2) are particular cases of
(y). Thus, it is merely to be proved that, provided < = II, U {Q} U II,, (y)
follows from (y1) and (y2). Let E,,...,E, € &, H,,...,H,€ € and H,, =
H,. If P(H;) > 0 for all i’s, then (y) is a direct consequence of (y1l). This
happens also when {H,,..., H,} includes at least one event with positive
probability and at least one event with zero probability. In such a case, indeed,
since H, ., = H,, there are &, j with k& # j such that P(H,) = 0, P(H, ;) > 0,
P(H;) > 0, P(H,,,) = 0 and, consequently,

P(E, NHyH,,1) =0, P(E;nH;, H;)=0.

Condition (y) trivially holds also when E;NH,NH,;,, =< for some i’s.
Hence, it is sufficient to check (y) only when P(H;) =0 for all i’s and
H;, H; , belong to different partitions. O

The remaining part of this section is devoted to some remarks concerning
integration with respect to a finitely additive set function, in conformity with
the exposition of Dunford and Schwartz theory included in Chapter 4 of
Bhaskara Rao and Bhaskara Rao (1983). Let & be an algebra of subsets of ()
and A a charge on &. After putting

M(A) = inf{A(B): Bo A, B e &)

for each A c ), we say that the sequence of real-valued functions { £, }, defined
on (), converges hazily to f: Q — [—o, »] if, for every ¢ > 0,

lim **({w € Q: |f,(0) — f(w)| > €}) = 0.
Given a partition {A,,...,A,} of Q in & and a point (a,,...,a,) of R",

g =1L}i_1a,1,, is said to be a simple function. Such a function is said to be
A-integrable if A(A,) < « whenever a, # 0 and the integral of g, denoted by
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Jo&dA, is defined to be the real number X}_,; a,A(A,). (We adopt the conven-
tion that 0 - © = 0.) The generalization of this concept is carried out according
to Definition 1.4.

DErFINITION 1.4. The function f: Q — [—o, x] is said to be A-integrable if
there exists a sequence {f,} of A-integrable simple functions converging to f
hazily and such that lim,, , . [olf, — f,/dA = 0. If f is A-integrable, the
integral of [ with respect to A is defined to be the real number [, fdA =
lim, ., [q f, dA. Notice that such a limit exists by virtue of the definition of
A-integrability and that it does not depend on the choice of { £, }.

In this paper, a function which can be obtained as the hazy limit of a
sequence of simple functions is said to be A-measurable. [Bhaskara Rao and
Bhaskara Rao (1983), page 101, designate this type of function with the term
of T,-measurable.] If f is nonnegative, A-measurable but not A-integrable
then, by definition, [, fdA := . Moreover, when f is bounded and A is a
probability, A-measurability and A-integrability are equivalent conditions. If,
for each £ > 0 there exists & = k(¢) such that A*({w € Q: [f(w)| > k) <,
then f is said to be A-smooth; bounded functions, A-measurable functions are
examples of A-smooth functions. The following proposition will be used in
Section 3.

PROPOSITION 1.5. Let A be a charge on & and h, g A-measurable functions
from Q to [0, ]. Set f(w) = h(w)/g(w) if 0 < g(w) < x, otherwise, if g(w) = 0
or g(w) = «, define f(w) to be any real number. Then A-smoothness of 1/g:
Q — [0, »] yields A-measurability of f. (For the definition of 1/g we adopt the
conventions: 1/0 = «, 1 /0 = 0.)

Proor. Since h, g and 1/g are A-smooth, \*({w: g(w) = 0 or g(w) = » or
h(w) = ©}) = 0. Thus, it can be assumed that 0 < g < and A < «. If 1/g is
A-measurable, then f = h/g is A-measurable, being a product of A-measurable
functions [cf. Bhaskara Rao and Bhaskara Rao (1983), Corollary 4.4.9]. Hence,
it suffices to show that 1/g is A-measurable. Actually we are proving the
following condition, equivalent to A-measurability [cf. Bhaskara Rao and
Bhaskara Rao (1983), Theorem 4.4.7], and called T,-measurability with respect
to A: For each ¢ > 0, there exists a partition {F,, F}, ..., F,} of Q in & such
that A(F)) <& and [1/g(w;) — 1/g(wy)| <& whenever w;,,w, €F,, i=
1,...,n.

Fix & > 0. By A-smoothness of 1/g, there is k € (0,1/ V3] such that
M({w: g(w) < k}) < £/3. Then, by definition of A*, a set G, € & can be found
such that G, O {w: g(w) < k} and AMG,) < 2¢/3; further

_ lg(@y) — g(w,)l
g(w;)g(wy)

11
lg(wl) 8(w,)

lg(w;) — g(wy)l
<

PB for every wy, wy & G,.
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Since g is A-measurable, or equivalently T,-measurable with respect to A,
there is a partition {H,, H,,..., H,} of Q in & such that A(H,) < ek and
lg(w;) — g(wy)| < ek? whenever w;,w, € H;, i =1,...,n. Setting Fy = G, U
H,and F,=H; \ Gy, i = 1,...,n4 the desired partition is obtained. O

The last result of the present section is related to Theorem 1 of Dubins
(1975). It deals with a partition of Q,II, included in &, and with any algebra
&n € &, whose elements are unions of elements of II.

THEOREM 1.6. Let P be a probability on & and o a real-valued function on
& X I1 such that, for each h €11, E - o(E, h) is a probability on & with
o(h, h) = 1. Denote by vy the restriction of P to &y. Then

P(E) = fncr(E,h)y(dh)

holds for all E € & if and only if h — o(E, k) is a y-measurable function for
each E € & and

(1.3) v(S) info(E,h) <P(ENS) <y(S)supo(E,h)
heS hesS
forall S € &, and E € &.

Proor. In view of triviality of necessity, assume that o(E, - ) is y-mea-
surable for each E € & and that (1.3) holds. Fix E € &. Then, if {S,,..., S,}
is a finite partition of € in &%, we have

n n n
Y ¥(S)) inf o(E, k) < ¥, P(ENS;) < 3 %(S,) sup o(E, b).
i=1 hes; i=1 i=1 hes;
Thus, the result follows from the obvious equality P(E) = L?_, P(E N S)),
and from the definition of the Stieltjes integral, which, here, coincides with the
Dunford-Schwartz integral [cf. Bhaskara Rao and Bhaskara Rao (1983), Sec-
tion 4.5]. O

2. Coherent inferences. Let 2" be the set of all possible outcomes of an
experiment and @ the set of all realizations of a random parameter. )} ¢ Z°X ©
designates the collection of the logically possible couples (x, 8); consequently,
is to be regarded as the sure event. Moreover, &7,, &, and &/ denote
algebras of subsets of 2, ® and (), respectively. In what follows, it is assumed
that {x} € o7, for each x € &, {§} € &7, for each 0 € ®,(AXB)NQ €
for each A € &, and B &y, and x € Z, 0 € 0, C € &/= C* == {0: (x,0)
€ C} € &, Cy = {x: (x,0) € C} € &, It is easy to check that Q* # & and
Q,+ Bforx € Z and 6 € 0.

Note: This framework is a revised version of the one adopted in Section 2 by
Regazzini (1987); the present modification is required in order that the
possible hypothesis that Q is properly included in 2°X ©® should make sense.
We take the opportunity to point out that condition (c2) at page 851 of the
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‘quoted paper is to be restated as follows: the function 9 — Py(C,) is 7-integra-
ble for all C € 7.

Suppose a sampling model and a prior distribution are assigned. This means
that a mapping P,, from © to the set of all probabilities on &7, with
P,(Q,) =1, and a probability 7 on 7, are assigned. It is well known that,
under these circumstances, P, and 7 determine a probability on the events
A|{6}, B, where A € o7, B € &/, and 0 € O; see Theorem 2.2 in Regazzini
(1987). Hence, at least one coherent extension of the latter probability to
2={CH:Ce o/, H=Q or H=Q, X {6}, 8 € 0} can be defined; see Theo-
rem 1.4 of Regazzini (1987). Specifically, this means that a probability on .27 is
available, say 7, with 7((2"X B) N Q) = 7(B) for B € &7/, and such that

P,(C,), ifCe o/ and H=0Q,x(6),0<0,
2.1 CIH)={ 2"° o
(2 Q(CIH) {w(C), ifCeo/and H=Q,

is a probability on 2. In its turn, @ can be coherently extended to %= U &,
where %= {Cl{x} X Q*: x € 2, C € «/}; let us denote such an extension
with @' ,

In a Bayesian approach, any inferential problem is solved by considering the
restriction of @' to .%: the posterior distribution on 0, relative to the assign-
ment of @. This leads us to Definition 2.1.

DEFINITION 2.1. Let @ be a probability on 2 according to (2.1). Then, the
restriction to % of any coherent extension @' of @ from 2 to % is said to be
a coherent posterior relative to . From now on {q,: x € 2} will designate any
coherent posterior on &7

We notice that Theorem 2.3 of Regazzini (1987) states necessary and
sufficient conditions in order that a probability on 27, could be considered as
a coherent posterior relative to @. A more convenient criterion can be deduced
from Corollary 1.3. In fact, by identifying & with o/, P with @', II; with
{{x} X Q% x € 27} and I, with {6} X Q,: 6 € 6}, Corollary 1.3 directly
implies the validity of Theorem 2.2.

THEOREM 2.2. Let @ be a probability on 2 according to (2.1). Then
{q,: x € 27} is a coherent posterior relative to Q if and only if
() for each x € 2, q, is a probability on g such that q. (Q%) = 1,
(i) q (B)m({x} X Q%) = 7(({x} X B) N Q) for all x in " and B in y;
m m
‘ qpai({xi+1})Qx,({0i}) = qpo,({xi})Qxi+l({0i}),
(iii) m m
l_.[lpoi({xi})qxi({oi+1}) = l_.[IPBiH({xi})Qxi({oi})’
i= i=
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whenever x,...,x, € Z, 60,,...,0, €0, x,,,=x, 0,,.,=20, and
m({x;} X Q%) = w(Qy X {§;D) =0 fori=1,...,m, m > 2.

In order to exclude sure losses, the inferrer has to select his posterior
according to Theorem 2.2. Generally, however, there is not only one posterior
fulfilling conditions (i)-(iii), but there exist several coherent assignments. For
instance, if P,({x}) = 0 for all x and 6, and if 7({x} X Q%) = 0 for all x, then
every collection {g,: x € 2} satisfying requisite (i) is a coherent posterior
relative to @. The “large’ set of coherent solutions, which is often available,
guarantees the possibility of fitting real situations. On the other hand, just
because of this “large” set, one could object that coherence is a weak condi-
tion. Perhaps this is technically true, but some brief remarks are in order. The
main purpose of coherence is not to identify a ‘‘small” set of admissible
posteriors so as to avoid the inferrer’s troubles; on the contrary, a coherence
condition must possess a clear substantial meaning and must be essential for
any inferential problem. If one wishes to restrict the class of allowable
inferences, introducing some additional constraint, the latter must be justified
by exhibiting its logical content for any inferential situation. We are afraid that
each further constraint, even if sensible for some particular class of problems,
runs the risk of being arbitrary in general. See also Regazzini (1987), Sec-
tion 5.

In most statistical applications, {q,: x € 27} is assessed through a procedure
inspired by the classical Bayes theorem. From the point of view adopted in this
paper, however, such a posterior is merely a candidate, and can be assigned
only if it is coherent relative to @. Therefore, it is important to establish when
it is actually so. The main purpose of the present paper is the analysis of
suitable conditions under which a coherent posterior can be assessed by means
of a Bayesian algorithm. This analysis is needed not only because of the
generality of the context described in the present section, which does not
prescribe o-additivity; as a matter of fact, if o-additivity holds, our study is
useful to check whether inferences, determined by the usual, well-known
versions of the Bayes theorem, are coherent in the sense of Definition 2.1.

3. A Bayes theorem. The first part of the present section answers the
question put at the end of the previous one. The second part analyzes
conditions under which a posterior assessed by the Bayes theorem is apt to
represent an inference, coherent in the sense of Heath, Lane and Sudderth.

There exists at least one probability « on the power set of ® such that
a(B) = 7(B) for every B € o7,. Hence, we can define the extension of P, and
7 to 9, according to the rule

(3.1) 7(C) = f@PB(CB)a(dO), Ce .

In fact, it is immediate to check coherence of (2.1) when 7 is defined according
to (3.1). Note also that, if 7 is assessed through (3.1) and P,({x}) = 0 for some
fixed x and all 6, then Theorem 2.2 implies that every probability g, on 27,
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such that ¢q,(Q%) =1 is coherent, independently of the selection of g, for
y # x. We are assuming the following hypotheses:

(B1) there are a nonnegative function l on 2°X 0, null on Z'X © \ Q, and
a charge A on 2y such that

P,(A) = fAl(x,o)A(dx) forall € © and A € o,

(B2) for each x € 2, 6 — l(x,0) is T-measurable.

Set p(x) = [ l(x, 0)7(d6) for every x in 2". We aim at showing that, under
conditions (B1) and (B2), there is a coherent posterior {q.: x € 2}, relative to
Q with 7 defined by (3.1), determined through a Bayesian algorithm. To this
end, we need to assume that 0 < p(x) < « for at least one x € Z". Otherwise,
if p(x) = 0 or p(x) = o for every x € 2, our developments, though formally
correct, are practically vacuous, since the problem we are dealing with merely
does not arise. In this connection, it should also be stressed that our assess-
ment of g, when p(x) & (0, ) is only a possible coherent one. For instance,
when p(x) = o, every probability g/ on &7, such that q,(2*) = 1 turns out to
be coherent (cf. the proof of Theorem 3.1). We refer to Section 4 for some
remarks about the choice of ¢, when p(x) & (0, ).

Let us define g according to the following rule, in which x € 2" and B is
any element of 7:

0 <p(x) <o =g(B)= fB 1(x,6)7(d6) /p(x),

p(x) =0 and QF is infinite = g/ is any probability on o/, such that
q.({8)) = 0 for every 0 in Q7% and q,(Q*) =1,
p(x) = 0, QF is finite and
Y Ux,0)>0=qy(B)= X U(x,0)/ X I(«,90),
0€Q” 0€BNO* 0€Q*
p(x) =0, QF is finite and T, l(x,0) = 0 = g,(B) = card(B N Q%)/
card(Q%),
p(x) = © = q/(B) = 7(B N Q%) /7(Q%).

THEOREM: 3.1. Let (B1) and (B2) hold, and Q be defined on 2 according to
(2.1) with m assessed through (3.1). Then q' is a coherent posterior relative to
such a Q.

Proor. We show that q' satisfies conditions (i)-(iii) of Theorem 2.2. First,
it is immediate to check (i). In order to verify (ii), notice that

-m(({x} X B) n @) = [ P({x})a(d0)
= [ 1= 0)M{x)]a(d0) = [ [, 6)A((x))]7(d6)
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for every B in o7. If p(x) < =, setting B = O yields m({x} X Q%) = A({x}Dp(x);
hence, being 0 < [ I(x, 0)7(d6) < p(x), condition (ii) easily follows. If p(x) =
o, since

L2 7({x) x 07) = [ [i(=,0)M({x})]7(do)
and
p(x) = [@ I(x,0)7(d6) = =,

to avoid absurd conclusions it must be A({x}) = 0. Thus, when p(x) = «, (ii)
holds for g/ (whatever q. may be). As far as (iii) is concerned, let x, € Z,
0, € 0, 7({x,} X Q™) =m(Qy X{6,)=0, k=1;..,m, and x,,, =2,
0,,.1 = 0. If there exists an x, with p(x;) > 0, then, since m({x,} X Q%) = 0,
it must be A({x,}) = 0. In that case, being P,({x,}) = I(x;, )A({x,}) = 0, condi-
tion (iii) is trivially satisfied. Thus, it can be assumed that p(x,) = 0 for
k=1,...,m. Next, the check of condition (iii) is immediate when there is an
x;, such that Q% is infinite or Q% is finite with ¥, o« [(x;, 6) = 0. Indeed,
in the first case q;k({o}) =0, V 6 and, consequently, both sides of condition
(iii) vanish; in the second one, the same circumstance holds since P,({x,}) =
I(x,, 0A{x,}) = 0. Finally, if Q% is finite and g(x,) == L ;< o= I(x;,0) > 0 for
k=1,..., m, we obtain

ilipoi({xin})q;i({ai}) = il'jl{l(xin’Oi))‘({xiﬂ})}{l(xiaBi)/g(xi)}
= ilrjl{l(xi,Oi))‘({xi})}{l(xiﬂ’Gi)/g(xiu)}

= il:llpoi({xi})q;m({ei}) ’

which proves the first part of condition (iii); the second one can be proved in an
analogous way. O

If for each A in &7, we put
u(4) = m((A % 8) NQ),

then u turns out to be a probability on &7,-. According to Heath and Sudderth
(1978) and Lane and Sudderth (1983), an inference ¢ is substantially asked to
meet the condition

(3.2) 7(C) = [ng(cx)#(dx) for all C € «.

Connections between this type of coherence and that stated in Definition 2.1
are analyzed in Section 4 of Regazzini (1987). Here, we are providing condi-
tions under which posterior ¢’, assessed by the previous Bayes theorem, meets
(3.2). Incidentally, we note that the question makes sense, in general, only if
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w*{x: p(x) =0 or p(x) = »}) = 0; otherwise, the answer depends on the
particular choice of g, when p(x) & (0,). Let us start by characterizing
coherent posteriors, in the sense of Definition 2.1, which satisfy (3.2).

L]

LEMMA 3.2. Let q be a coherent posterior relative to @, where Q is defined
by (2.1). Then q satisfies (3.2) if and only if x = q,(C*) is u-measurable for
each C € o/ and

B(4) inf g.(C7) < m((A X ) N C) < w(4) supq,(C*)
forall C € &7 and A € 7,

Proor. For x € 2 and C € &7, put o(C,{x} X Q%) = q,(C*), and apply
Theorem 1.6 to 7, o, I ={{x} X Q*: x € 2} and £ ={(AXO)NQ: A€
Ay} O

At this point, our goal can be stated in these terms: Find hypotheses under
which q' satisfies the conditions of Lemma 3.2. To this end, besides (81) and
(B2) and (3.1), assume

(B3) a can be determined in such a way that
j[/ l(x,B)IC(x,O)A(dx)]a(dB)
oel’a

=j [fl(x,0)IC(x,0)a(d0)]A(dx) forall C € o;
zl’e

(B4) the function 1/p(x) = {[g l(x, 0)7(d8)} "' is u-smooth. (For the defini-
tion of 1/p we adopt the conventions: 1/0 = », 1/ = 0.)

In a finitely additive framework, (83) is an analog of Fubini’s reduction
formula; sufficient conditions for the validity of (B3) have been given by
Sinclair (1974) and Thomsen (1978). As far as (84) is concerned, it is apt to
grant the integrability of ¢’ with respect to u. We note that

(B3) and (B4) = p*({x: p(x) = 0or p(x) = =}) = 0.

We are now able to prove Theorem 3.3.

THEOREM 3.3. Let (B1)-(B4) hold, and Q be defined on Z according to
(2.1) with 7 assessed through (3.1). Then the coherent posterior q' of Theorem
3.1 satisfies (3.2).

Proor. We have to prove that g’ satisfies conditions of Lemma 3.2. From
the second member of (83) we deduce that the function defined on " by

go(x) = f@l(x,O)IC(x,O)a(dB) = [sz(x,o)f(do)
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is A-measurable for every C in /. Moreover, given A in &7,
u(4) = [Pi(A)a(ds) = [ | [ 1(z.0)I(x)a(d0) |A(dx) = [ p(x)A(d),
c} zl’/e A

and u turns out to be absolutely continuous with respect to A. Hence,
A-measurability of g, implies p-measurability of g,. In particular, setting
C=Q, p=g, is u-measurable. Note also that, if 0 < p(x) < », then
q.(C*) = gc(x)/p(x). Thus, since p and g, are p-measurable, and 1/p is
u-smooth, Proposition 1.5 implies that x — ¢/(C*) is u-measurable. Finally,

w(4) inf g(C™) = { inf ¢1(C7)} [ p(x)A(dx)
< [ 4:(C¥)p(x)A(dx)
=[A[/Gz(x,e)IC(x,e)a(de)]A(dx)
- [ 10 1@ 1o, 002 )
= [@Po(A N C,)a(do)

= 7((4x8) N C) < {supqi(C*)} [ p(x)Mdx)
x€A A
= u(A) supg}(C¥). 0

x€A

ExampLE 3.4. Let 2= 0 = R, o7, = &, = & (= class of Borel subsets of
R), A = Lebesgue measure on (R, &), l(x, 6) = (27)~ /2 exp{—(x — 6)?/2} with
(x,0) € R% O = R?% o= &P (= class of Borel subsets of R?). Fix ¢ € (0, 1);
let 7 =7, + 85 be a probability on (R, &), where 7, and 85 are charges on %,
7. is strongly continuous [Bhaskara Rao and Bhaskara Rao (1983), page 142]
and §¢ is characterized by a mass c,e concentrated on 0 and by masses c,¢
and c,e adherent, respectively, to the left and to the right of 0, with §¢(R) = &,
¢; >0,V i,X2_ ¢, = 1. Motivations for the choice of such a prior are included
in Consonni and Veronese (1987). Clearly, conditions (81) and (32) hold and
0 < p(x) = [r2m)~ 2 exp{—(x — 0)%/2}7,(dO) + e(27)~ /% exp{—x2/2}, V
x € R. Therefore, by virtue of Theorem 3.1, q.(B) = [ l(x, 0)7(d8)/p(x),
B € 7, is a coherent posterior for x in R. In particular,

ai(==,0) = ([ 16,0)7.(a0) + cuel(x,0)| /o(x),
qj’c((-—O0,0]) = qj’c((—oo’O)) + CZEl(x’O)/p(x)a

I(x,0)7,(d0)/p(x), if § <0,
(—, 6]

qu((—w,6]) =
{[ 1(x,0)7.(d0) + el(x,O)}/p(x), if 6> 0.
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ExamPLE 3.5. Let 2=[-1,1], ® =(0,1], &7, = B N[-1,1], &g =& N
0,1, O ={(x,0):0<0<1, —0 <x <0}, &= HB?PNQ; A\ = Lebesgue mea-
sure on (Z, ¥y );

1/0, if 0 <x < 6 and 6 is any irrational number in (0, 1),
I(x,0) ={1/0, if —0 <x < 0and 6 is any rational number in (0, 1],
0, elsewhere;

T = Lebesgue measure on (0, 7). Also here conditions (1) and (B2) hold; as
a matter of fact, the example at issue falls within the classical Kolmogorovian
approach to probability and, consequently, (83) and (B4) are satisfied. Clearly,
p(x)=0 if x=1 or x€[-1,0), p(0) =x, p(x) = —logx if x(0,1).
For every x € (—1,0), select a diffuse probability d, on &7, such that
d.([—x,11 N @) = 1,  denoting the set of rational numbers. Then

/z(x,e) do/(-logx), ifxe(0,1),
B

q.(B) = {Ip(1), ifx=1lorx= -1,
T(B)’ ifx=0,
d.(B), if x € (-1,0),

is a coherent posterior. In addition, such a posterior is easily shown to satisfy
(3.2).

ExaMpPLE 3.6. Let 2=[1,0)NQ, ® =(0,1]NQ and Q ={(x,0): 6 € O,
x=1+n0, n € NU{0}}. Take o7,, &5 and & as the power sets on &Z, ®
and Q, respectively; A = counting measure; I(x,0) = 1/2"*! if § € ® and
x =1+ no for some n, and [(x,8) = 0 if (x, 0) & Q. For instance, this could
be a model for some propagation phenomenon, involving only a fraction 6 > 0
of a very large population, and distinguished by a strong dependence among
the individual behaviors. It is worth stressing that, fixed x € 2°\ {1},
I(x,0) > 0as 0 — 0. Let 7 be a probability on (0, &7g) characterized by a mass
¢, adherent to the right of 0 and by masses ¢, and c; concentrated, respec-
tively, on the points 1 and 1, with ¢; > 0, ¢cy,¢3 > 0, £?_; ¢; = 1. Once again
conditions (B;) and (B,) hold, with p(1) = 1 and p(x) = c,l(x,3) + cyl(x, 1)
for x # 1. Thus, 0 < p(x) < © whenever at least one of the points 3, 1 belongs
to Q% and p(x) = 0 otherwise. In the former case, g/ can be defined according
to the usual Bayesian algorithm, while in the latter, being Q* not finite, g
can be coherently assessed as any probability on &/, adherent to the right
of 0.

4. Concluding remarks. This section has been divided into two parts.
The first deals with the connections between our previous results and the
general version of Bayes theorem obtained, in a Kolmogorovian framework, by
Kallianpur and Striebel (1968); the second includes a few comments concern-
ing the selection of g/ when p(x) = 0 or p(x) = .
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The quoted authors provide general Bayes theorems which express posteri-
ors as conditional probabilities with respect to a o-algebra. This circumstance
shows that the aim of Kallianpur and Striebel’s study differs from ours; hence,
a comparison in terms of greater or, lesser generality cannot be proposed from
a merely logical angle. On the other hand, conditional probability with
respect to a o-algebra is introduced via the analytical concept of a
Radon-Nikodym derivative, but its concrete, probabilistic meaning is elusive.
Hence, if the conditioning o-algebra is generated by an observable random
entity, then conditional probability with respect to such a o-algebra is used as
conditional probability with respect to any value of the conditioning entity. In
compliance with this interpretation of conditional probabilities with respect to
o-algebras, a comparison between our statements and those of Kallianpur and
Striebel makes sense from a more basic angle. Such a comparison shows that
conditions (81)-(B4) are weaker than Kallianpur and Striebel’s hypotheses
and, consequently, the resulting statements determine a wider scale of applica-
tion for the Bayesian algorithm. This is shown by Examples 3.4 and 3.6.
Moreover, such an enlargement of applicability is stated in terms of coherence,
and not in a purely formal way. This observation is important since coherence,
for example, places restrictions on our freedom of choosing g, when p(x) = 0,
whilst no restriction is dictated, in such a case, when the Kolmogorovian
approach is adopted. To illustrate this point, let us reconsider Example 3.6
(supposing ¢; = 0 so that the example itself falls within the Kolmogorovian
setting). When Q* N {3, 1} = &, we are obliged to assign a posterior satisfying
conditions of Theorem 2.2. On the contrary, if we follow the classical approach,
there is no reason to favour one distinguished probability law rather than
another. Note also that, in Example 3.5, when x € (—1, 0) we are able to select
a diffuse probability d, giving the whole mass to a countable set of rationals.
This seems to be a sensible choice; nevertheless, it would not be available in a
o-additive framework. )

Leaving apart the relationships between coherence and the Kolmogorovian
setting, let us turn to some brief remarks concerning the choice of g; when
p(x) = 0 or p(x) = . Plainly, in such cases, our definition of g is not the only
coherent one, and any other coherent assessment is in order. Thus, to make
easier the evaluation of ¢/, it can be helpful to attach some meaning to
p(x) = 0 and p(x) = ». An heuristic interpretation is the following. Suppose
that p(x) = 0.and I(x,0) > 0 for some 6. [Otherwise, if I(x,-) =0, p(x) is
forced to be 0 whatever the prior 7 may be.] Since p(x) = 0 is equivalent to
7*({0: 1(x,0) > €}) = 0 for every ¢ > 0, it can be argued that the function
I(x, - ) is “very low” where the prior 7 “gives mass.” At least in a rough sense,
this can be viewed as a sharp disagreement between the prior beliefs and the
experimental result. Hence, the inferrer should deeply modify his prior opin-
ions (possibly, selecting g/ in a different way with respect to our evaluation of
Section 3). Generally, however, it is not possible to hint an explicit rule to
define g as a function of 7 and I(x, - ), since the evaluation of g, depends on
the distinctive features of the specific problem under examination. This is why,
in Section 3, we have been vague in our assessment of q. when p(x) = 0 and



380 P. BERTI, E. REGAZZINI AND P. RIGO

QO is infinite. Nevertheless, one possibility could be to ask g. to be singular
with respect to 7, at least when this is meaningful in the investigated problem.
This happens, for instance, in Example 3.5 but not necessarily in Example 3.6.

Conversely, if p(x) = «, the, same argument applied when p(x) = 0 leads to
a full confirmation of the prior beliefs. Consequently, the inferrer should
preserve them, that is, if p(x) = =, he should assess ¢/(B) = 7(B N Q%) /7(Q%)
for all B in &7,

Finally, we mention a different approach to assign ¢, when p(x) = 0.
However, the reader ought to be warned that the probability obtained this way
does not necessarily meet the requirements suggested so far. The idea is to
express q., at least when the necessary conditions are available, as a “limit of
truncated Bayes inferences” [cf. Regazzini (1987), Section 3]. Fixed x € &~
with p(x) = 0, consider the probability .

(4.1) q;(B)=fBl(x,O)y(do)/j;)l(x,f))y(de) for all B € &/,

where y is a g-additive charge on %, such that 0 < [g I(x, 8)y(d6) < . In
addition, suppose 7, is a o-algebra and there exists a nondecreasing se-
quence {0,} c o/, such that ©,10, y(®,) and [ I(x,0)y(d8) belong to
(0, ») for each n greater than some n,, and

7(B) = limy(B 1 6,)/7(8,)

(4.2)
whenever B € &7, and the limit does exist.

Of course, it is also tacitly assumed that the class of B’s for which (4.2) holds
is not “too small”’; otherwise the link between 7 and y is poor or even null.
Under the previous conditions, the inferrer can define ¢/ as in (4.1), provided
this is a coherent choice (which is always true when y is diffuse). It is easily
shown, by the monotone convergence theorem, that g/ can be expressed as the
limit of the sequence of probabilities obtained, for each n > n,, by applying
the Bayes theorem in the space (0,, .27, N ©,) with the prior probability
y(-N 0©,)/y(®,). For instance, when ® = N, our assessment of q., for the
case p(x) =0, QF finite and I(x, ) # 0, can be obtained by the previous
device setting ®, = {1,...,n} and y = counting measure.

Acknowledgments. This paper has been improved by some remarks of
the referees and the Associate Editor. Specifically, the authors are indebted for
a suggestion which simplifies the proof of Proposition 1.5 and for a critical
discussion of Section 4.
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