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DECONVOLUTION-BASED SCORE TESTS IN
MEASUREMENT ERROR MODELS'

By LEONARD A. STEFANSKI AND RAYMOND J. CARROLL

North Carolina State University and Texas A & M University

Consider a generalized linear model with response Y and scalar predic-
tor X. Instead of observing X, a surrogate W = X + Z is observed, where Z
represents measurement error and is independent of X and Y. The effi-
cient score test for the absence of association depends on m(w) = E(X|W
= w) which is generally unknown. Assuming that the distribution of Z is
known, asymptotically efficient tests are constructed using nonparametric
estimators of m(w). Rates of convergence for the estimator of m(w) are
established in the course of proving efficiency of the proposed test.

1. Introduction. Let X be a random variable with unknown density fy
and characteristic function ¢y. Given X = x, suppose that a response Y
follows a generalized linear model with likelihood

(1.1) exp[{y{ — b(O)} /vy + c(3,v)],

where { = g(a + Bx) and «, B and y are unknown parameters. We study
testing H,: B = 0 when a surrogate variable W is observed in place of X. This
is a generalized linear measurement error model. Applications in epidemiology
motivating our work are discussed by Carroll (1989).

Frequently H, is tested using the usual score test statistic

(12) Ty=n"12 ¥ Wi(¥; ~ 7)/(SwSy),

i=1

where S2, and SZ are the sample variances of {W,} and {Y;}, respectively.
Although this test has the correct level asymptotically, it may be inefficient.
For example, when Y and W are conditionally independent given X, the
efficient score test statistic is

(1.3)  Tg=n"'? Zn: m(W)(Y; = Y)/(Snw)Sy),

i=1
where m(w) = E(XIW = w) and S2 y, is the sample variance of {m(W,)}.
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Comparing (1.2) and (1.3) shows that the usual score test is inefficient when
m(w) is nonlinear in w. See Tosteson and Tsiatis (1988) for additional details.

Since m(w) is usually unknown, it must be estimated in order to construct
an asymptotically efficient score test. In this paper we present a method of
estimating m(w) based on {W;} only, and then use this estimator to construct
an asymptotically efficient test. We consider the additive measurement error
model,

(1.4) W=X+2,

where Z is independent of (Y, X).

We assume that the error density f, is known, symmetric, and has finite
second moment, and that its characteristic function ¢,(¢) is nonzero for all
real ¢. The deconvolution kernel density estimator of Stefanski and Carroll
(1987, 1990a) is used to estimate fy, which for known f, yields an estimator
of m(w). From this, we construct a fully efficient score test.

In the course of proving the efficiency of our test, we investigate the
performance of the estimator of m(w). Although estimation of fy is difficult
when f, is smooth, estimation of m(w) is feasible more generally. For
example, Carroll and Hall (1988) have shown that unless it is assumed that fy
has more than two bounded derivatives, the best achievable mean squared
error rate of convergence of any estimator of fy is of order {log(n)}~2 when
fz is normal and of order n~*/® when f, is Laplacian. The estimator proposed
by Stefanski and Carroll (1987, 1990a) achieves these rates. In contrast, we
show that the pointwise expected mean squared error of our estimator of
m(w) decreases at the rates of n™*7 and n~*® for normal and Laplacian
errors, respectively. In general, the rate of convergence depends in a simple
way on hy,(¢) = ¢5(¢)/¢,(¢). We suspect that these rates are optimal although
we have not pursued this problem. The rate of convergence of higher-order
moments of X given W can also be investigated using our techniques, al-
though we do not do so in this paper.

Estimation of the posterior mean m(w) is a problem central to empirical
Bayes inference. Strong results are known for the case that an exponential
family density is mixed with an unknown distribution; see Singh (1976, 1979,
1985). Viewed from the empirical Bayes perspective we are working with a
location family density mixed with an unknown distribution. Thus our work
overlaps with Singh’s only when f, is normal or when Z, suitably scaled, has
the density of log(Y), where Y has a particular gamma distribution; see
Ferguson (1962). Even at the normal model, the estimators used are consider-
ably different, as are the regularity conditions employed; we make assumptions
about smoothness of fy, whereas Singh makes assumptions about higher-order
moments of X. The application of our results to the location-family empirical
Bayes problem and a comparison of our rates with Singh’s under similar
regularity conditions would be interesting, but is beyond the scope of the
present paper.
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2. Conditional expectations. Writing fx(x) = 2m) " Ye i ¢y(2) dt
and fy(w) = (2m) " Ye " ¢x(t)d,(t) dt, we have

m(w) = E(XIW=w)

(2.1) = [afz(w — %) fx(x) dx/ffz(w — %) fx(x) dx
= w + (i/2m) [o3(£)dx(t)e ™" dt] fyp(w)
(2.2) = w + (i/27) [hyp() by ()e™ ™ dif fw(w).

We propose an estimator based on (2.1), later giving an interpretation with
respect to (2.2). Throughout the paper we assume that fy has two bounded

continuous derivatives.
Let G(t) be a four-times continuously differentiable, real characteristic

function with bounded support, which we take to be [—1, 1] without loss of
generality. Define the real functions

K(t) = (27)‘1j_°° ei?x G(x) dx,

K. (t,0) = (2m)7 [ et G(x)/¢z(x//\) dx.

Note that since G has support [ — 1, 1], both of these integrals exist for fixed ¢,
under the assumption on ¢,. By Fourier inversion, K is an even bounded
density function, while A 'K ,(¢/A) is an even bounded function that inte-
grates to 1 although it is not nonnegative. The smoothness conditions on G
ensure that [v2K(v) dv < . An ordinary kernel estimate of fx based on the
unobserved {X;} is fx x(x) = (nA)"'LIK((X; — x)/A}. By standard calcula-
tions, Efy x(x) = fx(x) + (1/2Xf3(x) + o()tz) The deconvolution estimator
is fx(x) = (nA) LK (W, — x)/A, ). See Stefanski and Carroll (1987,
1990a), Carroll and Hall (1988) Stefanski (1988, 1990), Liu and Taylor (1988a,
b) and Fan (1988) for motivation of this estimator and more specialized
properties. Since E[K , {(W —x)/A, A} X] = K{(X - x)//\} it follows that fy
and fx, x have the same expectation. However, the variance of fy can be
much larger than that of fx, K-
Equation (2.1) can be written as

m(w) = E(XIW = w) = My(w, fx)/Mo(w, fx),

where

(2.3) M (w, fx) = ["fz(w — x) fx(x) dx,
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suggesting the estimator
(2.4) m(w) = My(w, fx)/Mo(w, fx).

Note that M(w, fx) = fw(w) is a kernel density estimator of fy = f, * fx
based on the kernel K. Hence by standard results the denominator of (2.4)
estimates fy at the pointwise expected squared error rate n ~4/5_ The point-
wise convergence of M, (w, fx) to M(w, fx) is generally slower and thus
determines the convergence rate of m(w) to m(w). Squared bias in #(w) is of
order A%,

The estimator (2.4) is based on (2.1). Alternatives might be based on (2.2),
since fy can be estimated directly by kernel techniques and ¢y can be
estimated by the empirical characteristic function d’w This approach fails
whenever (A, () (¢)e ** dt fails to exist, as in the case of normal measure-
ment error. However, the lack of integrability can be circumvented by truncat-
ing the range of integration. Our estimator (2.4) has the representation

(25)  (w) =w + (i/2m) [ Wp(dw(D)e G(M) dtffu(w),

corresponding to (2.2). Since G vanishes outside [ — 1, 1], the effective range of
integration in (2.5) is [~ 1/A, 1/A] and the integral exists for any A7 and all A.

While the restriction on G ensures integrability in (2.5), it is apparent from
(2.5) that for the purpose of estimating m(w), it is sufficient to require only
integrability of h7(¢)G(At) and positivity of fW However, we work with the
representation of #(w) as a functional of fy, see (2.4), and thus we require
the existence of the function K , (¢, A) defined previously. This imposes a much
greater restriction on the tail behavior of G; see Stefanski and Carroll (1987,
1990a) for further details.

Kernels satisfying all of the required conditions can be derived from the
family of densities, K, (x) = c,fsin(x)/x}*™, m =1,2,..., where c,, is a
normalizing constant, m = 1,2,... . The characteristic function, G,, corre-
sponding to K, is proportional to U®™), the 2m-fold convolution of the
uniform density on [—1, 1], with itself, and thus has bounded support. It is
easy to find characteristic functions, G, that have bounded support although in
most cases the corresponding density, K, does not have a closed form. The
pairs (K,,, G,,), m = 1,2,..., are convenient in this respect. It follows from
its relationship to U®™ that K, is approximately normal for large m; more
precisely, with a,, = y3/m, a,, K,(a, x) converges to the standard normal
density. With the obvious exception of tail behavior, the approximation is good
for m as small as 2.

If Z is normally distributed with mean 0 and variance o2, it follows from

.(2.2) that

(2.6) m(w) =w + o fr(w)/fw(w).
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In this case, M (w) is derived from (2.6) by replacing fy, and fy, with f,, and
fw, respectively, where f,, is an ordinary kernel density estimator of fy,
based on the kernel K, and by adding a constant to the denominator of (2.6) to
guard against small values of f; sée (2.7) below. Note that the restrictions on
G ensure that K is analytic and thus so too is fy. The latter is a natural
property in that for normal measurement error, fy is analytic. Thus our
choice of kernel imparts on fy, the same analyticity properties possessed
by fw.

Theorem 1 is the main result on rates of convergence and is proved in the
Appendix. The probability measure governing (Y, X) under 6 = (a, B)7 is
denoted Py, and E, and Var, denote expectation and variance under P,.

THEOREM 1. Assume:

() fx, fx and f¥ are continuous and bounded,;
(i) [, (8)dt <
(iii) as |t| — oo, [R5 ()| = o(|t]") for some y > 0;
(iv) n > ©and A - 0. '

Then {f(w) — m(w)}® = Op(A* + (nA**27)7Y),

For normally distributed errors, y = 1 and the pointwise squared error rate

of convergence is of order n~*/7. For Laplacian errors, y = 0 and the rate is
—4/5
n .

Theorem 1 enables us to construct an asymptotically efficient test of H,:

B = 0. Let n,, be a sequence of positive constants converging to 0, and let f X, i

be the deconvolution density estimator constructed without using W,. Define

(2.7) P (W) = My(W,, f ) [{Mo(W;, £x0) + ).

The constants 7, are a technical convenience bounding the denominator of
(2.7) away from 0 for each n. If S} is the sample variance of {Y;} and S2 4, is
the sample variance of the {/2;,(W,)}, then the test statistic we propose is

T =Cy/(8nw)Sy), where C,=n1/2 '21 Ra(W)(Y; = 7).

Write C for the numerator of (1.3). Let P, be the probability measure
governing (Y, W) under 6, = (a,n~228)T. If €, — C and Sm(w) = 8, w) are
asymptotically negligible under P,, then the score test based on T' is asymptot-
ically efficient. Theorem 2, proved in the Appendix, gives sufficient conditions
for this to occur.
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THEOREM 2. Assume the conditions of Theorem 1 and also

@) EN1 + m* (W) + W2H{1 + Var,(Y,|W)}] is finite for all 6;
(ii) E(Y|X) is mean square differentiable with respect to 6 at 8 = (a, 0)7,
i.e.,

lime~2 [{b'(g(a + ex)) = b'(g(a)))’ fx(x) da

= {b"(g(a))g'(a)}’E(X?) < »;
(i) 7, %A* + (rATT2)"} S 0.

Then T is asymptotically efficient.

3. Applications. Practical issues related to the use of T' are discussed in
detail in another paper [Stefanski and Carroll (1990b)], which also presents
Monte Carlo evidence of the greater efficiency of T' relative to T,. We discuss
these issues briefly here and give an example application.

The use of T requires specification of the error density, a kernel and {7},
as well as estimation or specification of A. Theorem 2 indicates that asymptoti-
cally T is invariant to the kernel, {n,} and A over a wide range of choices.
Furthermore, it can be shown that misspecification of the error density does
not affect the asymptotic validity of 7', although it does affect efficiency. Our
experience suggests that T is reasonably insensitive to these auxiliary parame-
ters in finite samples, although this is not guaranteed.

In our work we employ T' primarily as a means of examining the impact of
measurement error on the usual test statistic, calculating it under different
assumed error distributions. Choice of {n,} and A is more difficult. In the
absence of a well-developed theory for estimating bandwidth, such as exists for
usual kernel density estimation, we suggest calculating 7' for a range of
bandwidths, a strategy consistent with the exploratory role suggested for T'.
Although taking 7, = 0 violates the assumptions of Theorem 2, we found good
small-sample properties of a similar estimator in the Monte Carlo study cited
above, suggesting that the third assumption of Theorem 2 might be weakened.
In the example below we also take 7, = 0. Clearly, further theoretical support
for this assignment would be desirable.

As an illustration we consider logistic regression of breast cancer incidence
on long-term log daily saturated fat intake in a cohort of 2888 women under
the age of 50 at time of examination. The data are a subset of those analyzed
by Jones, Schatzkin, Green, Block, Brinton, Ziegler, Hoover and Taylor (1987).
We calculated T' using the kernel K(¢) = 3{sin(¢)/t}*/2m assuming both
normal and double-exponential errors. In both cases we took o, = 0.55; see
Stefanski and Carroll (1990b) for details. The test statistic was calculated for a
range of bandwidths with 7, fixed at 0. The range of bandwidths was chosen
so that at the minimum and maximum, the corresponding estimators of m(w)
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appeared to be under-smoothed and over-smoothed, respectively. For A =
1.2,1.1,...,0.7, —-T=1.73,1.71,1.68,1.63,1.55,1.43 under normality and
-T=1.79,1.79,1.79,1.78,1.77,1.74 for double-exponential errors, respec-

tively. The need to estimate a derivative explains the greater instability of the
test statistics under normality. For these data T, = —1.76.

4. Conclusion. Deconvolution to estimate a density function can be very
difficult, with slow rates of convergence. For estimating m(w) = E(X|W = w),
faster rates are obtainable. This is noteworthy in the case of normal measure-
ment error, where the squared error rate of convergence for estimating a
density is of order {log (n)} 2, while that for estimating m(w) is of order n~=*/7
Sufficiently good estimates of the regression function have been obtained to
construct a fully efficient score test for the effect of a predictor measured with
error.

APPENDIX
For p = 0 or 1 make the following definitions:

Dp(x,w) =xPf(w —x), Lp(t,w) = /Dp(x,w)e—itx d,
(A1) B(u,v,A) =EK, (W, —u) /A 0K (W, —v) /A, M),
Ay(w, 1) = A_szDp(u’w)Dp(v’w)B(u,v,/\) dudv.

Three lemmas are employed in the proofs of Theorems 1 and 2. In the
following ¢; < ¢, < ¢3 < ¢, are positive numbers used to bound certain con-
stants encountered in the proofs.

LEMMA A.1. Assume the conditions of Theorem 1. Then, for all w,
A 2
(A.2) (EM,(w, fx) — My(w, fx)} <ciA*(1+ pw?),

(A.3) Var{M,(w, fx)} < e (An) Y1 = p + pA~? + pw?).

Proor. A direct calculation yields that for some 0 < a(v,x) < 1,
EMP(w, fx) = EMP(w, fAX,K) = ffx”fz(w —x) fx(x + AWw)K(v) dvdx
= Mp(w9 fX)

+(1/2))\2ffx"fz(w —x) f#(x + a(v,x)\w)v?’K(v) dvdx.
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Since fx is bounded,

2 2
{EM,(w, fx) - My(w, fx)} < 01/\4{flxplfz(w — x) dx} .
However, since [x?| <1 — p + p(lw| + lw — x|) and E(Z?) < o,

J1x?1f(w — %) dx < c5(1 + plwl),
from which (A.2) is immediate. To prove (A.3), we first show that
(A.4) Var{M(w, fx)} <n A, (w,}).
Note that :

(A5) My(w, fx) = (n2) ' T [xPfa(w = 2) K ((W; = x)/A; 2) dx,
j=1
so that
Var(M,(, fx)} < (1) " E{ w2 5w = ) K. (W, - x)/A;A)dx}z

=n"'A,(w, 1),
thus proving (A.4). By definition of K, it follows that
Ap(w,A)

(A'6)= fl/)« f1/)« L,(r,w)L,(s,w)G(rA)G(sA)dx(r + s)dz(r +s) dr
—1/A7—1/A 472¢z(r)¢z(3)

Note that L (¢, w) = e ' ¢,(t). We now show that
(A.7) L(t,w) = e ™ ¢,(t)(w + ihy(2)).

Employing a change of variable,

ds.

L(t,w) = fxfz(w —x)e *dx
= [(w = u) f(u)e ™™ du

=we ™ (t) - e'”"’fufz(u)e”" du,

from which (A.7) follows. We now complete the proof of (A.3). Note that
- by (A.6),

(A.8) Var{M,y(w, fx)} < n'lf_lfjAf_li;Atﬁz(r + s)G(rA)G(sA) drds,
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while by (A.6) and (A.7),

Var{Ml(w, fx)}

(49 <n [ [ (ol + 1) () + Is17)d5(r + )G(rA)G(sA) drds.
—1/07=1/a

L]

Furthermore, for any (e, b), since G is bounded and ¢, is integrable,

fl/A fl/)‘ Irl%ls|’,(r + s)G(rA)G(sA) drds
—1/A7 =1/

(A.10)

18 .
< c3/\_"_bf_1/l\f_ ¢y(r+s)drds <c,A"1727%,

Using (A.10) in (A.8) and (A.9) completes the proof. O
Proor oF THEOREM 1. Immediate from Lemma A.1. O

Let E, and Var, denote expectation and variance under P,. Define J,(w) =
E (YIW = w) and u(t) = b'(g()).

LeEMMA A.2. Under the assumptions of Theorem 2, nE {J (W) — u(a)}? =
o).

Proor. By definition of J,(w),

nEn{Jn(W) - ,u(a)}2
= nf[f{/x(a +n"128x) — p(a)}fz(w — x) fx(x) dx] /fw(w) dw
< nf{#(a +n728x) — p(a)) fx(x) dx = {w(a))?
by assumption. O

LeEmMA A.8. Under the assumptions of Theorem 2,

nE, [ {(Wy) = m(W))(1 + Var, (Y, 1W,)}] - o.

Proor. Let d (W) = E{M (W, fx, DIW,}). Some tedious algebra shows that
(1/20{h (W) — m(W)}? <R, + R, + Ry + R, + R;;, where
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where
R, = ;% M(W,, fx,1) - d1(W1)}2,
R, = n;%{dy(Wy) = My(W,, f)),
Ry = m* (W) n 2 Mo(W, fi1) = do( W),
Ry = m* (W), *do(W;) — My(Wy, fx)}?,
Ry = m*(Wy)ni(n, + My(Wy, fx)}
Assumption (i) of Theorem 2 and dominated convergence imply that
E,[Rs{1 + Var, (Y, W)}] = o(1).
It follows from (A.2) and (A.3) that
E (R, + RyIW,) <com; 2{(An) (A2 + WE) +24(1 + W2)},
E,(R3 + RyW,) < com, *m*(Wy){(an) ™" + A%}

and thus assumptions (i) and (ii) of Theorem 2 and dominated convergence
imply that

E,[(R, + R, + Ry + R, + Ry){1 + Var, (Y,|W,)}] = o(1),
completing the proof. O

Proor or THEOREM 2. Define
A= n-1/2 E {ﬁ"(i)(vVi) - m(“’t)}{Yl - Jn(VV,)}

and write ¢ — C = A, — A,. Under P, the summands in A, are identically
distributed, uncorrelated and have mean 0. Thus Lemma A.3 implies that

Var, (Ay) = E,|{a(W,) — m(Wy) ) Var, (Y,1W,)] = o(2),

which in turn shows that A, = 0, (1).
Write A, = A, 4, , A2 3 where

Ay 3 =n"12Y (W) = m(W)HI (W) — n(a)},
A2 2 = n~! Z {m(i)(W) - m(W)}

and A, = n'/%Y — u(a)}. Assumption (ii) of Theorem 2 implies that
Var,(A, ;) = O(1). Using Lemma A.2,

{E,.(A, 1)}2 < nE(J,(W;) - ,U«(a)}z =0(1).

Since E, (A, ;)? < E,{h;(W,) — m(W)}?, Lemma A.3 implies that A,, =
op (D). It follows that Ay 14,5 =0p ().
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By the Cauchy—Schwarz inequality
(Al1l) A3 <|nt X {mu(W) - m(Wi)}z][E (W) = p(a)}?
i=1 . i=1

The first bracketed term in (A.11) is o0p(1) since its expectation is
E [ (W)) — m(W))}? = o(1) by Lemma A.3. The second bracketed term has
expectation nE,{J, (W) — u(a)}’ = O(1) by Lemma A.2 and thus is Op(1). It
follows that A, ; = 0p (1) thus showing that ¢-cC= op(1). Finally, Lemma
A.3 implies that Sm(w) S,.wy = 0p (1), completing the proof. O
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