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ON DIFFERENTIABLE FUNCTIONALS!

By AAD VAN DER VAART

Free Urfiversity Amsterdam

Given a sample of size n from a distribution P,, one wants to estimate
a functional () of the (typically infinite-dimensional) parameter A. Lower
bounds on the performance of estimators can be based on the concept of a
differentiable functional P, — ¢(A). In this paper we relate a suitable
definition of differentiable functional to differentiability of A — dP}/? and
A = #(1). Moreover, we show that regular estimability of a functional
implies its differentiability.

1. Introduction. Let & be a class of probability distributions on a
measurable space (2, %) and let X,,..., X, be ii.d. random elements dis-
tributed according to an unknown P € &. The statistical problem is to
estimate the value at P of a functional x: & — (B, || - |) taking its values in a
normed linear space.

The question how well k can be estimated asymptotically as n — « has been
studied by many authors [e.g., Hajek (1970, 1972), Le Cam (1972, 1986), Beran
(1977), Levit (1978), Wellner (1983), Begun, Hall, Huang and Wellner (1983)
and Millar (1983, 1985)]. The best-known results are the convolution and local
asymptotic minimax (LAM) theorem in the case of locally asymptotic normal
(LAN) models. For the case that B equals R* Pfanzagl (1982), following ideas
of Koshevnik and Levit (1976), works with a particular notion of differentiable
functional «k, which makes a unified and relatively simple treatment of the
asymptotic lower bound theory possible. As shown in van der Vaart (1988),
this approach can be extended to general normed spaces.

In their study of semiparametric models, Begun, Hall, Huang and Wellner
(1983) have introduced models P indexed by and differentiable in an infinitely
dimensional parameter. From the derivative A of the density with respect to
the parameter, they construct an information operator A*A and obtain a
convolution and LAM theorem under the assumption that this is one-to-one
and onto. One can always parametrize a model by the roots of the probability
measures P themselves. Then the derivative A is just the identity operator
and the preceding condition is trivially satisfied. The main attraction of the
Begun, Hall, Huang and Wellner (1983) approach, though, is the possibility to
apply it to a “natural” parametrization, directly suggested by the underlying
probability mechanism. Unfortunately, it has become increasingly clear that in
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this case the previously mentioned assumption is too strong. Not only is the
information operator often not one-to-one. More seriously, its range is also
often not closed, which implies that it cannot be onto. Still, useful convolution
and LAM theorems may be obtained by the approach based on differentiable
functionals.

In this paper we describe the set of functionals which are differentiable in
the sense of Pfanzagl (1982) and van der Vaart (1988) in terms of the
derivative A of the density. This generalizes the approach of Begun, Hall,
Huang and Wellner (1983). Moreover, we show that the existence of reason-
able estimators of a functional implies its differentiability. The combination of
these results allows us to investigate in several examples whether certain
functionals are estimable at V7 -rate.

A more precise outline of the paper is as follows. In a model P indexed by a
Hilbert space valued parameter A, we consider functionals «(P,) which are
functionals ¢(A) of A. We assume that both the maps A — dP/% and A — ())
are differentiable. As a necessary and sufficient condition for «(P,) to be
differentiable on P, we obtain that the gradients of ¢ must be contained in the
range of the adjoint operator of A (Section 3). We explain how this extends the
approach of Begun, Hall, Huang and Wellner (1983). A further extension turns
out to be impossible as it can be shown that the condition is necessary for the
existence of regular estimator sequences (Section 2). For a real-valued func-
tional the condition has an important statistical interpretation: It is equivalent
to the condition that the efficient information is positive and finite (Section 4).
In Sections 5 and 6, we translate the more general result of Section 3 to
parametric and semiparametric models, respectively. Finally, we give several
examples: mixture models, the censoring model, random truncation and in-
complete censored observations (Sections 7-10). Technical proofs have been
gathered in the appendix.

2. Differentiable functionals. In this section we state the definition of
a differentiable functional that is used in this paper. It refers to a set of paths
in & which start at a fixed point P € & and is closely related to the
definitions in Pfanzagl (1982) and van der Vaart (1988). Let L,(P) be the set
of (equivalence classes of) measurable, P-square integrable functions, with
inner product {g;, g,)p = /g,8, dP and norm |Igll, = {/g? dP}/?; let L,,(P)
be the subset of g € L,(P) with [gdP = 0.

Let Z(P) be a collection of maps ¢ — P, from an interval (0,¢) C R to &,
satisfying for some g € L,(P),

(2.1) [1¢~(dP}? - dPV?) - 1gdP2]* -0 ast|0.

[Here dP, and dP are densities of P, and P, respectively, with respect to an
arbitrary o-finite measure dominating both P, and P. The left-hand side of
(2.1) is the same for every choice of such a dominating measure.] Note that g
is a “quadratic mean version” of the ‘“score function” d[log dP,(x)]/d¢t|;-o.
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To Z(P) corresponds a tangent space T(P), consisting of all elements g as
in (2.1). As the name suggests, we assume that [#?(P) can be and is chosen
such that] T(P) is a linear space. Moreover, we assume that ¢ —» P,;, is in
P(P) for every h € R*, whenever ¢ — P, is.

Now k: #— (B, | - |) is differentiable at P relative to FP(P), if there exists a
continuous, linear map «p: (T(P),|| - || p) = (B, - ID such that

(2:2) t(k(P,) — k(P)) = kp(8),

for every path ¢ — P, in Z(P). [If #(P) is the set of all paths satisfying (2.1),
then this could be formulated in terms of Hadamard differentiability. How-
ever, usually we do not take all paths.]

For differentiable functionals it is possible to derive a theory of bounds on
the asymptotic performance of estimators, in particular, convolution and LAM
theorems. Here the derivative «p determines the optimal limiting measure,
the form of which can be conveniently expressed in terms of the (efficient)
influence functions kp ,+ of k.

These are defined as follows: For every b* from the dual space B* (the set of
continuous, linear, real maps on B), the map b*ckp: (T(P), | l,) » R is
continuous and linear. Hence, by the Riesz representation theorem for Hilbert
spaces, there is a unique element <p ,« € T(P), with

(2.3) b*okp(g) = <g,Kp y)p forevery g € T(P).

Under the assumption that an optimal limiting measure N exists as a tight
measure on the Borel o-field of (B, [ - []), it can be uniquely determined by

(2.4) Nob* ' = N(0,l7p pull3),  b* € B*.

Another way to express (2.4) is to write N =_#(G) as the distribution of a
Borel measurable random element G in B. Then (2.4) is equivalent to saying
that, for every finite set bf,...,b; in B*, the Euclidean valued variable

b (@), ..., (@) has a zero-mean multivariate Gaussian distribution with
covariances determined by
(2.4) Ebi*(G)bf(G) = <’zp,b;,'zp,b1*>P-

Frequently, one considers a space B of uniformly bounded functions b: T — R
on some arbitrary index set T. Then the coordinate projections m,: b — b(¢)
are contained in the dual space B* and (2.4') implies for this special situation,

EG(s)G(t) = {Rp . ,&p »)p.

In a sense, this definition is the “right” definition for use in connection
with asymptotic bounds, as existence of reasonable estimators for a functional
k implies its differentiability. To state a result in this direction, we consider
estimators T, = ¢,(X,..., X,) generated by maps ¢,: y* — B. Next, to avoid
measurability problems, we formulate weak convergence in terms of outer
integrals, following Hoffman-Jgrgensen (1984). Precisely, we do not assume
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that the maps ¢, are measurable and write
(25) ‘/;{(Tn - bn) =>Ph,l/,/7 L’
if and only if .

Ej o f(Vn(T,-b,)) > [fdL,

for every bounded, continuous f: B — R and a tight Borel measure L on B. In
the case that the maps ¢, are measurable from #" into the Borel o-field, (2.5)
is just weak convergence as usual. The minor extension using outer integral
E* is useful, since in the case of nonseparable B, many estimators may
correspond to maps ¢, which are not Borel measurable. van der Vaart and
Wellner (1989) contains a review of this notion of weak convergence suited to
the proofs in the present paper.

THEOREM 2.1. Suppose that, for every {P,} € #(P) and h,, > h € R,
(2.6) (T, = &(Pu,,i)) =5 ,m L»

where L is a fixed tight Borel law on B, the same for every path {P,}. Moreover,
assume that, for every g € T(P), Vn (T, — k(P)), n~'/2L"_ (X)) converges
weakly under P on B X R [or, alternatively, (2.7)]. Then k: Z— B, |- ) is
differentiable at P € & relative to S(P). Moreover, there exists a tight Borel
measure N satisfying (2.4) and L is the convolution of N and some other Borel
probability measure on B.

The last assertion of Theorem 2.1 is one form of the convolution theorem.
The main reason to quote theorem 2.1 here, however, is the part asserting
differentiability of k. The proof of this assertion can be found in the appendix.
For a proof of the present version of the convolution theorem we refer to van
der Vaart and Wellner (1989), or Bickel, Klaassen, Ritov and Wellner (1990).
Somewhat different versions of the convolution theorem (for the case that B is
Euclidean space or a separable Banach space) can be found in Pfanzagl (1982)
and Millar (1985).

Assumption (2.6) may [following Hajek (1970)] be called regularity of the
estimator sequence {7,}. In addition to this, Theorem 2.1 requires joint weak
convergence of the standardized estimator and the log likelihood ratio (along
the whole sequence {n}, not just along subsequences). We have not been able to
prove the differentiability part of Theorem 2.1 without this second condition.
Note that regular estimator sequences of which the marginals are asymptoti-
cally linear certainly do have the property of joint convergence. It is shown in
the appendix that [under (2.6)] the joint convergence condition is equivalent to

(2.7 lin(}t_l(x( P,) — k(P)) exists.
> tl
Hence, existence of an “ordinary” regular estimator (2.6) and “ordinary”

differentiability along paths, (2.7), also imply differentiability in the above
sense.
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3. Models parametrized by a subset of a Hilbert space. Let
(H,{ -, - Yu) be a Hilbert space and suppose that &= {P,: A € A} for some
subset A of H. Fix A € A and let A(A) be a set of paths ¢ — A, such that

(3.1) , t7Y(A,—A) > a astlO,

for elements « € H. Let T'(A, A) be the set of all a thus obtained. Assume that
it is a closed, linear subspace and that ¢ — A,, is in A(A) for every h € R* if
t — A, is. Furthermore, assume the existence of a continuous, linear operator
A =A,: T(A,A) - L,(P,) such that

(3.2) [l \(dPi/? - dPY?) — $Aa dP?]* >0 asty0,

for every path A, in A()) [satisfying (3.1)]. This assumption is related to but
weaker than the assumption of Hellinger differentiability in Begun, Hall,
Huang and Wellner (1983). [Indeed, if A()) is the set of all paths as in (3.1),
then (3.2) is precisely Hadamard differentiability of A — dP,\/?, whereas the
condition in Begun, Hall, Huang and Wellner is Fréchet dlﬁ‘erentlablhty, for
this terminology cf. Averbukh and Smolyanov (1967).]

As a collection of paths P(P,) in the sense of Section 2 we take all paths
t - P,, where t - A, is in A(A) Then the tangent space is the range of A:
T(PA) =AT(A A) = R(A) We consider a functional « of the form

(3.3) k(Py) = ¢(A).
Of course, we have to assume that this is well defined, i.e., that the functional

¥ is identifiable over P. We also assume that ¢: A — B is differentiable at A in
the sense that

(3.4) t= (W(r) — ¥ (Q)) = ¢i(a),

for some continuous, linear map ¥,: (T'(A, A), || - [ ;) = B, || - ) and every path
A, in A()) satisfying (3.1).

We now obtain a necessary and sufficient condition on A and ¢ for
differentiability of the functional « in the sense of Section 2. First, we
introduce the adjoint of A and gradients of . The adjoint of A is the map A*:

L,(P,) - T(A, A) which satisfies ( Aa, g)p, = (@, A*g)n for every a € T(A, A)
and g € Ly(P).

If b* € B*, then the map b*° , is a continuous, linear map from T(A, A)
to R. Hence, it has a representation as an inner product,

(3.5) o b*eg(a) = e, iy pom,
for a unique ¥, ,. € T\ A.

We shall refer to 11/)‘ »+ as a gradient of ¢. Gradients are similar to influence
functions as defined in (2.3). Different authors use different terminology here.
In this paper we have gradients/influence functions on two levels, and (as we
. shall see) different parametrizations lead to influence functions/gradients
which may differ by % or a root density. We hope that this will not lead to

misunderstanding.
We are ready to state the main result of this section.
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THEOREM 3.1. «k: Z— (B, - I as in (3.3) is differentiable relative to #(P,)
at P, if and only if

(3.6) U0« € R(A*)  for every b* € B*,
The efficient influence functions of k are related to the gradients of i by
(3.7 Uy pn = A*Rp 4oy Uy p» € T(A,A), Rp 4+ € R(A).

Relation (3.5) defines a map (¢,)*: B* — H through (¢,)*(b*) = n/;,\, p+- lden-
tifying H and its dual H* as usual, it is just the adjoint of ¢,. Thus, we can
restate (3.6) as

(3.6) R((4))*) cR(A*).

With this notation, the above theorem remains true if the Hilbert space H is
replaced by an arbitrary Banach space, provided the adjoints are given the
right interpretation. This is not true for several results in the sequel, though,
and the Hilbert space case appears to be by far the most interesting case.

Proor or THEOREM 3.1. Suppose « is differentiable. Then, by (2.2), (3.3)
and (3.4),

<p(Aa) = limt~(x(P,) = k(P)) = #}(a),

for every a € T(A, A). Thus, for every b* € B* and a € T(A, A),
b*okp(Aa) = b*oy,(a) = (a, Uy pe)H-
On the other hand, by definition [cf. (2.3)],
b*okp(Aa) = (Aa,Rp, ), = (@, A*Rp p)u.

Combination implies (3.7) and hence (3.6).
Conversely, suppose that (3.6) holds. Define a ‘‘derivative” of x on R(A) by

kp(Aa) = ¢;(a), acT(AA).

By (3.6) this is well defined, for if Aa; = Aa,, then a; —a, € N(A) =
R(A®* c R(y)*)* = N(y)). Thus ¢,(a;) = ¢,(ay). We only have to show
that «p_is continuous and linear. For every b* € B,
b*okp(Aa) = b*e g (a) = {a, ¥, y=)u.
By (3.6), this is equal to
<(1 A*Izp b"'>H= <Aa k'P b*>PA,

for some Kp, ,» € Lo(P,). But this shows that b*o kp, is a continuous, linear
real map on "R(A) for every b* € B*. By Lemma A.2 in the appendix, applied
with X = R(A), Y = B and Y’ = B*, this is sufficient to conclude continuity
and linearity of «p: R(A) » B. O



184 A. VAN DER VAART

Since we assume throughout that ¢ is differentiable, (2.7) is trivially
satisfied for the corresponding k. Thus, Theorem 3.1 may be combined with
Theorem 2.1 to say that (3.6) is necessary for the existence of regular estima-
tor sequences. We return to this in the next section.

By taking orthocomplements we see that (3.6") implies

(3.8) N(A) c N(¥,).
Condition (3.8) has an easily understandable intuitive meaning as a (local)
identifiability condition. Failure of the condition implies the existence of a path
t = A, such that (1) = ¢(A) + ¢y (h) + o(2), Y (k) # 0, whereas P, = P, +
o(t). Thus P, is much closer to P, than ¥(A,) to Y(A) for ¢ small and we
cannot hope to discriminate ¥(A,) accurately from (A). The examples support
this interpretation of (3.8) as an identifiability condition.

The precise mathematical form of (3.6) is somewhat puzzling, though the
condition can be translated in simple statistical terms (Section 4). In the rest
of this section we show that (3.6) reduces to (3.8) if R(A) is closed, and we
show how one can obtain a formula reminiscent of some formulas of Begun,
Hall, Huang and Wellner (1983) if (3.6) is strengthened to the condition that
the gradients of ¢ are contained in the range of A*A. We start with the
following corollary.

CoROLLARY 3.2. If (3.8) holds and R(A) is closed, then k: #Z— (B, || - | is
differentiable relative to #(P,) at P,.

Proor. R(A) is closed if and only if R(A*) is closed [Rudin (1973), 4.14].
Then, by the well-known duality formulas and (3.8),

R(A*) = R(A) = N(A)* > N(¥)* = R((¥))*) 2 R((¥})*). =

Thus, if the identifiability condition (3.8) is satisfied, differentiability of «
can fail only if R(A) is not closed. The condition that R(A) is closed is a crude
type of condition, as it does not refer to the particular functional ¢ at all,
whereas (3.6) does. We can go still one step further by also assuming that A is
one-to-one. Then any functional of the form (3.3) is differentiable, since local
identifiability (3.8) is trivially satisfied.

CoROLLARY 3.3. If N(A) = 0 and R(A) is closed, then x: Z— (B, || - 1) is
differentiable relative to #(P,) at P,.

The condition of Corollary (8.3) is the condition used by Begun, Hall, Huang
and Wellner (1983) when obtaining bounds for estimating the distribution
function of the nuisance parameter in semiparametric models. We can see this
by rephrasing it in terms of the information operator A*A: T(X, A) > T(A, A).

Lemma 3.4.

(i) A*A is one-to-one and onto if and only if N(A) = 0 and R(A) is closed.
(ii) R(A*A) c R(A¥) with equality if and only if R(A) is closed.
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Proor. (i) If A*A is one-to-one, then A is one-to-one too. If A*A is onto,
then A* is onto too and R(A*) = T'(A, A) is closed by assumption. Then R(A)
is closed too [Rudin (1973), 4.14]. Conversely, suppose that N(A) = 0 and
R(A) is closed. If A*Aa = 0, then* Aa € N(A*) = R(A)*. Of course, Aa €
R(A) too, so that it must be zero. Hence, « € N(A) = 0. That A*A is onto
follows from (ii) and the equality R(A*A) = R(A*) = N(A)*=0"

(i) The inclusion is obvious. Suppose R(A) is closed and a« = A*g. Then g
can be decomposed in g =g, + g, where g, € R(A) and g, € R(A)*=
N(A*). We conclude that « = A*g, = A*AB for some B. Conversely, suppose
that R(A) is not closed. Let g € R(A) — R(A). Then a = A*g € R(A*) —
R(A*A); for suppose it is not. Then o = A*AB for some B. Then g — AB €
N(A*) = R(A)*. Since trivially g — AB € R(A), we obtain g — AB = 0. This
contradicts the assumption. O

In the case of parametric models (cf. Section 5) R(A) is finite dimensional
and hence automatically closed. Unfortunately, in the case of infinite-dimen-
sional parameter spaces, R(A) fails to be closed much more often than we
would want it to. (See the examples in Sections 7-10.) In a way, these
situations are the more interesting ones, though both the statistical and
mathematical problems are more complicated. Then there are smooth func-
tionals ¢ such that the corresponding « given by (3.3) is not differentiable.
Thus, there exist no regular estimators in the sense of Section 2, which
roughly means that estimation of ¢ at Vn -rate is impossible. Preliminary
results show that, in principle, any rate slower than Vn occurs for some i,
depending (possibly) on the precise position of ¢, ;. outside R(A*).

If R(A) is not closed, we have to check (3.6) for the particular functional at
hand to see whether ¢ is estimable at Vn -rate. By Lemma 3.4(i), it may be
replaced as a sufficient condition for differentiability of « by the stronger
condition

(3.9) ¥, y» € R(A*A) for every b* € B*.

Under (3.9) an alternative method for obtaining the influence functions of « in
terms of the gradients of ¢ is as follows: Let a, € T'(A, A) be a solution to

Uy o = A*Aa.

A*A need not be one-to-one. However, use the suggestive notation «, =
(A*A)™¢, 4+ Then,

(3.10) ’EP)\,b* =A(A*A)‘(Z’)‘,b*'

This function clearly satisfies (3.7) and, in fact, is the unique solution in R(A)
of the equation ¢, ,» = A*g, g € Ly(P,). [If A*g, = A*g,, then g, — g, €
N(A*) = R(A)*. Then, if moreover both g; are in R(A), g, — &, is too, so
that g, — g, = 0.]

By Lemma 3.4(ii), condition (3.9) can be really stronger than (3.6). In fact,
(3.10) shows that (3.9) is a sufficient condition for the influence function of «
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to be not only contained in R(A) (which is true by definition), but also in
R(A). A closer look reveals that this may also be reversed. Thus, there are two
cases. If xl/,\ »+ is contained in R(A*A), then the influence function of « is
contained in R(A) and can be found from (3.10). On the other hand, when
xl/,\,b* is contained in R(A*) — R(A*A), then the influence function of « is
contained in R(A) — R(A) and we must use (3.7).

Here we note that the equation A*g = Jrl\ »+ has multiple solutions g in

Ly(P)). To find the unique solution g = kp , € R(A), we could first find a
solution g, of A*g = l,[I/\ p+ in Lo(P,) and next, project &, onto R(A) to find

KP)‘, b*-

4. Differentiability and efficient information. In Section 3 we saw
that (3.6) is necessary and sufficient for differentiability of a functional x of
the form (3.3) (given that ¢ is differentiable). Since differentiability of
clearly implies (2.7), it follows by combination with Theorem 2.1 that (3.6) is
also necessary for the existence of a regular estimator sequence for «.

In this section we provide a further expression of this in terms of the
efficient Fisher information. We restrict ourselves to real-valued functionals.
(It is possible to state similar results for abstract functionals by reducing these
to the set of functionals b*o k.) It will be shown that if (3.6) fails, then there
exists a submodel ¢ — P, such that the information about « in the submodel
is arbitrarily close to zero.

To make this precise, define the information about « in ¢ » &, , where
t — A, satisfies (3.1), at P, by

Al

<¢/,\, a>H

Here ¢, is the gradient of ¢ in the direction 1 € R [i.e., ¥,(a) = {a, ¥, ) ul.
The inverse of i, is prec1sely the familiar lower bound given by the
Cramér-Rao theorem IIAaII is the information about ¢, while <(/J,\, oYy =
dy(A,)/d¢|;—o. Hence, the i inverse of the information number defined in (4.1) is
a lower bound for the variance of an estimator which is unbiased for ¢(A,) over
the submodel ¢ — P, . It can also be given an asymptotlc interpretation, for
instance, as a lower bound for the local asymptotic minimax risk over ¢ — P,
in the sense of Hajek (1972). This follows (almost) directly from Hajek (1972)
and the fact that (3.2) implies local asymptotic normality:

(4.1)

a

log ® “/“" T (XY = hn 2 Y Aa(X;) - —h2|| Aa[}, + 0p(1).
Jj=1 j=1

Now, by “efficient Fisher information” we mean the infimum over all
one-dimensional submodels of the expression in (4.1). We have that the
efficient information is positive if and only if (3.6) holds.

THEOREM 4.1. In the situation of Section 3,inf,, c p, Ay i, > 0 if and only if
(3.6) holds.
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Proor. If (3.6) holds, then for every a € T(A, A),
- 2 - 2
i—l _ <A*KP)“b*,a>H_ <KP,\,b"" Aa)PI\
a 2 - 2
| Aee|p, | Aer||,

Our proof of the converse is somewhat involved and is deferred to the
Appendix. O

2
<|%p, "pA-

5. Parametric models. The results of this section are not surprising.
However, it may be helpful to have the more abstract situation of Section 3
translated back to the familiar situation of a smooth finite-dimensional model
P ={P,: 0 € O}, where O C R* is open. Suppose

[t (dP}2,, — dBY?) - K2, dPY?]" > 0 ast— 0, h, -k,

for some / € Ly(P)* Let I, = [ / / dP, be the Fisher information matrix.

In the notatlon of Sectlon 3 we have Ah=nh / A*g = (lo,g)pe and
N(A) = {h: K'I,h = 0} = N(I,).

Let «(P,) = ¢f(0) where : ® —» R™ is differentiable in the ordinary sense
with derivative . Because any finite-dimensional linear space is closed, we
may use Corollary 3.2 to see that relation (3.6) reduces to the present form of
3.8),

N(1y) c N(dy).

In particular, to estimate ¢(6) = 0, the Fisher information ‘matrix must be
nonsingular.

6. Semiparametric models. This section treats a special case of the
general model of Section 3. The parameter A is split into a Euclidean part and
a probability density. The results are merely a translation of the results
obtained before to this special situation.

Let #={P,,: 6 € ©, 7 € #}, where ® C R* is open and # is the class of
all probability densities with respect to a o-finite measure v on a measurable
space (2, &/). Assume the existence of ¢, € Ly(P, )* and of a continuous,
linear operator ¢,: L, ,(n) — Ly(P,,) such that for every h € R*

61)  [[N (AP, - dPY?) = 3(4n + 4,8) dP?] o,
whenever ¢ |0, and
(6.2) JIe7 (ni% = n/2) = 3pn*2]" dv > 0.

[Of -course, the derivatives / / and / do depend on (6, n). Followmg the
convention introduced for A in Section 3, we don’t let this show up in the
notatlon] This can be accommodated in the setup of Section 3 by setting

={(6,7'?): 6 €O, n € #), which is contained in the Hilbert space
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R* X L,(v). We consider the set of paths ¢ — (8 + th, n;/%), where n;/? satis-
fies (6.2). Then T((8,7n'/2),A) = R¥ X L,,(n)n*/? and A: T((8,7'/2),A) -
L,(P,,) satisfies '

(6.3) A(h, 380Y%) = 4k + 4,B.
Since (A(h, 381'/2), g)p, = h'{Zs, &)p,, + (3B1'/%24*gn'/?),, we have
(6.4) A*g = (L, 8)p,» 24,5801 2).

Let us first consider estimation of a functional y: ® — R™, which is
differentiable in the ordinary sense, with derivative the (m X k) matrix y,. To
state the result, we need the concept of efficient Fisher information matrix for
6. This is defined as follows: Decompose every one of the & elements of ¢, in a
component in R(/n) and a component orthogonal to R(¢,). The k-vector of

the latter is called the efficient score function for 6. Denote it by ¢,. Thus,

ly="ly+ (4y— ),

where

%€R(4),  4-4 LR(,).
The efficient information matrix is defined by fon =/ /-0/-0' dpP,,.

COROLLARY 6.1. The functional k: & - R™ given through k(P,,) = x(6) is
differentiable at Py, if and only if N(1,,) € N(x;).

PrOOF. Define ¢: A —» R™ by ¢(8, n'/2) = x(6). Then, for every h € R*
and B € L, ,(n),

vi(h, 2Bn'/%) = lime=(y (0 + th,m;”2) — y(6,7"%))
= Eiln(}t_l(x(f) +th) — x(0)) = xs(h).

Thus, the gradient of ¢ in the direction f € R™ is given by &A, = (f"°x4,0).
This is contained in R(A¥*) if and only if

(floxy) € {< Za,g>Pen: g e N(Zﬂ*) = R(Zn)l} - R(I-an).
This is equivalent to the condition of the corollary. O

Next consider estimation of a functional of 5. Identifying the set of n’s with
a set of probability measures, we speak of differentiability in the sense of
Section 2 of y: #— (B,| - ), relative to the set of all paths ¢ - 7, in #
which satisfy (6.2), and accordingly define its influence functions. [We prefer to
view y as a functional in this way rather than as a functional on a subset of
L,(v), as this will lead to simpler influence functions/gradients. For instance,
the influence function of n — [.n dv will be 1; — [on dv rather than 2(1, —
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Jem dv)n'/2] Thus, we assume the existence of a continuous, linear operator

(6.5) = (x () — x(m) = x1(B),

for every path ¢ — 7, satisfying (6.2). To avoid technicalities, we assume that
and 7 are not locally confounded, i.e., that the efficient Fisher information
matrix for 6 is nonsingular.

COROLLARY 6.2. Suppose that fen is nonsingular. Then k: #— (B,]| )
given by k(Py,) = x(n) is differentiable at P,, if and only if
X, b* € R(Zn*) for every b* € B*.
Influence functions of k and x are related by

0= < O’KPen,b*>Pen,

-~ _ .*-1
Xn,b* = /11 KPG‘ﬂ’b*.

(6.6)

Under the stronger condition that x, u« € R(Zn*Zn), the solution of (6.6) is
given by '
(6.7) &, o0 = o 45,) e = </n(/n*/n) );,,,,,,,,zo>Pen1;,,1/0.
Here (Zn*zn)_)zn,b* is a solution in L, ,(n) of Zn*ZnB = X b

ProOF. Define ¢: A — B by (0, n'/2) = x(n). Then, for every h € R* and
B € Lz*("l),

vi(h, 3Bn"/%) = Time=(y(6 + th, m;/%) = y(6,7"/%))
tl

lifgt‘l(x(ml/z) = x(n'?)) = x4(B)-

Thus, the gradient of  in the direction b* is given by ¥, ,. = (0,2 Xy 5.
The first part of the corollary follows from Theorem 3.1 if we can show that
R(A*) = R* X R(£*)n'/?. Now R(A*) is certainly not larger than the expres-
sion on the right. Furthermore, it contains the set

{((Ze,g>pen,22n*gnl/2): gec lin(20)> = R* x {0},
because lin(Z,) C R(/'n"‘)l = N(Zn* ). But then it also contains
Rk x {¢gn"?} = (o, 8)p,,» 48" 2)} + RE X {0},

for every g.
Finally (6.6) is the translation of (3.7) and direct substitution shows that

+(6.7) gives a solution to (6.6), which is clearly contained in R( A). O

7. Example: Estimating a functional of a mixing distribution. Let
p(+, 2) be the density with respect to Lebesgue measure on R of a one-dimen-
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sional exponential family member, i.e.,
(7.1) p(x,2) = h(x)c(z)e*?, x e ZcR.
Let &# be the set of continuous probability densities with respect to Lebesgue
measure on the natural parameter space 2= {z: [h(x)e*™ dx < «} of the
family.

Set #={P,: n € #}, where P, has density

(7.2) p(-,m) = [p(-,2)n(2) dz.

[We abuse notation in using both p(-,7) and p(-, z).] This example fits in the
setup of Section 3. We find it convenient to make translations similar to those
in Section 6. Hence, we refer below to Section 6 with the Euclidean parameter
left out.

We may think of the present model as arising in the following manner:
From an unobservable pair (X, Z) with density p(x,z)n(z) we observe the
measurable transformation #( X, Z) = X. Thus, it follows from general theo-
rems on the preservation of LAN and differentiability in quadratic mean [cf. Le
Cam and Yang (1988), van der Vaart (1988), Appendix A.3, and Bickel,
Klaassen, Ritov and Wellner (1990)], that in the present situation (6.2) implies

(6.1). Here, ¢,: T(n, #) = Ly, (n) > Ly(P,) is defined by
~ JB(2) p(x,2)n(z2) dz
7.3 Z B(x) =E Z)| X=x)=
(18)  4p(x) =E,(B(2)| X - ) HERS
Using Fubini’s theorem, it is then easily checked that

¢*g(z2) =E,(g(X)|Z =2) - E,g(X)

= fg(x)p(x,z) dx — [gdPn-

Completeness of the exponential family implies

(7.4)

(7.5) N(Zn) =0 and N(Zn*) = {constants},
whence by taking orthocomplements,
(7.6) R(Z,) =Ly4(P,) and R(Z}*) =Ly (n).

Consider a differentiable functional y: #— R [cf. (6.5)] and let ¥, be its
influence function in the direction 1 € R* [i.e., x;(B) = [X,Bn dz]. By Corol-
lary 6.1, k(P,) = x(n) is differentiable at P, if a.nd only if
(7.7) %, € R(/*)

The influence function of « is then given by & P, = ( / )" X
Unfortunately, R(/ *) is not closed. If it was, then by the second part of
(7 6), it would contam e.g., the functions

(7.8) Loy — f_wn(z) dz, u€eR.
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However, from the completeness of the exponential family it follows readily
that < g(2) cannot be constant in an open interval, unless it is constant
everywhere Hence the functions (7.8) are not contained in R( /,7*)

The function in (7.8) is just the influence function for estimating the
distribution function x(n) = [¥.n(2)dz of n. Theorem 4.1 tells us that the
efficient information for estimating this functional equals zero. Thus there
exist no estimators with a Vn -rate (more precisely, with vn -rate “uniformly
along one-dimensional paths in shrinking neighborhoods’’).

The study of which rates are attainable has only just started. We mention
Ritov (1987), Carroll and Hall (1988) and Fan (1988), who consider ‘“decon-
volution” problems.

By the same argument we see that many other functionals are also not
estimable at Vn -rate. For instance, quantiles of n or M-functionals with an
influence function which is constant on an interval. This should not make us
blind to the fact that many functionals are regularly estimable. Let us show
how our result can be used in a positive manner to characterize all the linear
functionals of the form n — fecn dz which are regularly estimable (¢ fixed,
known). Each such functional has gradient ¢ — fcn dz. Hence, if it is regularly
estimable, we must have ¢ — fen dz € R(£*). From (7.4) we see that c(z) =
J&,(x)p(x, 2) dx, for some g, € L,(P,). Since c itself does not depend on 7,
we must have

o(2) = [g(x)p(x,2) dx,

where g € L,(P,) for every 7. A regular estimator for this functional is given
by T, =n"'E7%_ 1g(X)

8. Example: Univariate right censoring. Let Y and C be indepen-
dent, nonnegative random variables with distribution functions F and G. Let
& be the set of all distributions P of the pair (Y A C, 1, _.), when F and G
range over all continuous distribution functions on (0,). This is again a
model where one ‘““‘looses information,” because one only observes a measur-
able transformation of the underlying random element (Y, C). Therefore, we
can again refer to Le Cam and Yang (1988), van der Vaart (1988) or Bickel,
Klaassen, Ritov and Wellner (1990) to establish an implication of the form
(3.1) = (3.2). In the present case this can be described as follows:

Define maps from L, ,(F) and L, ,(G), respectively, to L,(Pgg;) by
Jex, @ AF

- F(x)’
. Jiz, b dG

2,b(x,8) = Epg(b(C)|[YAC=x,1y o =8) = am + (1 -8)b(x).

Défine A: Ly, (F) X Ly, (G) = Ly(Pgg) by Ala, b) = Z,a + Z,b. Now, if

(8.1a) f[t'l(dE1/2 — dFV/?) — %adFl/z]z 50

/a(x ) —EFG(a(Y)|Y/\ C=x,1y _c=28)=da(x) +(1- 6)
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and

(8.1b) [ltY(dG}72 - dG*2) - 1bdGV?]* - o,
then '

(8.2) [t 1(aPig, - dPi?) - 3A(a, ) dPE]” ~ 0.

In this model the distribution F is usually the parameter of interest. So,
consider a functional of the type k(Pgg) = x(F), where x: % — B, || is
differentiable relative to the set of paths ¢ — F, satisfying (8.1) [in the sense of
Section 2 and ¥ the set of all distributions on (0, «)].

COROLLARY 8.1. k: P— (B, |- |) is differentiable at Py relative to the
paths t — Pp generated by (8.1) if and only if

Xr, o € R(Zl*) for every b* € B*,

Influence functions of k and x are related by l 1 Rpog, b = XF, b*

Proor. It is straightforward to establish that A*g = (/;*g, /;*g) [where
8 € Ly(Ppg)] and, using orthogonality of R(Z;) and R(<,), that R(A*) =
R(¢{*) X R(Z5*). The corollary can then be derived from Theorem 3.1 in the
same manner as Corollary 6.1. O

Let 75 = sup{s: G(s) <1} be the right end-point of G and define
similarly. Then,

(8.3) N(Zl) ={a€Ly,(F):a(x) = 0 for F-almost all x < 7).

The present form of (3.8) is N(¢;) € N(x}). This is satisfied if y depends on F
only through the values of F on [0, 7;). This supports the interpretation of
(3.8) as an identifiability condition: It is clearly impossible to estimate F to the
right of 7, as all Y’s larger than 7 will be censored.

Unfortunately, again R(/*) need not be closed, so that the question
whether a functional is differentiable needs careful analysis. A good starting
point is the identity

(8.4) /¥/, = R7'SR,

where R is an isometry of L, ,(F) onto L,(F), satisfying

(85) Ra(x) = a(x) - 2222 4 R'a(x) = a(x) Ji o
1-F(x) 0,x] 1-F’

and S: Ly(F) — L,(F) is given by

(8.6) Sa(x) =a(x)(1 - G(x)).

Formula (8.4) is a form of the spectral decomposition of the positive, self-ad-
joint operator /*¢, [cf. Reed and Simon (1980), page 221]. [In the finite-di-
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mensional analogue, R would be the transformation to an orthonormal base of
eigenvectors and the multiplication (8.6) would be coordinatewise multiplica-
tion with the vector of eigenvalues.] The key relations (8.4)-(8.6) were all
communicated to us by Wellner and were obtained by martingale calculations
along the lines of Ritov and Wellner (1988). We do not prove (8.4)—(8.6) here,
but refer to Bickel, Klaassen, Ritov and Wellner (1990).

Since aly ..., € R(S) for every a € Ly(F) and ¢ > 0, we have R(S)=
{a € Ly(F): a(x) = 0 for F-almost all x > 7;}. However, R(S) is typically
not closed. Closedness would imply that every a € L,(F) satisfies
Ji0,761% 2/(1 — @) dF < », which may be true for a particular F' and G, but
fails, for instance, if F' has a density which is bounded away from zero near
7g- Since R is an isometry, R(/ */ ) [and hence, by Lemma 3.4, R(/l)] is
closed if and only if R(S) is closed. Hence in the important case that 74 < 75
one often has that R(¢,) is not closed.

The polar decomposition of ¢;* (see Lemma A.3 in the appendix) yields

(8.7) R(4F) = R((ZI*ZI)W) -~ R(R™'S'?R),

where S'/2a = a(1 — G)/2
Corollary 8.1 and (8.7) show that a real-valued functional y: ¥ - R is
differentiable at Pg; if and only if its influence function satisfies yr =
R™'S'2Ra for some a € L,,(F). Since R™! is an isometry, this reduces to
(RXF)*

For instance, for the mean of F to be regularly estimable it is necessary that

[[x- Jix, 3 dF(s) \* dF(x)
1-F(x) 1-G(x)

The spectral decomposition greatly simplifies obtaining the lower bound
13 Pm” for the asymptotic variance. By Lemma A.3, this equals || 8]/ 7> Where
Be N(/ )+ solves (£ /)V?B = fp = /FR Py BY the spectral decomposition,

Rxp
(RB)Yp,.oy = (1—_G‘)171[o,m].

Next, by (8.3), B8 must be constant on [74, ®), so that (RB)1
Hence,

= = 0 by (8.5).

[

|&p |5 =1Bl%=1RBIF = Rr)” o
KPFG PFG_ B F_I B F_‘/IZO,TG] l_G .

Perhaps the most interesting functional is the distribution function F. It is
well known that the product-limit estimator is a regular estimator for the
restriction of F to [0, 7], seen as an element of the space D[O0, 7], if 7 < 74.
Hence, by Theorem 2.1, this functional is differentiable. Let us compute the
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influence function of Pp; —» F(u) where u < 7. The gradient of F — F(u) is
Lo, ) — F(u). By (8.5),
1-F(u)
R(l[O,u] - F(u)) = 1[0,u1‘—1'_T“

Under the condition that u < 7, this function is contained in the range of S.
By (8.4),

1-F(u)
CUA-F)1-6)
so that by (3.10) and (8.5) an influence function of Pp; — F(u) is given by
1 - F(u) . dF
'[[0,~]1[0’u](1 - Fw)) 1-F¥1-6))

/¥R Lio,u — Fu),

4 1[0”‘](1 -F)(1-G)

9. Example: Random truncation. Let U and V be independent posi-
tive random variables with unknown continuous distribution functions F and
G, respectively. Let the observations be an ii.d. sample from Pgg =
Zpe((U, V)|V < U). We show that the functional Pgr; — F(u) (where 0 < u <
o) is regularly estimable only if

»dF
(91) j(; —E < o,

Moreover, we address differentiability of Prg — F.

This model is treated by Woodroofe (1985) and Keiding and Gill (1990), who
show that, given identifiability, under (9.1) the maximum likelihood estimator
yields an asymptotically normal estimator for F(u). Furthermore, Woodroofe
establishes that (9.1) is necessary for the asymptotic variance of the maximum
likelihood estimator of F(¢) to remain finite as ¢ — 0, and that the maximum
likelihood estimator yields an asymptotically normal estimator for the quotient
F(u)/F(t),0 < t < u < », under only an identifiability condition. This leads to
the following interpretation of (9.1). If it fails, then the mass that G puts near
zero is small relative to F, so that most of the smaller U’s will be taken away
by the truncation mechanism. This precludes the possibility of establishing the
amount of mass F puts near zero, and hence makes estimation of F(x) hard
for any wu, though accurate estimation of the conditional distribution
F(u)/F(t), u > 0, is still possible, even without (9.1).

It is straightforward to show for this model that (8.1) implies (8.2) with

A(a,b)(x,y) = a(x) — jadF* +b(y) — [bdG*

= Z1a(x) + 2,5(y),  (a,b) € Ly, (F) X Ly, (G),

‘where F* and G* are the marginals of Ppg:

dF* = o 'GdF and dG*=a"(1-F)dG, where a= [GdF.
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Then A*g = (/ 8, Zz*g). Now view L,(F*) as a subspace of Ly(Ppg) through
g(x,y) = a(x), a € Ly(F*). Since R(¢)) € L,,(F*), we have £ r+.=0,
while by direct calculation,

/Fa(x) = a 'a(x)G(x), a €Ly, (F*).

For the existence of a regular estimator of F(u) it is necessary that 1, ., —
F(u) = Z,a for some a € L,,(F*). Thus,

Lo o1 — F(u)\*
[0, u]
[(——G—) GdF < .

This is equivalent to (9.1).

The argument can be reversed to show that (9.1) is also sufficient for
differentiability of Pp; — F(u) with respect to the set of paths ¢ — Ppg,
where G is fixed and ¢ — F, satisfies (8.1). To have differentiability of this
functional with respect to the set of all paths ¢ - Py, generated by (8.1) and

(8.2), more seems to be needed. We now show that (9.1) together with its dual,

» dG
(9.2) [0 —F <®

is sufficient for differentiability of k(Pyrg) = F € (D[0, ], || - |l).
It is easily seen that (8.1) implies

t(x(Prg) = k(Peg)) = [ adF, in(D[0, @], l).

Thus, it suffices to show that the derivative «xp_: T(Prg) — (D[0, ], || - [l.0)

FG

given by A(a, b) — [, .;adF is continuous. By the Cauchy—Schwarz inequal-
ity,

|<p.( ACa, B))] sgdr[ o
K a, < su a —_
Fro == oarowon 0,71 G
dF
2
< —_— .
< alall},_ /[0 .G

To complete the proof, we show the existence of a constant such that
2
IIaIIiFG < (constant) | A(a, b) ||p,,-

As explained to us by Jon Wellner, (9.1) and (9.2) imply that the sumspace
L = {a(x) + b(y): a € Ly, (F*), b € L,,(G*)} is closed in Ly(Pgg). This
follows from Proposition 2 in Appendix 4 of Bickel, Klaassen, Ritov and
Wellner (1990) and

/] (dPro(x,9))" [ dF(x)" dG(y)*
dF*(x) dG*(y) y<x G(x) dF(x)(1 - F(y)) dG(y)

dF . dG
<[eliF
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Hence, the map T: L,,(F*) X L,,(G*) — L given by T(a,b) = A(a,b) is a
one-to-one, linear and continuous map from a Banach space onto a Banach
space. (Note: T # A in the sense that its domain space is different.) By the
bounded inverse theorem [Rudin (1973), 2.12], it has a continuous inverse.
Thus,

“a”PFG v ”b”PFG = ”(a’ b) ”Lz*(F*)XLz*(G*) <IT~ ” A(a, b) ”PFG'

This concludes the proof. O

It can be shown that, under (9.1) and (9.2), the maximum likelihood
estimator is efficient for the estimation of F seen as an element of (D[0, «],
| - Ilo) [van der Vaart (1990)]. .

10. Example: Incomplete censored observations. Let Y and C be
independent positive random variables with unknown absolutely continuous
cumulative distribution functions F and G, respectively. Let the model &
consist of the set of distributions Ppg of (C, 1y _ ). Thus, Py, has density

og(x)F(x) + (1 -8)g(x)(1 = F(x)), «x€(0,),5¢€({0,1},
with respect to the product of Lebesgue and counting measure. Since the
observation is a measurable transformation of (Y, C), we obtain as in Sections
7 and 8 the implication (8.1) = (8.2), where, presently, A(a,bd) = Z,a + ¢,b,
with
4,a(%,8) = Epg(a(Y)|C =2, 1y ¢ = 5)
fa dF cadF
= 3f_°__ +(1- )f—,
F(x) 1-F(x)

3b(%,8) = Erg(b(C)|C = x, 1y .o = 8) = b(x).

Using Fubini’s theorem, we obtain that R(/,) L R(/,). Moreover, on
L 2 *(P FG)’

(10.1) Zrh(y) = [ h(x,1) dG(x) + foyh(x,O) dG(x),
Yy

while /*(constant) = 0.
When £ is an element of L,(Ppg), then

fhz(x,l)F(x)dG(x)<oo and fhz(x,O)(l—F(x))dG(x)<oo.

Let [a, b] be an interval on which both F and 1 — F are bounded away from
zero. Then both A(-,0) and A(-, 1) are elements of L,(G), so that <*A is an
" absolutely continuous function on [a, b] for every h. Thus, real functionals
F — x(F) which have a gradient which is discontinuous somewhere in the
interval (a, b) (more precisely, a gradient which is not a.e. equal to a continu-
ous function) are not differentiable functionals of Pr;. An example is the
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functional F — F(c), where ¢ € (a, b). Groeneboom (1987) shows that the
maximum likelihood estimator for this functional has (the best possible) rate
nt/3,

However, also in this model there are many interesting functionals which
are differentiable. Let us consider the mean of F. This has gradient y — [y dF.
For the mean of F to be regularly estimable, it is necessary that

y= [ h(x,1)dG(x) + ['h(x,0) dG(x),
y 0
for some h € Ly(Pgg). This implies (h(y, 0) — h(y,1))g(y) = 1 so that

(02) [ ‘””’G? = [ V27 (h(y,0) - h(y,1))2F(y) dG(y) < ,

o 1-F o 9
(108) [ ——= (h(3,0) = h(y,1))*(1 - F(y)) dG(y) <.
a/2x 8 1/2)g

Under these conditions we can set A(y,0) =g X Y1 /2y (YD + 17 and
h(y,1) = _g_l(y)l(o,a/z)fg](y) + %TG-

To obtain the efficient influence function for the mean, it suffices to project
h onto R(/ 1). From (10.1) we immediately see that

N(2#) = {h € Ly(Pyg): h(x,0) = h(x,1), G-ae.}.

But this is precisely R(Z,), so that R(Z,)* = R(Z,). Since the two ranges are
orthogonal, the sum of the orthogonal projections onto R(7;) and R(<,)
equals the identity in L, ,(Pgg). This is helpful, since the projection onto
R(<,) is conditional expectation with respect to C. Thus, we calculate

h(x,8) — EFG(h(C,IYsc)|C=x)
= (h(x,1) = h(x,0))[8(1 - F(x)) - (1 - 8) F(x)].

For the h given previously this reduces to the influence function of the mean
functional Pg; — [ydF(y),

1 - F(x) F(x)
I CRAARre)

g(x)’

We have not investigated in any detail whether (10.2) and (10.3) are
sufficient for the existence of a regular estimator sequence, though it is easy to
convince oneself of the existence of Vr -consistent estimators under (for in-
stance) the condition that the density of G is bounded and bounded away from
zero on the compact support of F. It would be particularly interesting to
obtain results on the mean of the maximum likelihood estimator.

-6
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APPENDIX

Proofs. This Appendix contains the proofs of Theorems 2.1 and 4.1. We
start with a lemma that prepares for the Proof of Theorem 2.1 and actually
gives some additional information: (2.6) implies that the map ¢ — «(P,) is
Lipschitz at £ = 0.

LEMMA A.1. Suppose that B = R and that (2.6) holds. Then
lim, ¢~ '(«(P,) — x(P)) exists if and only if

Vi (T, = K(P)),n 7 ¥ 6(X)

converges under P weakly to the law of some random vector (S, V). In this case
ius

iuS’?

(A1) }fif%t_l(K(Pt) - «k(P)) = P

for every u for which the right-hand side is defined. If B = R and (2.6) holds
for a probability measure L with [x? dL(x) < =, then t~'(x(P,) — k(P)) = O(1)
ast |0. If, moreover, the limit exists then it also equals E(SV).

Proor. Fix h > 0. We first prove the second part of the lemma. Let ¢, | 0
be arbitrary. Define a subsequence of {n} by (n,, + D)"2 < ¢, h <n,'/? and
set h, =t,hn'/? Then

£ (k(P,4) = k(P)) = (1 +0(1)n¥%(x(Py, ) = <(P)).

There is a further subsequence of {n} (abusing notation, denoted {r}) such that
(a2) (T, = R(P)n E 4(X)) =087,
j=1

Here .#(S) = L and -Z(V) = N(0, I). Let A, be the log-likelihood ratio of the
product measures corresponding to P, , 7 and P. Then by the local asymp-
totic normality lemma and (A.2)

(A.3) (Vn (T, — «(P)),A,) =p(S, RV — 3R%I).

By contiguity arguments we conclude that {yn (T, — x(P))} is asymptotically
tight under P, , ;. But by (2.6), (Vn (T, - «(Py, , 7))} is asymptotically tight

under P, , . too. Hence, Vn (P, , m) — «(P))} is asymptotically tight.
Choose a further subsequence which converges to a limit (say) a(k). Now, by
(A.3) and a version of Le Cam’s third lemma,

‘/;(Tn - K(Phn/ﬁ)) :Phn/,/iLh’

" where

(A.4) L,(B) = j{;JBe"dj(S —a(h),hV - 1R2)(y,1).
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By (2.6), L, =L =_72(S). Comparing expectations we see ES = E(S —
a(h))explhV — 2h%I] or
a(h) = ES(exp[hV — 3R%I| — 1).
Thus, la(h)| < {ES2E(exp[hV — 1h2I] — 1)*}}/2 The latter expression is inde-
pendent of any of the subsequences we have chosen.
Thus, we obtain that the limit points of ¢~ X(«(P,;,) — «(P)) are contained in
a compact interval, concluding the proof that ¢~ («(P,;,) — «(P)) = O(1).

Next, drop the assumption that ES? < . Equation (A.4) is still valid.
Comparing characteristic functions rather than expectations, we obtain

(A.5) eina®) EeivS = Fexp|iuS + hV — 3h%|.

Thus a(h) depends on the joint law of S and V only. If we have joint
convergence along the whole sequence of {n} in (A.2), then we may conclude
that every sequence ¢, («(P, ;) — x(P)) with ¢,, |0 has a subsequence con-
verging to the fixed limit a(hJ. Hence,

limt~(x(Pyy) = k(P)) = a(h).

Then,
(A.6) a(h) = hlin(r)x(th)_l(K(Pth) - k(P)) = ha(1).

tl
Insert this in (A.5) and differentiate with respect to 2 at 2 = 0 to get (A.1).
The last assertion of the lemma can be obtained in the same manner from the
representation of a(k) in terms of expectations.

Finally, we show that [under (2.6)] (A.2) holds along the whole sequence
{n}if

a(1) = yfgt_l(K(Pt) — k(P))

exists. In fact, this follows from the convolution theorem. For completeness we
outline the proof. Take an arbitrary subsequence of {n}. There is a further
subsequence such that (A.2) holds along the subsequence. We must show that
Z(S,V) is the same for each subsequence. By (2.6), (A.4) and (A.6),

[ dL(x) = Eexp[it(S — ha(1)) + hV — 3h*].
Choose h = —ita(1)/I to get
(A7) Ee'S = E exp[it(S — a(1)VI~Y)]exp| - $t%(1)°17Y].
. Choose h = —ita(1)/I + iu to get
Ee'*S = Eexp|it(S — a(1)VI™!) + iuV]
Xexp[—%tza(l)zl‘llexp[%uzl].

Infer that S — a(1)V/I and V are independent. Moreover, -2 (S — a(1)V/I) is
completely determined by -#(S) = L and (A.7), while V has a fixed normal

(A8)
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distribution. Thus .£(S — a(1)V/I, V) and hence .~(S,V) is completely de-
termined. O

ProoF oF THEOREM 2.1. (i) First consider the case that B = R. Given
g € T(P), define

<b(g) = limt ™ ((P) = k(P)),

where ¢ — P, satisfies (2.1). This is well defined. In fact, by the preceding
lemma, if (S,V,) is a weak limit in law under P of (Vn (T, — «(P)),
n~VZEn_ lg(Xj)i then

for any u for which the right-hand side is well defined. We have to show that
kp is linear and continuous. Let g,, g,,... be a sequence in T(P). Let
Z£(8,V,,V,,...) be a weak limit point under P in R X R* of

J

n n
‘/E(Tn - «k(P)),n" 2} go(Xj)’n_l/z gl(Xj)"" .
j=1 -1
Then, given a € R?, it is not hard to see from this representation applied to
& =18, +ay8, and g = g; that

kp(@181 + @z8;) = aikp(gy) + agkp(gy).

Furthermore, if g, —» g, in |- |, as i - «, then E(V, — V;)? = Ep(g,(X,) —
go(X))? > 0, and again applying the representation we see that

|kp(8:) = kp(go)[* = 0.
Thus «p is continuous and linear.

(ii) Now consider the case of a general B. By (2.6) and tightness of L we
have asymptotical tightness of the sequence {Vn (T, — x(P))} under P. Let
h, — h. By contiguity arguments we can infer that {Vn (T, — x(P))} is rela-
tively compact under P, , = Wwith tight limiting points [see, for instance,
van der Vaart (1988), Lemma 4.6]. Combination with (2.6) shows that
{Vn (e(Py,, , ) — «(P))} is relatively compact.

For any b* € B*, b*- T, satisfies the conditions of Theorem 2.1 as an
estimator for the real-valued functional b*< «. Thus, by part (i) of this proof
we know that the functional b* « is differentiable. In particular, the limits

}iﬁ}b“(K(Pt) - k(P))

exist. But this uniquely identifies the limit points of {Vn (P, 7) — (P}
. Hence, the latter sequence must be convergent to a limit x(g). We only have
to show that this defines a continuous, linear map from T'(P) in B. Now, by
(1), b*° kp is a continuous, linear map for every b* as above, because it is the
derivative of the differentiable functional b*- k. The following well-known
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lemma, applied with X = T(P), Y = B and Y’ = B* shows that this is enough
to infer continuity and linearity of «p. O

LEMMA A.2. Let ¢ be a map from a normed space X into a normed space Y,
such that y'op € X* for every y' in a closed subspace Y' of Y* satisfying
llyll = sup{y'(y): lly'll < 1} for every y € Y. Then ¢ is continuous and linear.

Proor. By the condition Y’ separates points of Y. Linearity of ¢ follows
easily.

Define a map %k: Y — (Y)* by

k(y)(y) =y'(y), Yy €Y.

By assumption, this is an isometric embedding of Y in (Y")*. Thus, a subset S
of Y is bounded if and only if its image in (Y')* is bounded. By the
Banach-Steinhaus theorem [Rudin (1973), 2.6], this is true if and only if
{k(y)y"): y € S} is bounded for every y' € Y’ separately, i.e., every y' € Y' is
bounded over S. Now, let U be the unit ball in X. Since ¢ is linear, it is
continuous if and only if ¢(U) is bounded in Y. By the above argument, this
is true if and only if y'c ¢(U) is bounded in R for every y’' € Y', i.e., y'o ¢ is
continuous for every y' € Y'. O

As preparation for the Proof of Theorem 4.1, we have the following lemma.

LeEmMA A.3. Let A be a continuous, linear map from a Hilbert space H in a
Hilbert space L. Then there exists a unique self-adjoint positive definite
operator (A*A)'/2: H — H such that A*A = (A*A)/2(A*A)'/2 (the square-root
of A*A). Moreover R(A*)= R((A*A)'/?). Finally, if g€ R(A) and B <
R(A*) satisfy A*g = (A*A)'/?B, then ligll? = lIBI1Z.

ProorF. The first part of the lemma is a standard result from functional
analysis [cf. Rudin (1973), 12.33]. Next we obtain a polar decomposition of A
similarly as in Rudin [(1973), pages 315 and 316]. First, note that

IABIE, = CAB, AB)y = (A*AB, B)y = ((A*A)'/B, (A*A)"*B) y
= cax4)" B
Thus, it is possible to define an isometry U of R((A*A)'/2) onto R(A) by
AB = U(A*A)?8. U can first be extended to an isometry of R((A*A)"?)
onto R( A) and subsequently to a “partial isometry”’ on H by setting it equal

to zero on the orthocomplement of R((A*A)'/?) and extending linearly.
Now A* = (A*A)/2U*. Here U* acts as the inverse of U on R(A),

mapping this set onto R(( A*A)Y 2), and maps the orthocomplement of R(A)
into zero. Next, note that (A*A)'/2 is zero on R((A*A)/2)* = N((A*A)'/?), so
that

A*L = (A*A)?U*L = (A*A)"? R((A*A)'?) = (A*A)'°H.
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Finally, if A*g = (A*A)"/?g, then U*g - B € N((A*A)"/?) = R(A*A)V)* .
If, moreover, g and B satisfy the stated conditions, we also have U*g —
B € R((A*A)"?). Thus U*g = B. The result follows from the fact that U is

an isometry on R(A). O

Proor or THEOREM 4.1. Suppose (3.6) fails. By Lemma A.3 we can assume
that ¢, € R((A*A)'/2). Our proof uses this in combination with a characteri-
zation of R((A*A)'/?) in terms of the spectral resolution u — P, of A*A =
JudP,. By definition [see, e.g., Rudin (1974), pages 300-310 and 341-355, or
Reed and Simon (1980), VII], this defines for every @ € T'(A, A) a finite Borel
measure B — u (B) = [z d{P,a,a)u on [0, || A*Alll, called the spectral mea-
sure of a. Now, .

(A.8) R((A*A)2) = {a € T(A,A): [ut dp(u) < oo}.

To see this, note first that a = (A*A)'/28 = [u'/? dP(B) implies du (u) =
udug(u) [cf. Rudin (1973), 13.23]. Hence we have inclusion of the left-hand
side in the right-hand side. ,

Next assume that [u~'du,(u) < ». Then a is in the domain of the
(possibly unbounded) operator [u~'/2 dP, and we can define B =
Ju='/? dP,(a) [Rudin (1973), 13.23]. The proof of (A.6) will be complete if it is
shown that @ = (A*A)'/28. Since

f(u‘l/z - u“l/zluzn_l)2 du,(u) -0,
as n — «, we have that g, .= [u~"'/?1, , ,-1dP,(a) > B in T(A, A). Then by

continuity (A*A)'/?8, — (A*A)'/?B, while on the other hand, by the ““sym-
bolic”” calculus summarized on pages 309 and 310 of Rudin (1973),

(4*4)"%p, = [u!? dP, [u™/"1,, -1 dP,(a)

= [Lusn1dP(a) > [dP(),

since [(1,,,-1 — 1)?du,(u) - 0. Thus, (A*A)/?8 = [dP,(a) = a.

Thus, if §, & R((A*A)'/2), then ms 0D >0, or fu™'1,, o duy(u) = =, or
both.

In the first case, choose a = P(o)(lﬁ/\). Then, again by the symbolic calculus,

A*Aa = IUdPu P(O)(&/\) = f‘dm) dPu(‘Z/\) =0(0) = 0.
However, (§i,, @)k = [10dp;(u) = p;{0}) > 0. But then i, = 0.
In the second case, set a, = [u"'l,,,-1dP,(,). Then, A*Aa, =
' fluzn'l dPu(‘/’A) and

" Aan "2PA = <A*Aan’ an)H = fu_lluzn‘l d/"‘fp,\(u)‘
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Thus,

-1 _ <‘ﬁ)"an>:l

n fu_lluZn—l d/.:,%('u) B

[u‘lluzn—ldp,%(u) - o, O
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