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A GENERALIZATION OF D- AND D,-OPTIMAL DESIGNS IN
POLYNOMIAL REGRESSION!

By H. DETTE
University of Gottingen

In the class of polynomial regression models up to degree n we
determine the design on [—1, 1] that maximizes a product of n + 1 deter-
minants of information matrices weighted with a prior 8, where the I-th
information matrix corresponds to a polynomial regression model of degree
l,for I =0,1,...,n. The designs are calculated using canonical moments.
We identify a special class of priors B(z) depending on one real parameter z
so that analogous results are obtained as in the classical D- and D,-optimal
design problems. The interior support of the optimal design with respect to
the prior B(z) is given by the zeros of a Jacobi polynomial and all the
interior support points have the same masses. The masses at the boundary
points —1 and 1 are (z + 1)/2 times bigger than the masses of the interior
points.

The results found in one dimension are generalized to the problem of
determining optimal product designs in the case of multivariate polynomial
regression on the g-cube [— 1, 1]9. Explicit solutions are obtained for the D-
and D;-optimal product designs in the polynomial model of degree n for all
neNand g €N.

1. Introduction. Consider a class of polynomial regression models

!
gl(x) = Z al,ixi, l = 0,...,n}.
i=0

9;:,={gl

For each x €[—1,1] a random variable Y(x) with mean g,(x) for some
(unknown) / € {0,1,...,n} and variance o2/A(x) can be observed. The func-
tion A is called the efficiency function [see Fedorov (1972), page 66] and we
assume that A(x) is of the special form A(x) = (1 + x)*(1 — x)*, u,v € {0, 1}.
A design ¢ is a probability measure on [—1, 1]. If N observations are taken
and ¢ concentrates mass ¢; at the point x;, where N¢; = n; are integers, the
experimenter takes N uncorrelated observations 7 ; at each «x;. In this case the
covariance matrix of the least squares estimate &© of a® = (a; ,...,; )" in
the model g, is given by o2/NM; (¢), where

M(&) = [ (12,02 (L5, x)A(x) dé()
denotes the information matrix of the design £. The variance of the esti-
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mate g,(x) = L!_od, ;x* of g,(x) at the point x € [—1,1] is proportional to
dix,8) =, x,...,x YM7UEXD, x, ..., xP)T. One of the more commonly used
criteria for choosing a design ¢ (for the model g;) is the D-optimality criterion
which maximizes the determinant of M,(¢). The determinant of the informa-
tion matrix can be expressed in terms of canonical moments and the D-opti-
mal designs can easily be calculated by the maximization of det M,(¢) in terms
of canonical moments [see Studden (1980, 19823, b), Lau and Studden (1985)
and Lim and Studden (1988) for more details]. The theory of canonical
moments is briefly stated in Section 2.

The theory of optimal design described so far is based on the assumption
that the form of the regression model is known by the experimenter (namely,
&,)- In many practical applications the experimenter has very little informa-
tion about the model before the experiment is carried out. For the application
of optimal design theory in this situation we only assume that the unknown
model belongs to the class %, and determine designs which allow a good
estimate of the parameters [in the sense of Lauter (1974)] in any model of %,.
For this task we use an optimality criterion proposed by Léuter (1974)
depending on all the information matrices M,(¢), [ =0,1,...,n. A vector
B =(Bo,B1..-,B,) of real numbers is called a prior for %, if B is a

probability measure on {0, ...,n} or is, for s € {1,...,n — 1}, of the form
n—-s+1
BO= =ﬁn—s—1=0? Bn—s= - s 4
(1.1) -
n+1
Bn—s+1= e =Bn—l=0’ Bn= s .

For a given prior 8 on {0,...,n} we call a design ¢, optimal for %, with
respect to the prior B, if ¢{; maximizes the function

n

‘I'B(f) = Z

=0

B
l+1

log(det M,(£)).

For more details and for other optimality criteria in this connection, see
Lauter (1974, 1976) and Cook and Nachtsheim (1982). Note that ¥, does not
depend on B, when A is the identical one-function and that the D-optimality
criterion is obtained by the prior 8, = (0, ..., 0, 1). For the prior given in (1.1),
which will be denoted By, s €{1,...,n — 1}, ¥y(£) gives the D, -optimality
criterion [see Kiefer (1961)] which minimizes the determinant of the covari-
ance matrix of the least squares estimate of the highest s parameters
@, n_gir1--+5Q, , in the model g,. In the case of D-optimality the equiva-
lence theorem of Kiefer and Wolfowitz (1960) is a very useful tool for the
determination of D-optimal designs. This result can be generalized to the
optimality criterion defined previously [see Lauter (1974) for nonnegative
priors and Kiefer (1961) for priors of the form (1.1)].
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THEOREM 1.1. For a given prior B = (B,,...,B,) on {0,1,...,n} the fol-
lowing three conditions are equivalent:

(i) The design ¢, is optimal for the class ¥, with respect to the prior B.
(ii) The design ¢; minimizes

Dy(£) =

dl(x1 f)

e[-1,1]
() ()= max M(0)E [T di(ng) = L

In Section 3 we derive some formulas for the computation of optimal
designs for %, by the application of this theory. The D- and D,-optimal
designs are of a very simple structure. It was shown by Hoel (1958) that in the
case A(x) =1 the D-optimal design [corresponding to the prior B, =
©,...,0,1) for #,] puts equal mass at the zeros of (1 — x2)P,(x), where P,
denotes the n-th Legendre polynomial and P, its derivative. The D,-optimal
design [corresponding to B, = (0,. —n,n + 1)] concentrates mass
1/(2n) on the boundary pomts -1 and 1 and mass 1/n on the zeros of
T,)(x), where T, is the Chebyshev polynomlal of the first kind [see Kiefer and
Wolfowitz (1959)].

In Section 4 we will consider a one-parameter family of priors B(z) on
{0,1,...,n} depending on a real parameter z € {0} U [1, ) [see (4.1) for defi-
nition]. Optimal designs for %, with respect to the prior B(z) are of the same
simple structure as the D- and D,-optimal designs. The supports of these
designs are given by the zeros of the polynomials

(1+2)' (1 = ) PETB/E eI (),

where P{"%(x) denotes the n-th Jacobi polynomial which is the n-th orthogo-
nal polynomial with respect to the measure (1 — x)”(1 + x)° dx [see Szegd
(1959), pages 58-60, or Abramowitz and Stegun (1964)]. The optimal design
puts equal masses on all interior support points. If the support contains the
points —1 or 1, their masses are (z + 1)/2 times bigger than the masses of the
interior support points (see Theorem 4.3). It is also shown that the D- and
D,-optimality criteria are obtained as the special cases z=1 and 2z =0,
respectively, and that for z = 2 the prior 8(2) puts equal weight to all models
of # lie., B,(2)/(l+1)=constforalll=0,...,n]

In the last section of this paper we will generalize these results to the case
of multivariate polynomial regression on the g-cube, ¢ € N, and determine the
optimal product designs [in the sense of Lim and Studden (1988)] for the class
of polynomial models in ¢ variables up to degree n. As special cases we obtain
explicit representations of the D- and D;-optimal product designs in the
multivariate polynomial model of degree n for all n € N and ¢ € N.

2. Canonical moments. In this section we mention some results con-
cerning canonical moments of a probability measure on [0, 1]. More details and
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applications of this theory can be found in the papers of Skibinsky (1967, 1968,
1969, 1986) and Studden (1980, 1982a, b). Let ¢, = [dx* d&(x), k= 0,1,...,
denote the k-th moment of a probability measure on [0, 1]. For a given set of
moments ¢g,Cq,...,C;_q, let ¢; denote the maximum value of the i-th mo-
ment over the set of measures having the given set of moments ¢,,...,¢;_;
and let ¢; denote the corresponding minimum value. The canonical moments
are defined by

c;,—¢; )
p; = —% s 1=12,....

¢, —c¢;

Note that 0 < p, <1 and that the canonical moments are left undefined
whenever ¢; = ¢;. If i is the first index for which this equality holds, then
0<p,<1, k=1,...,i—2, and p,_; must have the value 0 or 1 [see
Skibinsky (1986), Section 1]. The determinants of the information matrices
M,(¢) (for probability measures on [0, 1]) can easily be expressed in terms of
canonical moments [see Skibinsky (1968) and Studden (1982b)]. The formulas
are given in the following theorem.

TueoREM 2.1. Let M,(¢) = [{Q, ..., x4, ..., xDA(x) dé(x), I =
0,1,...,n, where A(x) = x*(1 — x)*, u,v € {0,1). Then the following repre-
sentations hold, whereq; =1 —p,(j 2 Dand {, = 1,7y = 1,{; =p1, 71 = q1,
{;=9;_1p; and Yi =Pj-14; (=2

l .

det M,(¢) = Q({ziq{zi)l“_l if (u,v) =(0,0);
l .

det M,(¢) = l:.!:)(72i72i+l)l+1_l if (u,v) =(0,1);

l .
det My(¢) = TT (Lailase)™ 7" if (w,v) = (1,0);

i=0
I+1

det M,(¢) = g(yzi_m,-)“z‘i if (u,v) =(1,1).

The next theorems are very useful in finding the support and the weights of
designs having a terminating sequence of canonical moments [see Studden

(1982b)].

THEOREM 2.2. The design ¢ corresponding to the sequence of canonical
moments (p, ..., Poy_1,0) is supported by the zeros of P,(x, £).

The design ¢ corresponding to the sequence of canonical moments
(P1y---» Par—1, 1) is supported by the zeros of x(1 — x)Q,,_(x, &).

The design ¢ corresponding to the sequence of canonical moments
(P1y -+ Do, 0) is supported by the zeros of xR ,(x, £).

The design ¢ corresponding to the sequence of canonical moments
(P -+ -5 Pop, 1) is supported by the zeros of (1 — x)S,(x, &).
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The polynomials {P,}, {Q,), {R,} and {S,} satisfy the following recursive
relations:

Pio(x,8) = (x = &yj = £yj1) Pi(%, €) — o5 185 P o, £), Jj=1
Qj1(%,6) = (2 — Va0 — V2j+3)Qi(%, ) — Vo 4172j+2@-1(%,€), J=0;
Rjoi(2,6) = (2 = Lojur = Lajua) Rj(2, €) — L5 aBy_o(%,6),  j =05
Sj(%,6) = (2 = vgje1 = V2j42)S;(%,€) = Vo;¥05418;-1(%,€),  Jj=1;
where
Q_y(x,§) =R_y(x,¢) =0,
Po(x,£) = Qo(x,€) = Ro(x,£) = So(x,¢) =1,
Sy(x,€) =x — s,
Py(x,¢) =x — (5.

The polynomials {P;}, {Q;}, {R;} and {S;} are orthogonal to d¢, x(1 — x)d¢,
xd§¢ and (1 — x) d ¢, respectively.

Note that the four designs described in Theorem 2.2 are, respectively, the
lower and upper principal representations of the sequences (p, ..., p,,_;) and
(p1 .- ., Py,) which are described in the book of Karlin and Studden [(1966),
pages 45-47] and in the paper of Skibinsky [(1986), Section 1]. In the last-
named work one can also find other recursion formulae for the preceding
polynomials.

THEOREM 2.3. (i) The supports of the measures corresponding to the se-
quences (p4, ..., p;,0) and (p,,...,p;,0) are the same.

(ii) The supports of the measures corresponding to the sequences
(p1s.-.,Pp, 1) and (q,, ..., q;, 1) are the same.

3. Optimal designs for %,. In this section we determine the optimal
design ¢, for %, with respect to a given prior 8 (in the sense of Section 1) on
{0,1,...,n}). For the direct application of the theorems given in Section 2
(which also can be formulated for other intervals), we consider the interval
[0, 1] and only the four efficiency functions A(x) = x*(1 — x)? for which u,v €
{0, 1}. Optimal designs on [—1, 1] for the given efficiency function A(x) =
(1 + x)*(1 — x)” are obtained by a simple linear transformation [see Fedorov
(1972), pages 80-82].

THEOREM 3.1. Let A(x) = 1 and n > 1. The optimal design for the class F,
with respect to the prior B = (0,B,,...,B,) is the distribution ¢, on [0,1]
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which is uniquely determined by the canonical moment sequence

1
Pzi—1(fg)=§, i=1,...,n,
(3.1) 4 __ % — 1
p2z(§p) - +0_i+1, 2 R () s
p2n(§ﬁ) = 1,
where the numbers o; are defined by
nl+1—1
o, = — B, i=1,...,n.

o I+ 1

The support of &g is given by the n + 1 zeros of the polynomial x(1 — x) X
Q. _1(x, &) (defined in Theorem 2.2). For the masses of £z at the support
points 0 =x;, <x,< +++ <x, <%x,,, =1 we have

-1

n—-1
fﬁ({xj}) = B [1 - X Tiki(fﬁ)Piz(xj,fp) )

n+1 Zo

(3.2)

j=1,....,n+1.
The polynomials {P;(x, ¢5)} are also defined in Theorem 2.2 and the numbers
7, and k,(§) are given by [ky(¢) = 1]

B n 1 B _ det M;_,(¢)
=) T+ 1 ki(f)—m,

=i

i=1,...,n—1.

Proor. Applying Theorem 2.1, we obtain for the function Vg,

n

W(6) = L 7oy losldet Mi(¢)

Z 0; log({2;-142:)
i=1

n n—1
= Y o;log(pai_192:-1) + L log(pgigsi+t) + o, log py,-
=1 i=1

Simple algebra shows that ¥, is maximized by the canonical moments given in
(3.1). By Theorem 2.2 we conclude that the support of £, is given by the zeros
of the polynomial x(1 — x)@,_{(x,£5). This theorem also shows that the
polynomials {P,(x, £)} are orthogonal with respect to the measure dé(x). A
standard argument in the theory of orthogonal polynomials [see Szego (1959),

page 28] gives

flplz(x,f) dé(x) = det M,(¢) 1
0

- i1
det M,_(£) k() =
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Therefore, the polynomials {y/% (£) Pi(x, £)} form an orthonormal system
with respect to the measure d¢ and it follows

l
(33) dl(x7§) = Z ki(g)Piz(x7§)1 l= 07 11'--1n1
i=0

for every design ¢ on [0,1] with 0 <p, <1 for £=0,1,...,2n — 1 and
D2. = 1. Because the support of £, consists of n + 1 points, we have for [ = n
[see Fedorov (1972), page 147],

n+1 2( )

(34) du(2.8) = X &((x))”

where L;(x) denotes the Lagrange interpolation polynomial at the support
points x,...,%,,.; of §ﬁ. It is a simple consequence of Theorem 1.1 that the
function O4(x, £,) = L7 o[B;/(I + D]d,(x, £5) attains its maximum value in
[0,1] at the support pomts of the optimal de81gn ¢ This together with
Theorem 1.1, (3.3) and (3.4) implies, for j =1,2,...,n + 1,

1= (&) = xlen[gxl]@l?(x7§ﬁ) = 0g(x;, &)

n—1 B 1 B, 1

_ l

- ~ 1i= J’§B)+ n+1§ﬁ({x})
n—1 ﬁn 1

B iz=:0 miki(§) PP (), €p) + n+1&({x))

Solving the last equation we obtain (3.2), and Theorem 3.1 is proved. O

The following auxiliary result, which also holds for every symmetric design,
is a simple consequence of Theorem 2.2 and describes the connection between

the polynomials {P;(x, £p)} and {Q;(x, £p)}.

LEmMMA 3.2. For the polynomials {Q;(x,£5)} and {Pj(x, &)} defined by
Theorem 2.2, we have, forj > 2,

Pj(x’§p) - Qj(x:fp) = _%p2(j—1)(§p)p2j(§3)Qj—2(x153)'

In the cases A(x) =x, A(x) =1 —x and A(x) = x(1 — x) the optimal de-
signs for %, with respect to the prior B are obtained in the same way. The
correspondlng formulas will not be given here. We only state the solutions in
terms of canonical moments.
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THEOREM 3.3. The canonical moments of the optimal design for &, with
respect to the prior B are given by the following:

1
p2i—1(§p)=§, i=1,...,n+1,
g;
i ; = — =1,...
(l) p21(§ﬁ) o, + o ’ t ’ 1,
Pan+2(€s) = 0, in the case A(x) = x(1 — x);
1
P2i(§p)=§, i=1,...,n,
g; .
(ii) Pzi—1(§p) = m, i1=1,...,n,
p2n+1(§p) =0, in the case A(x) = 1 — x;
1
Pzi(fp)=§, i=1,...,n,
g1 .
(lll) p2i—1(§[3)= mr 1= 11"'1n1
Pan+1(€s) = 1, in the case A(x) = x.

ExampLE. Let n =3, A(x) =1 and B = (0, B;, By, B) [we put B, = 0 be-
cause in the case A(x) = 1 we have My(¢) = 1 for all designs £]. By Theorem
3.1, the support of the optimal design ¢, for &, is given by supp(é,) =
{0,(1 —x)/2,(1 + x)/2,1}, where, for B3 =1 — B; — B,

(1 -8, -B,)(9—38,—B,)
x = /Pa(é)a4(és) = \/(5 — 3B, —B2)(9—9B, —58,)

To calculate the weights of £, at the point 0 we remark that (3.3) and
Theorem 2.1 give here

+ Q2(§p) .
Pz(fﬁ) pz(fg)l%(fp)

1
dl(O,fﬁ) =1+ m, d2(0,§,3) =1+

Thus, we obtain by (3.2) and (3.1),

B Bs B, B 1 By Q2(§B)
fﬂ({o})—z[l—(sz?)(” )‘?m

_L9-5hkh,

T 123-28,-8,

-1

Pz(fp)
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The other weights are obtained by the symmetry of the optimal design ép at
the point 1,

fﬁ({o}) = 53({1})7
l1-x 1+x 1 1 9-98, —58,
5”({ 2 })=§”({ 2 })=§_§"({°})=1§ 5-26,- B,

4. A special class of priors. The D- and D,-optimality criteria are
special cases [B = (0,...,0,1) and B =(0,...,0, — n,n + 1)] within the gen-
eral class of the priors defined in Section 1. The optimal designs connected to
these criteria are of a very simple structure (see Section 1). In this section we
will show that many priors yield optimal designs for .%, with the same simple
structure as in the cases just mentioned. In what follows, I'(z) denotes the
gamma function defined for z € R\ {0, — 1, — 2,...}. We begin our investiga-
tions with the following result, which is used to define a special class of priors
depending on a real parameter 2.

LEmMMA 4.1. Let n €N, g €Ny and z€ R\ {0, -1, —2,...}. Then we
have foralli = 0,1,...,n,
Xn: FNg+l+1-i)T(n+2-1-1)
= T(+1-49) '(n+1-1)

_T(g+1) T(z2-1)
CT(z+q) T(n+1-1)

I'(n+z+q-—1).

Proor. For g € N, and i €{0,...,n}, let
"nT(g+l+1-i)I(n+2-1-1)
fq,i(z)=2 — —
rg+1-1i) '(n+1-1)

=i

Then we obtain, observing the functional equation of the gamma function, for
g=11>1,

fq,i—l(z) = fq,i(z) + qfq—l,i—l(z)'
Note that f, ,(2) =T(¢ + DI'(z - 1) and f, ,,(2) =0 for all ¢ €N, and

n € N and the assertion of Lemma 4.1 now follows by some induction argu-
ments. O

Let us now define a prior B(z) = (By(2),..., B,(2)) for Z,, n € N, depending
on the real number z € R\ {0, — 1, — 2,...}, by
- I'(n+2z-1-1)T(z+1) TI'(n+1
Bo) - (apntzztz DIEHD Tt D
(4.1) (n+1-1) T(z=-1)T(n+2z+1)
l=0,1,...,n.
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Lemma 4.1 (g = 1) shows that ¥}_,B8,(z) =1 and we obtain the D- and
D,-optimality criteria from the following proposition, which is a simple conse-
quence from elementary properties of the gamma function.

PropPoSITION 4.2. Let n € N, and B(2) = (By(2),...,B,(2)), defined by
(4.1). Then we have

) lim B(2) = (0,...,0,1),

(ii) lin})B(z)=(0,...,O,—n,n+1).

To guarantee that the numbers defined in (4.1) form a prior for the class .7,
in the sense explained in Section 1, we have to make a suitable restriction on
the domain of the parameter z. To this end, we collect all priors defined by
(4.1) in the set

B, ={B(2) = (Bo(2),...,B,(2))]z > 1orz =0},

where the interpretation of 8(0) and B(1) is in the sense of Proposition 4.2.

In what follows, let P{""?(x), for y,8 > —1, and G ?P(x), for p — q > —1,
g > 0, denote the Jacobi polynomials on [—1,1] and [0, 1], respectively.
{P{®(x)} and {G»?(x)} are orthogonal with respect to the measures
(1 —x)"(1 + x)®dx and x?7 (1 — x)?~7dx on the corresponding intervals [see
Szegb (1959), pages 58—77, or Abramowitz and Stegun (1964), pages 774-7717,
for more details] and are related by the formula

rn+y+48+1) GOr+3+1,5+1) x+1
nf(n+y+8+1) " 2 )

(42)  POd(x) =

THEOREM 4.3. Let Mx)=(1 + x)*(1 —x)*, u,v €{0,1}, B(z) € B,, and
n € N. The optimal design &g, for &, with respect to the prior B(z) is
supported by the zeros of the polynomial

(1 +2) (1 - 2) TP RE e D0 ),

The optimal design &, ,, concentrates equal mass on all support points which
are in the interior of [—1,1]. If there are any support points at —1 or 1 (this
depends on u,v), their masses are (z + 1)/2 times bigger than the masses of
the interior support points.

Proor. The proof of Theorem 4.3 has to be given separately in all four
cases of the efficiency function A. For brevity, only the case (u,v) = (0,0) will
be considered. For z = 1, Theorem 4.3 gives the classical D-optimal designs in
polynomial regression [see Fedorov (1972), page 88, and Studden (1982b)]. In
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what follows we therefore assume z # 1 and show by Theorem 3.1 that the
support of an optimal design &g ,, for &, with respect to the prior 8(2) € B,

on the interval [0, 1] is given by the n + 1 zeros 0 =x; <x, < -+ <x, <
x,.1 = 1 of the polynomial
(4.3) 2(1 — %) G2 (x),
and that the weights at the support points are
o) = ne 1 z+1
w g (10)) = Za((1)) = ————,
fﬁ(z)({xj}) = 2 ji=2,..,n.

The statement of Theorem 4.3 [in the case (u, v) = (0, 0)] then follows by a
linear transformation and (4.2). Lemma 4.1 (in the case ¢ = 1) gives for the
numbers o; defined in Theorem 3.1,

nl+1-1i '(rn+1) TI'(n+1+2z-1i)

(4.5) 0,-=Eiﬁﬁlz)=r(n+z+1) (n+1-1) ’

and thus we have, using (3.1) for the even-order canonical moments of the
optimal design &g,),

z+n—1i
P2i(épiy) = m’
n—i
(4.6) %ilben) = TTom o

Pzi(fﬁ(z)) _ z+n-—i
Q2i(§p(z)) n—i

[Note that, by (3.1), all odd-order moments are 3.] In what follows we will
suppress the dependence of the canonical moments pi(fﬁ(z)) and the numbers
k;(£5.,)) from the optimal design £g,, and write for simplicity p; and ;. By
another application of Lemma 4.1, we can now express the numbers 7; of
Theorem 3.1 in terms of the canonical moments of &g,

n=18,(2) I'(z+ 1)I'(n+1) z —1 py;
O T2 -
Imi n+z+1) (n+2z-1) j5
and obtain by Theorem 2.1 for the constants &,,
4
(4.8) ky j= ———Fk,_;_1, Jj=12,...,n—-2.

Pon-jq2(n-j-1)

The following two identities are shown by the application of Theorem 2.2 and
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Lemma 3.2:
(4 9) Pl—l(x’ gﬂ(z))Ql—l(x’ fﬂ(z))
: = P2 (%, £5z)) + 1P20-2P2-1yP1-1(%, €p0))Qi—s(%, pc0):

Pl(x7 fﬁ(z))Ql—2(x’ gB(Z))
(@10) = PR (o) + PaacnProit ) @icol )
- %Pz(z—l)Q2(l—2)Pl—2(x7 §B(Z))Ql—2(x’ gﬂ(z))’

Note that the equations (4.8), (4.9) and (4.10) hold for every symmetric design
¢. They are used to prove the following lemma, which is the essential part in
the proof of Theorem 4.3.

LEMMA 4.4. Let z € R} \ {1} and define, for1 =0,1,...,n — 2,
e(l,2) = 1222 — z4141)
’ 2= 1];=192n-j .
Then we have, forl=1,2,...,n — 2,
n—1
Z kiTiPiZ(x: §3(z))

i=n—1
= kn—ITn—IPn—l(x’ gﬁ(z))Qn—I(x7 f13(2))
- kn—l—lTn—llc(l1 Z)Pn—l(x1 gﬁ(z))Qn—l—2(x7 §B(z))
—C(l - 1, Z)Pn_l_l(xy gﬁ(z))Qn—l—l(x’ §ﬁ(z))] .

PrROOF. Observing (4.7) and (4.8), straightforward algebra gives

1
an—l—1p2(n—l—2)[c(lrz) —c(l - l,z)Pz(n—z—n]

=k, ,_oc(l+1,2),
-1

(4.12) e(l,z) —e(l—1,2) = 2==2

n—1
For [ = 1 the statement is easily verified, noting (4.8), (4.9) and ¢(0, z) = 0. To
show that ! implies [ + 1, [ < n — 3, we use (4.9) and (4.10) and obtain

kn—lTn—lQn—I(x’ §p(z))Pn—1(x’ §B(z))
= kn—l—lTn—l{[c(l1 z) —c(l -1, z)]Pr?—l—l(x’ §p(z))
+P,_;_(x, fp(z))Qn—z—3(x: fﬁ(z))%p%n—l—z)
X [c(l, z) —c(l-1, z)p2(n—l—1)]
—c(l, z)%pZ(n—l—l)q2(n—l—2)Pn—2—l(x7 fp(z))Qn—l—2(x, §p(z))}

(4.11)

n—1
+ X kiTiPiz(xrgﬁ(z))'

i=n—1
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An application of (4.8), (4.11) and (4.12) yields
n—1

kn—1“'n—1Pn—1(x,‘fﬂ(z))Qn—l(x’fﬂ(z)) - Z TikiPiz(x’ fp(z))

i=n—-1-1

= kn—l—27n—1[c(l + 11 z)Pn—l—l(x’ §B(z))Qn—l—3(x1 gﬁ(z))
—c(l, z)Pn—l—2(x1 fﬁ(z))Qn—l—z(x’ §B(z))] ’
which completes the proof of Lemma 4.4. O

We now continue the proof of Theorem 4.2. Noting (4.7) and (4.12), we have
by Lemma 4.4, for [ =n — 2,

n—1 ’
21 kiTiPi2(x’ §[3(z)) - kn—lTn—an—I(x’ fﬁ(z))Qn—l(x’ §B(z))

= k17'1P12(x, fp(z)) —c(n-2, z)kITn—lPZ(x7 §B(z))
+e(n —3,2) k7, 1 Py(x, £50)) @i, £5ay)

'(z+ 1)I'(n+1)
z+n —(rtz-1) I'(n+1+2)

The weights at the support points of £4,, are given by (3.2) in Theorem 3.1.
Noting the definition of B,(z), we obtain
Bn(2)

fﬁ(z)({xj}) = P 1—17— kn—l"n—1Pn—1(xj’fﬁ)Qn—1(xj’§B)

. . I(z+1)I(n+1)]7"
+ —
z+n (z+n ) (n+z+1)
-1
= [n tz-(z- 1)kn—1Qn—1(xj,fp)Pn—l(xj,‘fﬂ)] .
Theorem 3.1 gives @, _4(x;,£g) = 0, j = 2,..., n. This yields

§ﬂ(z)({xj}) =

and assertion (4.4) follows from the symmetry of the optimal design at the
point x = 3. To prove (4.3), we apply Theorem 2.3, which shows that the
supports of &5, and ¢* are the same, where {* is given by the canonical
moments

n+z’ j=2""’n’

p2i—l(§*)=§a i=12,...,n,

On—i+1 l

= -
—i +0n—i+1 2+ 2l

P2i(€*) =
o'n

p2n(§*) = 1.
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By Theorem 2.2 we have supp(é.,) = {x €[0,1]lx(1 — )@, _(x, £*) = 0},
where @, _(x, ¢*) is defined by the recursive relatlon with @y(x, £*) = 1 and

Ql(x f )_x - ;s
1
Q2.6 = (3= 5] (9
(4.13) 1 j(z+j+1)
T4 (z+2j)(z+2j+2)

Qj—1(x7§*), J=1.

The recursion coefficients in (4.13) can be identified with those of the Jacobi
polynomials GZ*2%@*+3/2(x) on the interval [0, 1] [see Abramowitz and Stegun
(1964), page 782] Thus we obtain (4.3), which completes the proof of Theorem
4.3 [in the case (u,v) = (0,0)]. O

ExamprLes. (i) Let z = 0 or z = 1. Noting P/(x) = [(n + 1)/2]P{:D(x) and
T,(x) = const P(1/21/P(x) [see Abramowitz and Stegun (1964)], and noting
Proposition 4.2, we obtain the D- and D;-optimal designs given by Hoel
(1958), Kiefer and Wolfowitz (1959) and Studden (1982b).

(i) Let (z,v) = (1,1) and B(2) € B,,. The weights of the optimal design &,
for 7, with respect to the prior B(z) do not depend on z and are all equal.
€42y is supported by the zeros of the Jacobi polynomial Pz 1/2E=1/ 2)(x)
This design is also the classical D-optimal design in the polynomial regression
model g,(x) for the given efficiency function A(x) = (1 — x2)@*1/2 [see Fe-
dorov (1972), page 88].

(i) Let (u,v) =(0,0), n > 1 and z = 2. By (4.1) we have

Bi(2) . 2

= , 1=0,1,...,n.
l+1 (n+1)(n+2) "

Thus, the design maximizing the product I1}_, det M,;(¢) (all models have the
same weight) is given by the zeros of the polynomial (1 — x?)U/(x), where
U,(x) is the Chebyshev polynomial of the second kind. The masses of ¢g,, are
1 /(n + 2) at the interior support points and 2[1/(n + 2)] at the points —1
and 1. This design could be used if the experimenter has no knowledge which
of the models of %, is a proper model.

THEOREM 4.4. Let AMx) =1 + x)*(1 — x)°, u,v €{0,1}. The optimal de-
sign £g,, for &, with respect to the prior B(z) € B, converges to the arcsin-
distribution when n — .

Proor. We prove the assertion for (u,v) = (0,0). The other cases are
~ treated similarly. Because the canonical moments of the optimal design &g,
are given by (3.4) and (4.6), we have lim, _, p,(fﬁ(z)) 5. The arcsin-distribu-
tion is the only distribution having p;, =  forall i € N, wh1ch proves Theorem
44. O
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5. Optimal product designs for multivariate polynomial regression.
The results given so far can be generalized to multivariate polynomial regres-
sion on the g-cube [—1, 1]9. For simplicity, we use the same notations as in the
previous sections although the meaning is sometimes different. For x =
(x4,. .., xq)T e[-1,1]9, let

N,,
&i(x) = ¥ fP(x)60) = fOT(x)o?
i=1

denote a polynomial regression model of degree ! € N,. Thus the regression
functions f® are the N, , = (* J; 7] different functions of the form IT¢_,x™:,

where m; are nonnegative integers with sum less than or equal to /. The
models up to degree n are collected in the set

.
. = {g|g(x) =fO"(x)6P,1=0,...,n}, where§® = (0(11),...,01(\1,:’1) .

For each x € [—1,1)9, a random variable Y(x) with mean g,(x) for some
(unknown) [ €{0,...,n} and with variance o2/A(x) can be observed where
the efficiency function A is of the special form

q
(5.1) AMx)=T]1@Q +x)%1 —x,)" withu;,v,€{0,1},i=1,...,q.
i=1

A design 7 is a probability measure on [ — 1, 1]9. The information matrix in the
model g, is given by

M(n) = [ FO@) F()AE) dn(=).

The generalization of the function ¥, defined in Section 1 to the situation
stated in this section is given by

n Bl
Wa(n) = L 17— log(det[ My(m)]),
1=0 4Vg,1
where B = (B,,...,B,) is a prior on {0,1,...,n}. The notion prior is again
used for probability measures on {0,1,...,n} or for vectors of the form
(se{0,1,...,n—1)
0 Nq,n—s
BO - - Bn—s—l - Y Bn—s - Nq,n _ Nq,n—s ’
(5.2)
= ve. = = - %*
Bn—s+1 - Bn—l 01 Bn Nq,n _ Nq,n—s ’

which yields the D,-optimality criterion used if only the s highest order terms
are of interest [note that (5.2) gives (1.1) in the case ¢ = 1]. We call a design 7
optimal for the class .%, with respect to the prior 8 if 7 maximizes ¥j.
D-Optimal designs for the model g, [which correspond to the prior 8, =
0,...,0,1)] are only obtained numerically for small n or g [see Kono (1962),
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Farrell, Kiefer and Walbran (1967) and Lim and Studden (1988) for more
details]. If n increases (n > 5), there are many numerical problems in the
determination of the optimal design. To avoid such difficulties, Lim and
Studden (1988) suggested maximizing det[ M,(n)] only over the class of prod-
uct measures

BE={n=t&x&Hx o xg

¢, is probability measure on

[-1,1] ,i=1,...,q}

on [—1,1]% and determined the D- and D, -optimal product designs for all
g €N and n € N in terms of canonical moments. They also give some effi-
ciency calculations which indicate that there is not much loss using an optimal
product design instead of an optimal design. In this section we calculate the
optimal product designs (in E) for the class %, with respect to priors of
similar structure as in (4.1). For brevity, the results are only stated for the
constant efficiency function apart from Theorem 5.5.

THEOREM 5.1. For the efficiency AM(x) = 1, the optimal product design for
. with respect to the prior B over the class of product designs E is given by
Mg = €g X+ X £g. For the canonical moments of &£, we have

1
Pzi—1(§p)= 27 i=1,...,n,
(5.3) (&)= —2 ) -1 -1
p21(§ﬁ) 0'i+0'i+1, i yeees I ’
p2n(§B) = 1’
where the numbers o, are defined by
n N _
(5.4) g =3 et B, fori=0,1,...,n.
1=i No,t

ProOF. Let n =¢; X -+ X ¢, € E denote a product measure on [—1,1]?
and let {p{’)), . ; denote the sequence of canonical moments which corresponds
to the measure ¢;, j = 1,...,q. We define the quantities (see also Theorem
2.2)

(P =pP, (=0 -p2)p? foriz2,j=1,...,q

and obtain for the determinants M,(n) [see Lim and Studden (1988) for a
proof],

q 1 i Ny-1,1-i
det[ M,(n)] = C, 1‘[1 ,l‘[1 Ll‘[l(zéi’_lzéﬁ ] :
J=li=1|k=

where the constant C; , depends only on / and g. Thus, we have [note that
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M(n)=1if Mx)=1land Z;_,N,_;, , =N, by Lemma 4.1]

exp(¥(n)) = llfll (det[ M,(n)])P/ Mo

n q I i Bi/Ng,1
=Cnl:1 UDU((J) 1{(])) -1,0-i
q n l .
— 1—[ l—[ 1—[ ( W) lgé‘i))(ﬁl/Nq,l»:i-qu—l,l—i
j=11=1k=
q n o
= 1:[ U (f( -1 2k))

where the constant C, depends only on n. The maximization of ¥, over the
class of product measures Z can now be carried out determining the design gﬂ
which maximizes H;z‘:I({é}} 1¢$)°* and forming the product measure 7,

£g X +++ X £5. Simple algebra shows that the canonical moments of the deSIgn
¢ are given by (5.3), which completes the proof of Theorem 5.1. O

ExamplE. Let n=2,q9g€ N, Mx) =1, B,=0 and B; = 1 — B,. Straight-
forward algebra yields

1+ [q/(q +2)]B,
1+p8,

)

P1(§;3) = 5 p2(§p) =

IH l\:>|v—l

Ps(fp) s P4(§3) =1,

and we obtain using Theorem 4.3, for z =[(1 + B,)/B,l(¢ + 2)/2 — 2 and
n=2,
supp(gﬁ) = { - 17 0’ 1} )
+[a/(q + 2)] B,
2(1 + By)

)

£s((~1)) = £&,({1)) = ~

Bs
qg+21+8,

§ﬁ({0}) =

Theorem 5.1 shows that ng = £ X -+ X &; is the optimal product design for
&, with respect to the prior B = (0,1 — By, B;). The D- and D,-optimal
product design for the quadratic model g, are obtained for B, = (0,0, 1) and

Bp. = (0, — 2/q,(qg + 2)/q), respectively.
We will now define a class of priors depending on one real parameter [the

generalization of (4.1)] by
B, ={B(2) = (Bo(2),...,Bu(2))|z=1orz =0},
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where

'(n+z-1-1)T(z+q) T(n+1)
(5.5) Bi(2) = Ny,i (n+1-1) T(z—-1)T(n+z+gq)’

l1=0,1,...,n.
Here the priors (1) and B(0) have to be interpreted as the limits

B(1) = lmB(2) = (0,...,0,1),
(0) = lmp(2) = [0,...,0, - z2n=t, o
(56) B = ZI_I;I}’B ?) = IRRRER ) Nq_l’n ’ Nq_l’n

n n+
- (0.0, - 2, 22,
q q

Note that (5.5) gives (4.1) for ¢ = 1. 8(1) and B(0) correspond to the D- and
D;-optimal designs and we have X7_,8,(z) = 1 by Lemma 4.1. For priors
defined by (5.5) we obtain the following theorem.

THEOREM 5.2. Let Mx) =1, g € N and n € N. The optimal product design
Ng.n,z fOr &, with respect to the prior B(z) € B, over the class E is given by
Ngnz=EqnzX """ X & n . The design ¢, . . on [—1,1] is supported by the
zeros of the polynomial (1 — y?)P{C19/2@*D/2(y), For the masses of &, ,, , at
the support points we have

z+gq 1

ifye {—1,1},
2 n+z+qg-1 ify 4 )

€0 ({0)) =

- y — n .
P ify € (—1,1) N supp(£,,,,.)

Proor. By Theorem 5.1, the optimal product design for %, with respect to
the prior B(2) is given by n,, , , = ¢, , . X *** X &, , ,, where &, , is deter-
mined by the canonical moments in (5.3). Using Lemma 4.1, we obtain for the
quantities o; defined by (5.4),i=0,1,...,n,

n N, ,_; '(n+1) I'(n+z+q-—-1)
0,-=Z 2! Bi(z) = —
=i Ny I'(n+z+q) T'(n+1-1)

Note that Lemma 4.1 cannot be applied for z = 0 and z = 1. In these cases the
representation of o; can be derived directly, observing (5.6). Thus, we have for
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the canonical moments of ¢, ,, ,

1
p2i—1(§q,n,z) = E’ i1=1,...,n,

z+q-1+n-i

. = i =1,...,n—1
p2l(§q,n,z) 2+q -1+ 2(n—z) ’ 12 ’ ,n )

p2n(§ ,n,z) = 17

which correspond to the canonical moments given in (4.6). Because the canoni-
cal moments are invariant under transformations of the interval we can apply

Theorem 4.3, for (x,v) = (0, 0), and obtain the assertion of the Theorem 5.2.
O

Note that the design ¢, , , depends only on the sum of g and z, where q is
the dimension of [—1,1]? and z the weighting parameter for .#,. Therefore,
€n, 2 18 also the optimal design for %, with respect to the prior B(¢ + z — 1)
in the case of one-dimensional polynomial regression, i.e., £, , ., = &1, q+2-1-
The next two corollaries, which are the special cases z=1 and z =0 of
Theorem 5.2, give the D- and D,-optimal product designs for all ¢ € N and
neN.

COROLLARY 5.3. Let Mx) =1, g€ N and n € N. The D-optimal product
design m, , , over the class E is given by my,1 =&, ,1%X """ X & a1
The design ¢, ,, on [—1,1] is supported by the zeros of the polynomlal
1 - y?HpLes +1/2/(@+1/ ®(y). For the masses of £, , | at the support points we
have

g+1 1 .
9 n+q lfye{_lrl}r
gq,n,l({y}) =
— ify € (=1,1) N supp(, , 1)

COROLLARY 5.4. Let A(x) =1, q€ N and n € N. The Dl-optimal product

design m, , , over the class E is given by M, , 0 =¢&; 00X " X &g 00
The design ¢, ., on [—1,1] is supported by the zeros of the polynomzal

a- y2)P,§‘L/12’q/ 2)(y) For the masses of &, , o at the support points we have

q 1 .
antg-1 ify € {-1,1},
gq,n,O({y}) =

Tie—1 fre(-LDpn supp(é,, 4,0)-
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The following theorem, which states the analogous result for efficiency

functions of the form (5.1), can be proved by similar arguments, using the
corresponding statements of Sections 2, 3 and 4.

THEOREM 5.5. Letq € N,n € Nand Mx) = IT¢_ (1 + x,)*«(1 — x,)", where

,0, €{0,1} for i =1,...,q. The optimal product design for %,
wzth respect to the prior B(z) € B,, over the class E is given by 7, , ,=
ED X oo X ED Fori=1,...,q the measure £7, , is supported by the

zeros of the polynomial

1-u; Ui v —u;
(14 3)' (1L = ) PP A O/ ).

.

The design §f1‘)n , concentrates equal mass on all the support points which are

in the interior of [—1,1],i = 1,..., q. If there are any support points of f;’)n 2
at the boundary (thls depends on u;,v;) their masses are (z + q)/2 times
bigger than the masses at the interior pomts of 5((1’),, »i=1...,q.
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