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ESTIMATION OF NONSTATIONARY ARMAX MODELS
BASED ON THE HANNAN-RISSANEN METHOD

By Dawelr Huang AND LE1 Guo

Peking University and Australian National University

We consider in this paper the estimation problems for both orders and
coefficients of linear feedback control systems, described by ARMAX mod-
els. The estimation algorithms are inspired by the Hannan-Rissanen
method used for the estimation of stationary ARMA models, while the
convergence analyses are based on limit theorems for both double array
martingales and nonnegative supermartingales, and on techniques of
stochastic Lyapunov functions. Traditionally used assumptions, such as the
strictly positive real condition and the requirement of known upper bounds
for true orders, are not imposed here.

1. Introduction. One of the basic issues in statistical sciences is how to
choose models to fit observations. The observations are objective, yet the
models are generally ideal. Thus, the models considered have been more
realistic and hence usually more complicated.

In this paper, we consider the linear feedback control systems described by
the ARMAX model

(1.1) A(2)y, = B(2)u, + C(2)w,, t>0,

where y,, u, and w, are, respectively, the m-, [-, and m-dimensional system
output input and noise sequences, with 1n1tlal values {y;, u;, w;, —po =<

< -1, —qy<j< -1, —-ro<k <1} A(2), B(z) and C(z2) are unknown
matrlx polynomials in backwards shift operator z

(1.2) A(z) =T+Az+ - +A, 2", Do =0,
(1.3) B(z) = Byz + By2®> + --- +B, 2%, q,=0,
(14) C(z)=1+Cyz+ - +C, 2", ro=0,

where p,, q, and r, are the unknown true orders (A, # 0, B, # 0,C, + 0).
Such an ARMAX model though may not be uniquely defined in the multi-
variable case [see, e.g., Hannan and Deistler (1988), Section 2.7], it is not
critical for a portion of results we shall investigate. However for estlmatlng
the orders (p,, g, 7,) and the parameters {A;, B;,C,, i=1,...,po, J=
1,...,90, k= 1,...,1y}, we will need the following ldentlﬁablhty condition:

(2), B(z) and C(z) have no common left factor and A, , B

(15) and C, are all of row full rank.
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1730 D. HUANG AND L. GUO

It should be noted that in the scalar variable case the rank condition is
automatically satisfied.

In this paper, we shall also need the usual minimum phase condition on the
noise model, i.e.,

(1.6) det C(z) + 0, lz| < 1.

The above ARMAX models have been studied in at least two different areas:
time series analysis and adaptive estimation and control. The special case of
g, = 0 corresponds to the standard ARMA model in the time series analysis.
For stationary cases (det A(z) # 0, |z] < 1), Hannan and Rissanen (1982) have
proposed a three step procedure to estimate both the orders and coefficients of
the ARMA model. The first step was to estimate the innovation process {w,} by
increasing lag autoregressions. The second step was to estimate the coefficients
and orders by observations {y,} and the innovation estimates obtained from the
first step. The third step was to obtain efficient estimates for the coefficients by
use of the estimates of the second step. The first and second steps originated
from Durbin (1961) for the case of known orders p, and r,. However, rigorous
theoretical analysis has been carried out only since the work of Hannan and
Rissanen (1982). In the analysis of increasing lag autoregressions (the first
step), some kind of uniform convergence rate for autocovariances [An, Chen
and Hannan (1982)] or autocorrelations [Hannan and Kavalieris (1983)] is
needed. This leads to the consideration of asymptotic behaviors of sequences of
the form

;
h Wiy
j=0

(1.7) max max
1<k<h, l<izn

’

where {h,} is a nondecreasing sequence of integers [e.g., Hannan and Kava-
lieris (1984); Huang (1987)]. It is usually the case that for any fixed %,
{w]y;_1,J = 0} constitutes a martingale difference sequence and so the sum-
mation part in (1.7) is a special form of double array martingales. It is worth
noting that the study of (1.7) is also a crucial step for the order estimation
problems when the upper bounds for the true orders are not available. By
using estimations for sequences of the form (1.7), Hannan, et al. [e.g., Hannan
and Kavalieris (1984); Hannan and Deistler (1988)] extend their results for
stationary ARMA models to stationary ARMAX ones. In these works, their
main interests are in open-loop identifications, since they require that the
system (1.1) is stable in structure or open-loop stable (i.e., det A(z) # 0, |z| < 1)
and that the input sequence {z,} and the noise sequence {w,} are either
stationary correlated or independent. This later assumption may exclude the
application of their results to general feedback control systems, because any
real feedback controller depends essentially on the system output and hence
the driven noise and is generally nonstationary.

For this reason, the above mentioned stationary and independency assump-
tions on {u,} are usually not imposed in the area of adaptive estimation and
control. The simple case of r, = 0 was first studied [e.g., Astrom (1968); Ljung
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(1976); Moore (1978)] where an identifiability condition on the observations,
i.e., the “Persistence of Excitation”” (PE) condition was required. This condi-
tion was later relaxed by Chen (1982) and Lai and Wei (1982a). Particularly,
Lai and Wei (1982a) obtained the weakest possible convergence conditions for
least squares (LS) estimates in 3ome sense. Unfortunately, straightforward
extensions of these results from the special case of r, = 0 to the general r, > 0
cases are hardly possible without further assumptions on the noise model
besides (1.6). Indeed, in the ry > 0 cases, most of the existing adaptive
estimation and control algorithms need some kind of strictly positive real
(SPR) conditions on the noise model in the convergence analysis [e.g., Ljung
and Soderstrom (1983); Goodwin and Sin (1984)]. In particular, for the conver-
gence of the standard extended least squares (ELS) algorithm, it is required
that [e.g., Ljung (1977); Solo (1979), Chen (1982); Lai and Wei (1986); Chen
and Guo (1986)]

(1.8) C e +C"(e7™)-1>0, Vare[0,27].

Qualitatively, this condition means that the system noise {C(2)w,} is not too
colored. Indeed, it can be shown that (1.8) implies the minimum phase
condition (1.6) and [[Cy, ..., C, ]Il < 1 (see the Appendix), where the norm for
a matrix X is defined as {A_ (XX*)}"2 and A__(-XA,;(:)) denotes the
maximum (minimum) eigenvalue of the corresponding matrix. Thus, in the
scalar case, (1.8) implies 72 ;[¢;]* < 1. And so, for example, it is immediately
seen that the minimum phase polynomial C(z) = (1 — 0.32)(1 — 0.42)X1 —
0.52) does not satisfy (1.8). It is also known that if the SPR condition (1.8)
fails, the ELS algorithm generally does not converge [e.g., Ljung and Soder-
strom (1983)]. Many efforts have recently been devoted to relax the SPR
condition in adaptive estimation and control. However, all of these contribu-
tions either need some extra a priori information on C(z) besides (1.6), or
cannot be applied to feedback control systems [see Guo and Huang (1988) and
the references therein].

Perhaps, the main reason why the standard ELS algorithm requires a SPR
condition for its convergence is that the innovation estimate is generated by
itself! By using the results in Guo, Huang and Hannan (1990), we have
recently proposed a two-step method to obtain strongly consistent parameter
estimates for ARMAX models without the SPR condition [Guo and Huang
(1989)]. This method is similar to the Hannan-Rissanen method, because it
also estimates the innovations at the first step and estimates the coefficients at
the second step. However, as is seen from Guo and Huang (1989), the
convergence analysis for feedback control cases appears to be completely
different from those for the traditional stationary case. One of the reasons is
that the standard notions of autocovariances and autocorrelations, which are
so important in the stationary case, become useless in the general feedback
control cases. Nevertheless, some precise convergence results can still be
established when some knowledge about the true order (p,, q,, ) is available
[Guo and Huang (1989)]. The key idea used in Guo and Huang (1989) is
that: Although in the general feedback control cases the estimates for the
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autoregressive parameters in the first step may not converge, the innovation
estimates have some very desirable properties according to the theory in Guo,
Huang and Hannan (1990). Thus in the second step, the innovation estimates
of the first step can still be successfully used in getting consistent parameter
estimates.

In this paper, we will continue the above work. As a crucial step, two kinds
of innovation estimates are proposed and analyzed in the first place (Theorems
2.1 and 2.2). They are essential improvements and extensions over those in
Guo, Huang and Hannan (1990) and Guo and Huang (1989). Then we consider
estimation problems for both the unknown orders and coefficients of system
(1.1) (Theorem 2.3). In the present results, the standard assumptions such as
SPR conditions and a priori known upper bounds for the true orders [e.g., Guo,
Chen and Zhang (1989)] are removed.

2. The main results. Since the innovation estimate plays a crucial role
in ARMAX model identification, we shall consider it first.

2.1. Estimation of the innovation process. Let {h,} be a sequence of
nondecreasing positive integers and introduce the following regression vectors
for any n > 1:

(2-1) ‘/’t(hn) = [ytf’yt‘r—h v 1y;—h,,+11 uqt-’ uqt-—l’ A u;—hn+1] ’ 0<t<n.

The innovation process {w,} can be estimated by either of the following
estimates.

1. The “honest estimate” {@,(n),1 < ¢ < n}:
(2:2) B(n) =y, — & (n)_y(h,), 1<t<n,
(283)  @a(n) = @(n) +b(n)P(n)o(h,) 3,11 — 97 (hy)a(n)],
(24)  Py(n) = P(n) — b(n) PAn)¥(h, )W (h,)P(n),
b(n) = {1+ 97 (h,) P(n)y(h,)} ",

where the initial values &,(n) = 0 and Py(n) = gI, 8 > 0.
2. The ‘“final estimate” {§,(n), 1 <t < n}:

(2.5) [8(n),8x(n),...,8,(n)]" 2 Y, - ®,[®;0,] T'O]Y,,
(26) Yn = [y11y2”"’yn]T’
(27) (Dn = [‘//O(hn)’ ‘//I(hn)r""‘//n—l(hn)]‘r'

The honest estimate and the final estimate are so named because w,(n) is
oly;,u;,i < t}-measurable and 8,(n) is o{y;, u;,i < n}-measurable for any ¢t €
[1,n]. The following theorem establishes the asymptotic properties of these
two kinds of innovation estimates.
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TuEOREM 2.1. For the ARMAX model (1.1), assume that {w,, F} is a
martingale difference sequence satisfying

(2.8) supE[lw, IY[F,] <, llwl = 0(e(2)) a.s.,
t

where the function ¢(+) is positive, deterministic, nondecreasing and satisfies

(2.9) Sl;pfp(e”“)/so(ek) <.

Assume further that for some constant b,
n-1 N
(2.10) P (Ilyillz + ||ui||2) =0(n%) a.s.
i=0

and u, is F-measurable. If the regression lag h, in (2.1) is chosen as
h, = O({log n}*), (@ > 1) and log n = o(h,,), then as n — =,

(2.11) ,Z:”w’(n) — w,|? = O(h, log n) + o({¢(n)loglog n}*) a.s.
and

(2.12) téng,(n) — w,|? = O(h,logn) + o({¢(n)loglog n}?) a.s.,
where {h(n)} and {{n)} are defined by (2.2) and (2.5), respectively.

The proof of this theorem is given in Section 3. We remark that u, is
F-measurable implies that the input u, is a feedback signal G.e., u, is a
function of the observations {y;, 4;_;,i < t}), while (2.10) means that under
this feedback controller, the closed-loop system is not explosive. We also
mention that in the noncontrolled case (u, = 0), this condition may be applica-
ble to ARMA models with unstable zeros of det A(z) lying on the unit circle,
but it fails for explosive models.

From (2.11)~(2.12), we see that if the sample path behavior of the noise
process {w,} is not “too bad” (e.g., {w,} is bounded a.s.), or is Gaussian and
white (||w,|| = Oflog £}*/?) or has a growth rate of O({log t}179), (¢ > 0), then
the second term o({¢(n)loglogn}?) may be negligible. We now give an example
to show that in such cases the results of Theorem 2.1 are the best possible.

ExampLE 2.1. For an ARMAX model (1.1) with det A(2) # 0, |z| < 1, as-
sume that {w,} is a zero mean Gaussian white noise (i.i.d.) sequence indepen-
dent of {z,} and that {z,) is a Gaussian stationary ARMA process whose
spectral density matrix is uniformly positive definite on [-m,w) If h, is
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chosen as in Theorem 2.1, then the honest estimate {i0,(n)} satisfies

Y - 7 - !
(2.13) '}1_{20 ¢ 1[wt(n)h l‘;)(:i[:t(n) wt] =Z(éEwtth) as.

The proof is also given in Section 3. This example not only shows that the
result (2.11) in Theorem 2.1 is sharp in some sense, but also has its own
significance in choosing the lag {%,} for stationary ARMAX model identifica-
tion.

In some cases, however, it is possible that the sample path growth rate of
the noise process is rather fast, as when the noise sequence has only finite
second moment. In such cases, the results of Theoremt 2.1 may be rough. To
deal with this situation, we present the Theorem 2.2.

THEOREM 2.2. For ARMAX model (1.1), assume that {w,, F,} is a martin-
gale difference sequence satisfying

(2.14) E{ sup E[Ilwt+1||2|Ft]} <
t

and that (2.10) holds. Let the regression lag h, = [c(log n)*] be the integer
part of c(log n)* for some a > 1 and ¢ > 0. Then as n — o,

(2.15) Y b, (n) — w,l? = O([hn]2 log nfloglog n}**?) a.s.
t=1
and

(2.16) i 8,(n) — w,l? = O([hn]2 log n{loglog n}2+8) a.s.,

t=1

for any 6 > 0, where {w(n)} and {£(n)} are defined by (2.2) and (2.5),
respectively.

The proof of this theorem is given in Section 4. We point out that the proofs
of both Theorems 2.1 and 2.2 depend essentially on two key techniques: (i) A
standard recursion for stochastic Lyapunov functions which has been previ-
ously used in, e.g., Moore (1978), Solo (1979), Chen (1982), Lai and Wei
(1982a) and Chen and Guo (1986) for the usual fixed lag case, and in Guo,
Huang and Hannan (1990) for increasing lag cases; (ii). The martingale limit
theory. The proof of Theorem 2.1 hinges on supermartingale exponential
inequality, and some techniques of truncations and subsequences; while the
proof of Theorem 2.2 relies on the nonnegative supermartingale convergence
theory which has been previously used in engineering literature [see, e.g.,
Ljung (1976); Moore (1978); Solo (1979); Goodwin and Sin (1984)].

We are now in a position to consider the estimation problems of both orders
and coefficients.



ESTIMATION OF NONSTATIONARY ARMAX MODELS 1735

2.2. Estimation of the orders and parameters. Let us introduce the follow-
ing notations:
¢(p,q,r) = [y;’y;—l’ oo ’y;—p+1’ UGy Ug_15--s Ui g1

wi(n), wi_y(n),..., wtf—r+1(n)]‘r’

(218) Xn(p’ q’r) = [¢0(p’ qsr)s ¢1(pa q’r)""’d’n-l(ps q,r)]‘r,
Z,(p,q,r)

=Y,-Z,(p,q,7) [ X;(p,q, ") X(p,q,7)] ' Xi(p,q,7)Y,,

(2.20) 6,.(p,q,r) =tr(Z;(p,q,7)Z,(p,q,7)},

where {i0,(n)} and Y, are defined by (2.2) and (2.6), respectively.
We now consider the following information criterion (CIC):

(2.21) CIC(p,q,r), = 6,(p,q,r) + (P +q +1)a,

[see, Guo, Chen and Zhang (1987)], where the first C stresses that the criterion
is designed for control systems and where {a,} is a nondecreasing of positive
numbers specified later on, in (2.27)-(2.28).

1. Order estimation procedure. For any n > 1, this procedure consists of two
steps:
Step 1.

(2.22)  Take Mi(n) to minimize CIC(k, k,%),,0 <k < [logn].

Step 2.
(2.23) Take p(n) to minimize CIC( p, " (n),m(n)),,0 <p < m(n).
(2.24)  Take §(n) to minimize CIC(p(n),q,m(n)),,0 <q <m(n).
(2.25)  Take #(n) to minimize CIC(p(n),4(n),r),,0 <r < m(n).

2. Parameter estimates. For any n > 1, the estimate 6(n) for the unknown
parameter 6* £ [-A,,...,~A,, B,,...,B,,Cy,...,C, T is defined by

8(n) =6,(p(n),4(n),#(n)),
where (p(n), §(n), #(n)) is defined by (2.23)-(2.25) and
(2.26)  6,(p,q,r) = [Xi(p,q,7) X, (P,q,7)] ' X(p,q,1)Y,,
with X,(p, q,r) and Y, the same as those in (2.19).

(2.17)

(2.19)

It is worth noting that in the above order estimation procedure, the first
step (2.22) corresponds to estimating the value of m, £ max{p,, q,, ;). In the
second step, the true orders p,, q, and r, are searched between at most
3m(n) points at each time instant n, rather than [/#(n)]® points as in [e.g.,
Guo, Chen, and Zhang (1989)]. These ideas were previously used in Huang
(1989) for estimation of ARMA orders.
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In Section 5 we will prove the following theorem:

THEOREM 2.3. (i) Under the conditions of Theorem 2.1, if X°, (n) satisfies
h,logn + [¢(n)loglog n]? = o(A%in(n)) a.s.
and if in the criterion (2.21), the sequence {a,} is chosen to satisfy
(2.27) {h,log n + [@(n)loglog n]z}/an -0 a.s.asn > x,

and
(2.28) a,/Npin0(n) >0 a.s.asn > x,

where A%, (n) is defined as
n—1

(2.29) Buaa(m) = 0.0 £ o267,
t=0

with ¢ = RPN mo+1r Uhr ooy Up_ mo+1 Wiy o ooy Wi_ m0+1] m, &
max{p,, 9o, o). Then for the estimation algorzthm deﬁned by (2.17)-(2. 26) as

n — oo,

(2.30) m(n) > m, a.s.,
(231) (ﬁ(n)’ é(n)’F(n)) - (po,QO,ro) a.s.
and

(2.32) ||é(n)—0*||2=o(" logn) o ({qo(n)loglogn} ) .

Ain(R) Ain(n)

(ii) Under the conditions of Theorem 2.2, if A%, (n) satisfies
[#,]%log n(loglog n)**® = 0(2%,(n)) a.s.,

and if {a,} is chosen to satisfy (2.28) and

(2.33) {[hn]2 log n(loglog n)2+5}/an -0 a.s. for some § > 0,

then (2.30) and (2.31) also hold and

[k, ]° log n{loglog n}?*?

(2.34) 16(n) — 6412 = O (o) a.s.

As one would have probably noted, a major feature of the above theorem is
that the criterion CIC (2.21) depends on {a,}, which in turn depends on the
growth rate of 1%, (n) as exposed in (2.28). This is naturally expected because
there are no specific constraints on the input sequence {u,} except those in
(2.10) and the {u,} determines completely the excitation extent—the growth
rate of A%, (n).

Let us now consider the continuously excited controller used in the area of

adaptive control. To be specific, let {v,} be a sequence of I-dimensional i.i.d.
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random vectors independent of {w,} with properties:
(2.85) Ev, =0, Ev,v! = ul, Ellv, | < =, w > 0.

Assume that u? is any /-dimensional and o{w;, v;_;, i < t}-measurable ran-
dom vector (any feedback controller is of this kind). The continuously excited
controller u, is defined as [see, e.g., Caines and Lafortune (1984); Chen and
Guo (1986)]

(2.36) u,=u+v,.

COROLLARY 2.1. Assume that for system (1.1), the identifiability condition
(1.5) holds and that ’

1 n—1
(2.37) liminf)tmin{—— Y wiw{} >0 a.s.
, noe n o
If the control law (2.36) is applied to the system (1.1) and
1 n—1
(2.38) limsup— ). (Ilyill2 +llul?) <o a.s,

n—o n 1=0

then Theorem 2.3 still holds with A°; (n) replaced by n in (2.28), (2.32) and
(2.34).

Proor. We need only to note that in this case, the system (1.1) is persis-
tently excited, i.e., liminfn — » A%, (n)/n > 0, a.s.. This fact is a specializa-
tion of those proved in Guo, Chen and Zhang (1989), [see also Chen and Guo
(1986) for related results]. O

We remark that the property (2.38) is usually regarded as a closed-loop
stability criterion in the area of stochastic adaptive control. Apparently, a
system of the form (1.1) satisfying (2.38) is not necessarily open-loop stable.

To conclude this section, we mention that the efficiency of the estimates
given above is still a concern for the present feedback control cases. Of course,
with some further restrictions on the input sequence {}, it is possible to use
the similar ideas as those in the third step of the Hannan—-Rissanen method to
investigate this problem. Such a discussion will be presented elsewhere.

3. Double array martingale limit theory and the proof of Theorem
2.1. Although various martingale limit theorems have been studied exten-
sively in the literature, there are only few results on limit behaviors of double
array martingales [e.g., Stout (1974); Lai and Wei, (1982b)]. These results, due
to various restrictions, can hardly be applied to the present situation. For our
later use, we now present the following results on double array martingales,
which are improvements over those studied in Guo, Huang and Hannan
(1990).
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LEmMmA 3.1. Let {w,, F,} be an m-dimensional martingale difference se-
quence satisfying

(3.1) lw,ll = o(e(t)) a.s.,

where ¢(x) is described as in Theorem 2.1. Assume that f(k), t,k = 1,2,...,
is an F,-measurable, p X m-dimensional random matrix satisfying

(3.2) lIfi(k)ll<A<® a.s. forallt, kand some deterministic constant A.
Then for h, = O({log n]*), the following properties hold as n — ,

. 2
(3.3) (i) max max Z f(R)wj,q | = (ln;ax”lelf(k)ll)
+ o(¢(n)loglogn) a.s.

provided that

(3.4) squ(||wj+1||2|Fj)<m a.s.

(3.5) (if) max max Zf(k)w,+1 O(IH}Bax”lelf(k)ll)

+ o(¢(n)loglogn) a.s.

provided that

(3.6) sup E(lw,, I |F}) < a.s.

Jj

Proor. (i) We need only to consider the case of scalar variables and A = 1.
For any ¢ > 0, let us set

w; = w;I{lw;l <ee(j)}, @, =1, — E(&,F;_,).

Then

Z f(k)w_1+1

Jj=1

+1I{ +1| > 599(./ + 1)}f(k)‘

(3.7
( _1+1|F)f(k)

E (B0

We have from (8. 1) and (3. 2) that
lgllca;; ll;lzasxn Z f(k)wj+lI{ j+1 > 899(./ + 1)}

n

(3.8) Z w; 1 M{lw; 1] > ep(j + 1)}

<MMn+D)ZH ol > 60 + 1)} = o(p(n + 1)) as.
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Also, letting a,, = max; _, ., {E;Lllf(k)lz}l/z, we have under (3.4),

max max
1<k<h, l<izn

Z E(w;,,|F; f(k)‘

1/2

{ Y [E(wjeid(wyeal < o0 + 1)|F;))]2} a

X

. 1/2
|E(w) i I(w;11) > e0(i + DIF))] ) a,

|| [\’]3

(3.9) {

1/2

< {sup (.18 £ Py > o005 + D)),

=0(a,) as.,

where the last relation is deduced by using (3.1) and the conditional
Borel-Cantelli lemma [see, e.g., Stout (1974), page 55].
Then, to prove (3.3) we need only to consider the last term on the R.H.S. of

(3.7). Set

i

S(k=Z w,.,1fi(k), 1<i<n,

So(k) =0, d(x) = 2ep(x + 1), AMx) = d(x)_l,
" 302(et)
4

iE(wale)[fj(k)]z , 1<ise,

Ti(k,t) = exp{A(e’) S;(k) —
Ty(k,t) = 0.
We know that for any fixed % and ¢, {T(k,¢), 0 < i < e} is a supermartin-

gale [see Lemma 5.4.1, Stout (1974)]. Further, from the properties of go(x) we
have

AG) = [2e0(i + 1)] 71 > [2e0(et + 1)] T = A(e?), is<el

Then
3 : |
Si(k) = 7M0) ¥ E(@}..IF;) f(k)
j=1

3A(e’)
4

< S,(k) - E(w2F) f7(k), i<e'.
j=1
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So

l<k<ct* 1<i<et

P{ max max [Si(k) —3AT(l)Zl ( J+1|F)f (k)]
j=1

> (2 + a)d(e)loglog e‘}

[et*]

Y P{ max lSi(k) -
l<i<e!

k=1

3A(et)
MD 5 w(a.e) 7o)

j=1

IA

> (2 + a)d(e’)loglog e‘}

[et*]

Y P{ max T,(k,t) > exp[(2 + a)logt]}

k=1 l<i<e’

IA

[et?]
Y @+ = 0(¢t72) [by Corollary 5.4.1 in Stout (1974)].
E=1

IA

Then, according to the Borel-Cantelli Lemma, we have
s e e LSIE) ~ (3MD)) /45 B (]I (k)]
t__,mp l<k<ct® 1<i<e! Qo(e + I)IOgt
<2(2+a)e as.

Now let h, < c(log n)* then h, < ct® for n < e’, we have from (2.9) and
the above 1nequa.hty that for n € [e’ 1et],

[S.(k) = (8A(i)) /4T E(} ) £7 (k)]
max max
l1<k<h, l1<i<n ¢(n)loglog n
p(e*!) ()  logt
d(e’) (™) log(t — 1)
x max; o sCt"‘maxlsiset[Si(k) - (3)‘(i))/425=1E(wj2+1|F}')fj2(k)]
(et + 1)logt

=0(e) as.ast > .

Thus,

max max |S;(k) — i (,+1 )2(k)

1<k<h,l<i<n j=1

= O(ep(n)loglogn) a.s.
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and

max max S;(k) < 1n]:a32 —)\(n)ZE( w2 |F;) (k)

l1<k<h, l<i<n

+ O(£<p( n)loglog n)

(3.10) 1<ka<x —A(n) Z E[I +1|)t(j)_1|F}] f7(k)

+ O(eqo(n)loglog n)

supE( +l||F) max Y, f2(k)
kshpj=1

IA

IA

+ O(ep(n)loglogn).

The similar result holds also for {—S;(k)}. Then the desired result (3.3)
follows from (8.7)-(3.10) and the arbitrariness of «.

(ii) Note that the condition (3.4) is crucial only in the proof of (3.9). When
(3.4) is relaxed to (3.6), (3.9) can be replaced by

 mex  max Z E(w;,,F;) f;(k)

(3.9) i
3supE( joil ) max ¥ If(R)I.
kshnj=1

Note also that
2 _
 max Z If;(B)I? < | max Z If; (R,

n ‘—1 nj=1
then (8.5) follows for (3.7), (3.8), (3.9') and (3.10). O
We remark that if %, is only assumed to satisfy h, = O(n*), a > 0, then

the results (3.3) and (3.5) still hold, provided that loglog n in them is replaced
by log n.

LEmMa 8.2. Under the conditions of Lemma 3.1 except (3.2); if (3.4) holds,
then

Z f(k)wj+1 O(an logan)

(3,]_]_) 1<ka<’§z lsz<n
+o(a,¢(n)loglogn) a.s.,

where

11 1/2
= na &k), gi(k)=[Z_ZIIf(k)II2+1] . gk) = 1.
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Proor. Let x,(k) = f;(k)/g;(k), 1 <j <n. Then |lx;(k)ll < 1. So we have
from Lemma 3.1 that

Zx(k)

Jj=

max

(R)|?
(3.12) lskas}% l<i<n lg]:a;% Z ”xj( )"

nj=1

+ o(¢(n)loglogn) a.s.
Note that (omitting the dependence on %)

(3.13) Y Nl =
j=1
Also,

i i i
Z fiwj1 = Z gjx,wjn - X gt+1 - gt)xjwj+1 + 8; > XjW;jy1
= Jj= Jj=1t=j Jj=1

i—1 t
=—Z(gt+1_gt)zxj +1+g,Z Wiiq:
t=1 j=1

So
 max  max Z fi(R)wj,
< max max Zx(k)
l<k<h, 1<t<n j=
(3.14)

X max max{Z[ng(k) g,(k)]+g,-(k)}

l<k<h,l<i<n

Zx(k)

Jj=

<2a, max max

"1<k<h, l<i<n

Thus, (3.11) follows from (3.12)-(3.14). O

LEmma 3.3. Suppose {w;, F;} is an m-dimensional martingale difference
sequence satisfying

(315) SI}pE(”ij”z'F}) <o, "wt" = O(‘P(t)) a.s.
J

Let ¢j(k) = [x];, x5, ..., x},], where x;, is Fi-measurable, t = 1,2,..., and
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assume that b, and ¢(x) are the same as those in Lemma 3.1. Set

M(k) = i v (k)y;(k)" +BI, B>0.
j=1

S(k) = ¥ w(Bwlss,  So(k) = 0.

j=1

Vi(k) =[] SB[

(k) = ¥ ‘l/lJT(k)[Mj(k)]_ISj(k)r, l<i<n,1<k<h,.
=1
Then, as n i) 0 i
(3.16) | max V,(k) = 0(8,) + o([#(n)loglog n]2) a.s.
(3.17)  max U,(k) = 0(8,) + o([¢(n)loglog n]2) a.s.,

where 8, = h, log, + Ayu(M,(h,)).

Proor. Denoting c,(k) = [1 + ¢7(R)M;_(k)~'y(k)]"", by the matrix in-
verse formula we know that

[M(R)] ™" = [Mo_y(B)] 7" = ei(R) [ M y(B)] (k)i () [ M y(B)] "
Then by a standard treatment [see, e.g., Moore (1978); Solo (1979); Chen

(1982); Lai and Wei (1982a); Chen and Guo (1986); Guo, Huang and Hannan
(1990)] we have the following relationship:

tr{S,(k) [ M, (k)] *Si(k)} = tr{S;_1(B) [ M,_(R)] TS _1(R)}

+ 2ci(k)‘//i(k)TMi—l(k)_lSi—lwi+1

- ci(k)lld’i(k)T[Mi—l(k)]_lsi—l(k)uz

+ ey (R (R) [ M;_y(B)] ™ 0i(R)llwyI*
< tr{S;_1(B) [ M;_1(k)] 7'S;_1(R)}

+ 2¢i(k)T[Mi(k)] _ISi—l(k)wi+1

— |0 M) T S (B |

+ d’i(k)TMi(k)_ldfi(k)”wi+1”2'

For any fixed k, summing up from i = 1 to n we have

Vi) + 3[R M]S|
i=1

(3.18)

(3.19) < T 0u(B) M(R) ()l P
i=1

+2) d’i(k)TMi(k)_ISi—l(k)wi+l'
i=1
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From Lai and Wei [(1982a), Lemma 2] we know that for any fixed k,
det(M,(k)) — det(M;_,(k))

T -1 _
and hence
det(M (k)
M, x1dx
(320) 105 ,Zl"”(k) (k) 71y (R) < max. ) oy
=0(§,) a.s.

Thus, it follows from (8.5), (3.15) and (3.20) that
max E (k) M(k) (k) llw, , 4]l

1<k<h ni=1

- lsksh”{z Ui (R) M7 (k)8 [l ll* = Bl IF)

i=1
(3.21) +y w;(k)M;l(km(k)E(nw,-Hule;)}
i=1
=o(e(n)*loglog n) + o( max z; (k) M(k)~ ¢(k))
ni=1
= o(¢(n)210glog n) +0(8,) a.s.
Let

1/2

o= { max % Ju®mm s @)

then it follows from (3.19), Lemma 3.2 and (3.21) that

 mex V(%) + [a,]? <o(e(n)’loglog n) + O(8,)

+ o(a,e(n)loglogn) + O(a,loga,)
<0(s,) + o([an]z) + o([¢(n)loglog n]?)
From this it is easy to conclude that (3.16) holds and that
(3.22) [¢,] = 0(8,) + o([¢(n)loglog n]?)
Finally, (8.17) follows from (3.21), (3.22) and the inequality

max U(k) <2[a,)? +2 max Zdl(k) M) 'y (B)lw, )17

1<k< 1<k<h, [ 1

Proor or THEOREM 2.1. Set
(3.23) Z,=[8(n),8(n),....6,(n)]", W,=[w,w,,...,w,],
En(k) = [el(k)’e2(k)""’en(k)]T9

e,(k) = Z [Hjut_j - Gjyt—j]’

Jj=k+1

(3.24)

O
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where we stipulate that u, =0, t < —q, and y,=0, ¢ < —p,, and where
{H is GJ-} are defined from the expansion

C(z)'A(z) =I+ ¥ G2/, C(2)"'B(2) = ¥ H,z'.
j=1 j=1
From (1.1), (2.1), (2.6), (2.7) and (3.23)-(3.24), we know
where a(k) = [-G,, — Gy, ..., — G}; H,, H,, ..., H,]". Substituting the above
identity into (2.5), we have
Z, = E,(h,) + W, - ©,(®;®,) ' ®[E,(h,) + W,].
So )
_ 2
1Z, = W, = |[1 - @,(2;,) '@ | E,(h,) - D,(0;0,) 'O;W, |
2 _ 2
<|[1- @(@;0,) 0| Eo(h,) | +| @ D;0,) T OIW, |

<| Bk +[(250,) 207w, |
Since for some p € (0,1), | H,ll = O(p’) and [|G,ll = O(p’), ¥ j > 0, we have
from (2.10) and (2.34) that ||E, (k) — 0 a.s. as n — «. Then (2.12) follows
from (3.16) and the above inequality immediately.
Finally, by using Lemma 3.3, the proof of (2.11) can be carried out along the
lines of that for Theorem 1 in Guo and Huang (1990). O

Proor oF ExampLE 2.1. Let M,(k,) and S;(h,) be defined as in Lemma
3.3, but with ¢;(h,) given by (2.1). Then combining these results in Guo,
Huang and Hannan [(1990), Theorem 2.3 and Examples 2.1 and 2.2] with
Theorem 4 in Huang (1987) we know that

(3.25) liminf A, [M,(k,)]/n>0 as.

Consequently, by Lemma 3.6(iii) in Guo, Huang and Hannan (1990) we have

(326)  S.(h,)'[M,(h,)] 'S,(k,) = O(h,loglogn) as.
Furthermore, by Lemma 1 and Theorem 4 in Huang (1987), it is easy to
conclude that

M. (h
(k) =0(1) a.s.foranya > 2,

(8.27) sup — R(h,)

t>(h,)"
where R(h,) = Eyt(n)” > 0. Note that R(k,) is in fact uniformly positive
definite because by (3.25) and (3.27),

: M,(h,) o Ma(Ry)
liminf A, [R(k,)] = liminfA — |- lim inf — - R(h,)
M,(h,)
= liminf A, — >0 a.s.
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Hence, by (3.27) we know that there exists a constant £, > 0 such that

. . . Amin(Mt(hn))
(3.28) liminf inf —— > ¢, as.
n—w (h,) st t

Thus, we have from (3.20) that for any a > 2,

S [wih) M) (k)]
t=1

T N YU CR R YO U .. L
(8.29) -1 St AT e t=ichy1+1 Apin( Mi(R )
n k,)*(log t)*
—O0(h,logh,) +0| Y M)
t=[Ch,)*1+1 ¢

=0(h,loglogn) a.s.
So it follows from (3.3) that

Z lpt(hn)TMt(hn)_1¢t(hn)(wt+1w:+l - z)“
t=1

(3.30) =O0(h,loglogn) + o(log n(loglog n)2)
=o(h,logn) as.
From (3.11) and (3.22) we know that

Y Ui h) M h) " S s(h) ey

t=1
Also, similar to (8.20) it is not difficult to verify that
2 . - n det(M;(h,)) — det(M;_y(h,))
Z l/lt(hn) Mt(hn) 1lb[’t(hn) = Z det(M (h )) -
(8.32) =1 i=1 iNn
<h,logn +o(h,logn) as.
On the other hand, similar to Lemma 2 of Lai and Wei (1982a), it is easy to
see that

(3.31) =o(h,logn) as.

dtMthn —dtMt_lhn
() Mo ) = S (det)()M,_lf;f ) 2D,

then by invoking (3.28), we obtain

n

Y (k) [M,_ (k)] (h,)

t=[h,)*]+1
_ i det(Mt(hn)) - det(Mt—l(hn))
B X det(M,_,(h,))

t=[(h,)*]+1

>h,logn +o(h,logn).
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Hence similar to (3.29), it is not difficult to show that for any o > 2,

" T -1 " ll’t(h‘n)‘r[Mt—l(hn)]—Ilbl’t(hn)
(h,) M(h, (k) = p 1
Elll’( )y MRa) 0l R) t=[(;§)a1+1 L+ ¢ (k) [Me_i(hy)] ™ (Ry)

Y (1= p(h) M (B)] ()
t=[(h,)*]+1
(3.33) X (h,) [ M_ ()] " w(B)
>h,logh, +o(h,logn)

2

n

- T ) (MR )Y

t=[(h,)"]+1
=h,logn +o(h,logn) as.
Combining (3.32) and (3.33) we get

(334) Y o(h,) Mlh,) "0(k,) = hylogn +o(h, logn) as.
t=1

Again, by invoking (3.28) and using the similar treatment as used in the
derivation of (3.18) and (3.19), we have after some manipulations,

S1(h N[ M(h)] 1S, (h,) + X Si(h) [ M h)] ™0 BB
t=1
x[M,(h,)] 'S,(h,) +o(h,logn)

= Y wisi(ho) Mi(h) " Sio(hy)
i=1
£ X [wis i h) M(h) " Sio(R)]]
i=1

£ T 0 h) Mk ") [(wps sy — 5) + 5]

t=1
Hence, by (3.26), (3.30), (3.31) and (3.34) we conclude that

(3.35) L Si(ky) [M,(h)] "0k [M(R )] T S ()

= (h,logn)3 +o(h,logn).

Finally, the desired result (2.13) follows from (3.35), since a similar argu-
ment as used in the proof of Theorem 1 in Guo and Huang (1989) shows that

. [0k, =~ w[0(h,) =]’

= % 800 M) )0 (R S )

+o(h,logn).
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4. Nonnegative supermartingale convergence theory and the proof
of Theorem 2.2.

LeEmMa 4.1. Suppose that X, Y and W are any n X | and n X r-dimensional
matrices, respectively. Let M = [X, Y] and M™M be invertible. Then
(4.1) WX(XX)'XW<WM(MM) 'MW<WW.

Proor. The lemma follows immediately by noting that M(M™M )"IM™ is
the projection operator on the subspace spanned by column vectors of M. O

LeMMA 4.2. Under the notations of Lemma 3.3, if (3.15) is replaced by
(2.14), and h, = [c(log n)*], tr{M (h,)} = O(h,n®), for some constants b, c >
0 and a > 1. Then as n — o,

(4.2) max V, (k) = O([hn]2 log n{loglog n}***) a.s.,V &> 0,
1<k<h,

Y (67 (k) M7 (k) Si(R) |
i=0

(4.3)
= O([hn]2 log n{loglog n}2+8) a.s,V6>0,
Z 2
Z ”ll’:(hn)Mz_l(hn)Sz(hn)”
(4.4) i=0
= O([hn]2 log n{loglog n}2+8) a.s.,V8>0.
ProOF. Set
(4 5) Tn+1=tr{Sr‘:(hn)Mrzl(hn)Sn(hn)}y
' do(hy) = te{S7_1(h,) M 1(h,) S, _1(ha)},
1 2 '
' B =205 (h,) M ()4 (hy),
d,(h,), if n=n, for some integer &,
(4.7) n = .
0, otherwise,
where n, is defined by n, = [exp(k/c)'/*] + 1, so that by the definition of & ,,
(4.8) hn=k, nkSn <nk+1.

By (2.14) and Lemma 4.1, it can be verified that
Etr{SlT(k)Mi_l(k)Si(k)} < o, El‘/fiT(k)Mi_l(k)Si—l(k)wi+1| < o,
for all i and %.
So by noting :
1
lwr ()M () S, (B | > 5 o7 () M (R) S, (B) |

(4.9)
— 47 (k) M (R) (k) w2,
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we know from (3.18) that
(410) E[Tn+1|Fn] < Tn + Yn — @, + BnE["wn+1”2|Fn] .

Now, for any 6 > 0, let us denote A, = h,(log k) *% (log p,)'*° with
w, = h, log[tr M,(h,)]. Then it is easy to see that there exists an appropri-
ately large integer N, such that for any n <N, A, >0, A, is F,-measurable
and A, <A, ;. So it follows from (4.10) that

E[Tn+1 ] T + B E[lw, . 1I’|F, ]

Ayt A, A, A,

F,

n

n

Hence, if we can prove that

o E | 2
(4.11) Z ‘Yn+Bn ["wn+1" IFn] <

n=N )‘n

© a.s.,

then by the nonnegative supermartingale cdnvergence results in Neveu (1975)
[see also Solo, (1979), page 961 and Goodwin and Sin (1984) page 501] we will
have

T
(4.12) 7'5 > T <o as.
(4.13) Y Y <» as.
n=N )‘n

We proceed as follows. Let k, be the positive integer such that n,, = N.
Then by (4.6) and (4.8) we know that

1= B, 1 & ™als,
PRI R
= mal o det[ M, (k)] — det[ M, (k)]
B kgko nen, det[M,(k)]p,(log p,) "*k(log k)"
1
(4.14) < c°k§ko W
xnki_l det[ M, (k)] — det[ M, (k)]
oo det[ M,(k)]log[det M,(k)]{loglog[det M,(k)]}" "’
> 1 detlM, ()] dx

e+l

okgko k(log k)'*? '/:let[M,,k_l(k)] x log x(loglog x)

i <%

where ¢, is the constant satisfying ¢,k , = dimension of M, (h,).
Next, we consider ©%_x7v,/A,. For any suitably large n (say n = N),
denote

(4.15) p,(n) =k, log[tr M;(h,)]log*?{h, log[tr M;(h,)]}, i=1.
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Then u;(n) is positive, F-measurable and u,(n) < u;,(n). Again, dividing
w,(n) on both sides of (3.18), noting (4.9) and taking mathematical expecta-
tions, yields

digi(h,) o dih,) 1 [ yr(h) MRSk

<E - —E
Bivi(n) pi(n) 2 mi(n)
Ui () M7 (o) iRy Ellw; I°IF ] }

pi(n)
Summing up from N to n — 1, and noting (2.14) and

E
(4.16)

+ 2E{

n—1
(4.17) Y Wi (h )M (hy)¥i(h,) /m(n) < cp <o,
i=0

for some deterministic constant c¢,, we conclude that

(4.18) sup E
Thus, by (4.7) and (4.8),
® d, (h
E Z ﬁ — E z nk( "‘k)
nN An k=ko Kp(np) b, (logh,
dofha)| @ 1
) | $5h, k(log B)™°

and so X% _n7v,./A, < ® a.s. This together with (2.14) and (4.14) yields (4.11).
Consequently, (4.12) and (4.13) hold.
Now, by the assumption tr{M (&)} = O(h ,n®), we know that
A, = O([h,]* log n(loglog n)**°),¥ & > 0.
Therefore assertion (4.3) follows from (4.13) and the Kronecker lemma imme-
diately, while (4.2) follows from (4.12) and Lemma 4.1:

max V (k) =V, (h,) <T,, .= O([hn]2 log n(loglog n)2+8) a.s.

1<k<h,

}1+8

@,

< sup{E
3

To complete the proof of the lemma, we have to verify the last assertion
(4.4).

Similar to the derivation of (4.18), summing up both sides of (4.16) from N
to n and noting (4.17), we see that

sup | . 470k M7 (1)) )| < .

n>N
Then by the fact that w,(n) <u;,(n), i <n, it follows that for U,(h,)
defined as in Lemma 3.3,

sulpiJE[Un(hn)//.Ln(n)] < o,

l
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Consequently, by (4.8),

1
P{Unk—l(hnk—l) > ,'Lnk—l(nk - l)hnk(loghnk)1+8> = O(—___)’

k(logk)'*®
Then by u,(n) = O(h, log n{loglog n}'*?) and the Borel-Cantelli Lemma,
Un —l(k - 1)
lim sup - <o a.s.

1+5
k- [hnk]2 log nk[(log h.,,)(loglog nk)] i
Finally, from this, (4.8) and U;(h,) < U,k ,), we have

, U, (h,)
im su
oo [h,]%1og n[(log h,)(loglog n)]**°
. U,(h,)
< lim sup sup

koo  nelngng,—1] [hn]2 IOg n[(IOg hn)(IOgIOg n)]1+8

. Un,,+1—1(k) Ok+1
< lim sup < o,
koo O +1 O}

where o, £ [k, I? log n,[(log &, Xloglog n,)I' *°. Hence, (4.4) is true. O

Proor oF THEOREM 2.2. This proof is again similar to that for Theorem 1
in Guo and Huang (1989), but with results in Lemma 1 of that paper replaced
by those in the present Lemma 4.2. O

REMARK 4.1. If (2.14) and the second condition in (2.10) are replaced by,
respectively,

(4.19) supE[IIwk+1||2|Fk] <o <o and E[Ilunll2 + IIanIZ} = 0(nb),
k

where b and o are some nonnegative deterministic constants, then the results
in Theorem 2.2 can be improved to O((% ,]? log n[loglog n1'*%). However, in
applications the second condition in (4.19) seems to be less applaudable than
that in (2.10).

5. Proof of Theorem 2.3. We first show that under the conditions of
Theorem 2.3,

(5.1) limsup/m(n) <m, a.s.
n—o
Let us set
?(p7 q, r) = [yt‘r’y;—b e 7y;—p+1’ u:’ u;—l: A u‘lt-—q+1’
(5.2) o g
g wt7wt—1,“';wt—r+1] ’

(5.3) X%p,q,r) = [6%(p,q,7), 8%(p.q,7),..., 83 +(P,q, )]’
(5.4) 0(p,q,r)=[—Al,...,—Ap,Bl,...,Bq,Cl,...,C,]T,
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where A, =0, p > p,, Bq=0,q>q0,C, 0,r>r,.When p=q=r=k,
we will simply write (&) for (%, k, k) in ¢,, ¢7, X, and X, etc. Then with Y,

X,(p, q,r) and W, defined by (2.6), (2.18) and (3. 23) it follows from (1.1) that
for any k < m,,

(6.5) Y, =XX(k)O(k) + W, =X,(k)0(k) + [X2(k) — X,(k)]6(k) + W,.
Let

(5.6) R, = [X2(k) — X,(k)]6(E).

It is easy to see that R, does not depend on & when % > m. Then by (2.19),

(5.5) and (5.6) it follows that

Z,(k) =R, + W,] - X,(k)[ X7(k) X, (k)] 'X;(k)[R, + W,]
and :
Z;(k)Z,(k) = [R, + W,J[R, + W,] - [R, + W,]"X,(k)
x [ X7 (k) X, (k)] " X1(R)[R, + W,].
It is evident that for £ > m,,,
[R, + W, "X, (k)[ X7 (k) X,(k)] "' X;(k)[R, + W,]
(5.8) = O(|| R7 X.(B) [ X;(R) X, (k)] "' X;(R)R, )
+ O(|| WX, () [ X;(R) X, (R)] " X;(R)W,]).
By Lemma 4.1 and Theorem 2.1, it follows that

(5 9) mo<kslogn||RT "(k)[XT(k) (k)l_erl(k)Rn”

<|IR,R,Il=0O(h,logn) + o({<p(n)loglog n}2) a.s.
On the other hand, by Lemmas 3.3 and 4.1,
WX, (R) [ X5 (k) X, (R)] 7" X (R)W, |

(5.7)

(510) mosk<log
=O0(h,logn) + o({qo(n)loglog n} )
Thus, from (5.7)-(5.10) we have
|trZ;(k)Z,(k) — tr[R, + W,]'[R, + W, ]|

mo<kslogn
=O0O(h,logn) + o({<p(n)loglog n} ) a.s.
Consequently, by (2.21),
max {CIC(m,), — CIC(k),}

my<k<logn

= max { trZi(mgy)Z,(m,) —tr[R, + W] [R, + W,]

mo<k<logn
—trZ;(k)Z,(k) + tr[R, + W, ][R, + W,] — 3(k — m,)a,}
<2 |trZ;(k)Z,(k) - tr[R, + W,]'[R, +W,]| - 3a,
mosk<logn

=O0(h,logn) + o({<p(n)loglog n} ) -3a,<0
a.s. for sufficiently large n,
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because of (2.27). Hence by the definition (2.22) for #(n), we see that (5.1)
holds.
We now show that

(5.11) liminf m(n) = m, a.s.

n—»o

Let us write 6, (k) defined by (2.26) in its component form

(5.12) b,(k) = [-A4,,...,— A, By,...,B,,Cp,....C]
and set for any k < m,,
(5.13)  89(k) = [=Apr-.vs = Aroy Buyevos Bruos Cor s Cono]

where A, =0, B,=0,C, =0 for i > k.
Then it follows from (2.19), (2.26) and (5.5) that for 2 < m,

Z,(k) = Y, — X,(k)8,(k) = Y, — X,(m,)6(k)
= Y, = X,(mo)0(mo) + X,(mo)[6(mo) — 6(k)]
= Wn + Xna(mo) + Xn(mo)én(k)’

where X, = X%(m,) — X, (my), 6,(k) = 6(m) — 82(k).
Hence for £ < m,,

tr Z;(k) Z,(k) = tr 67(k) X;(mo) X,(m)6,(k)
(5.14) + 2tr 67 (k) X1 (mo) [W, +Xn0(m0)]
+tr[W, + X,0(m,)]| [W, + X,6(m,)]
and for & < m,,
(5.15) 18,(k)I1? = min{llA,ol1%, 1 Bgoll?, IC,olI7} 2 84 > 0.
With A%, (n) defined by (2.29), it is easy to verify by (2.17) and (2.18) that

2
)

K (1) < D Xi(m) X (m) + 2 E [8m0) — o]
so by Theorem 2.1 and (2.27) and (2.28), it is evident that

Aad Xi(mg) X, (mg)} = %A‘,’nm( n), for sufficiently large n,
then by (5.15), we obtain for any k& < m,,
(5.16) tré7(k)X:(my)X,(mg)0,(k) = %(l)t‘,’mn(n) , for sufficiently large n.

Similar to (5.9) and (5.10), we have
[ Xz (m0) Xu(mo)] /2 X5 (m o) [W, + X,6(mo)][
=0(h,logn) + 0({<p(n)loglog n}z).
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Therefore, for any k < m,,
|2tr 67 (k) X;(mo)[W, + X,0(m,)]|
= O(|85(R) [ X;(mo) X, (m)] |
X[ X:(mo) Xu(mo)] "2 X5 (mo) [ W, + X,6(mo)] )
= O({tr[d7 () X;(mo) X,(m o), (R)] )

X {O(hn log n) + o([¢(n)loglog n]z)}l/z).
Hence, it follows from (5.16) and (5.17) that for any & < m,,
tr 67 (k) X7 (m0) X,(m)B,(k) +2tr 6(k) X;(mo) [ W, + X,6(m,)]
(5.18) 8,
=3
Note that when k2 = m,, we have by (2.26) and (5.5),
én(mo) =0(m,) — én(mO)
= —[X5(mo) X,(mo)] ' X7 (mo) [W, + X,0(m,)],
So the first two terms on the R.H.S. of (5.14) can be rewritten as
tr 5,’;(m0)X,:(mo)Xn(m0)én(m0)
(5.20) = te[ W, + X,6(m)] X, (mo)[ X;(mo) X,(mo)] ™!
X X;(mo)[wn + Xno(mo)] ’
2tr 5;(m0)X;(m0)[Wn + Xno(mO)]
(521) = —2tr[W, + X,0(m,)] X,(mo)[ X;(mo) X, (mo)] ™"
XX7(mo) [ W, + X,6(my)].
Now, by (5.8)-(5.10) it is obvious that the quantity on the R.H.S. of (5.20) is

bounded by O(#, log n) + o({¢(n)loglog n}?). Hence from (2.21), (5.14) and
(5.18)-(5.21) we see that for any & < m,,

CIC(k), — CIC(m), = tr 67 (%) X7 (m,) X,(m)6,(k)
+2tr 67 (k) X1 (mo)[W, + X,0(m,)]
+tr[ W, + X,0(mo)] X, (mo)[ Xi(mo) X,(m)] ™
XX,f(mO)[Wn + X',,e(mo)] + 3(k —my)a,

(5.17)

An(n){1+0(1)) as.asn — .

(5.19)

2010, (m){L + o(1)) + O(a,)

3 min

v

+O(h,logn) + o({qo(n)loglog n}2)

0 60
= )‘min(n){? + 0(1)} a.s.asn —
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where the last inequality holds because of (2.27) and (2.28). Thus it is easy to
see that (5.11) is true. Hence the first assertion (2.30) has been proved.

With #(n) - m, in mind, the proof of (2.31) can be carried out by a similar
argument as that used above [see also, Guo, Chen and Zhang (1989), for
related proofs]. As for the assertion (2.32), we note that (5.19) is also valid with

(m ) replaced by (p,, q¢, r'y), hence
”én(po,(Io”‘o) -6 |2
“:X:;(pOa 90 70) X,(Pos 905 70)] _IX;(PO’ d9, rO)[Wn + XnO(mo)] "2
< (X)) | [X5(Pos 905 70) Xn(Pos G0r r)] 2
XX (Pos Qo> "o)[Wn + Xna( mo)] ”2
= {A‘:nin(n)}_l{O(hn logn) + o([¢(n)loglog n]2)},
where the last inequality follows from a similar argument as that used in

(5.8)-(5.10).
Finally, the results in the second part (ii) can be proved in a similar way. O

APPENDIX

By (1.8) we have for all A € [0, 27],

I>1-C(e*) —C7(e ) + C(e*)C7(e™*)
=[I-C(eM)][I-C"(e”™)].

So lIC(e**) — Ill< 1, ¥ A €[0,27]. Thus, for any complex vector x, [lx| =1,

lx*C(e**)x — 1] < 1,V A € [0, 27]. Then by the maximum principle we know

that [x*C(z)x — 1| < 1,V |z| < 1. Consequently, x*C(2)x # 0,V |z| < 1, which

is tantamount to (1.6).
Integrating both sides of (A1) from A = 0 to 27, we have [[C;,...,C,oll < 1.

(A1)
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