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ASYMPTOTIC ANALYSIS OF PENALIZED LIKELIHOOD AND
RELATED ESTIMATORS

By Dennis D. Cox! anD FINBARR O’SULLIVAN 2

University of Illinois and University of Washington

A general approach to the first order asymptotic analysis of penalized
likelihood and related estimators is described. The method gives expansions
for the systematic and random error. Asymptotic convergence rates in a
family of spectral norms are obtained. The theory applies to a broad range
of function estimation problems including nonparametric density, hazard
and generalized regression curve estimation. Some examples are provided.

1. Introduction. Regularization is an old technique for obtaining well
behaved solutions to overparameterized estimation problems. Several histori-
cal instances of the method can be identified including one by Whittaker (1923)
who used the method to smooth time series data. Tikhonov (1963) was the
first to systematically study regularization for solving a broad range of inverse
problems in applied mathematics and the introduction of the term regulariza-
tion is generally credited to him.

Let 0 be the parameter of interest. The method of regularization has two
components: a data fit functional /, which measures how well 8 predicts the
observed set of n-dimensional data and a penalty functional J which assesses
the physical plausibility of 6. Smaller values of J(8) generally correspond to
more desirable values for #. The method of regularization chooses a 6 which
minimizes
(1.1) 1,,(68) =1,(6ldata) + AJ(6), A>0.

A is the regularization parameter. Larger values of A produce more regular
estimators. The above formulation was initially proposed in the statistics
literature by Good and Gaskins (1971), who used the term penalized likeli-
hood. In their context, I, corresponded to the negative log-likelihood for the
data given 6 and J was referred to as a penalty, roughness or flamboyancy
functional. Penalized likelihood is familiar to Bayesians as a maximum a
posteriori (MAP) procedure [Leonard (1978)]. It is clear that there are close
connections with the various methods of sieves as well, see Grenander (1981).

In this paper we use the term penalized likelihood to refer to the functional
l,, even though the data fit functional /, need not be a negative log-likeli-
hood. We shall assume that the data fit functional /,(6) approaches a limiting
functional 1(8) as n — «. It is easy to identify /(8) in most concrete examples;
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see Section 1.1 below. The limiting functional is used to identify a target
parameter 6,; again see Section 1.1. Penalized likelihood procedures have been
used in practice for density and hazard estimation, generalized nonparametric
regression and more general nonlinear inverse problems. The purpose of this
paper is to provide a framework for studying the error characteristics of such
estimation schemes. Although a fair bit of functional analysis is required, the
main ideas are rather simple. An informal description of the error analysis is
given in Section 1.2.

1.1. Examples. We begin by giving some examples of the results obtained
from the analysis to follow. Applications to a general family of nonparametric
regression estimators are detailed in Cox and O’Sullivan (1989). For each
example discussed here, the parameter of interest is a univariate real-valued
function defined on a bounded interval which we take to be [0, 1]. The familiar
smoothing spline type penalty

J(8) = fol[o(’")(t)]zdt

is used. We obtain, under regularity conditions, the usual upper bounds on the
integrated squared error convergence rate.

ExampLE 1. Log-density estimation. X;, X,,..., X, is a random sample
from a density f,: [0,1] » R. Suppose f, is bounded away from zero and
infinity and let 6, = log f,. Silverman (1982) introduced a penalized likelihood
procedure for estimating 6,. In this scheme /,(0) is

(1.2) 1,(0) = [(e*® dt - % T 6(X,).
0

i=1

The second term is a negative log-likelihood for the data. The integral term is
included to guarantee the unitary constraint for a probability density. The
limiting form of 1(6) is

(1.3) 1(6) = fle"‘” dt - flo(t)e"om dt.
0 0
It is readily verified that 6, is the unique minimizer of [.

ExaMmpLE 2. Log-hazard estimation. Let (X, 8,),(X,, 8,),...,(X,,8,) be a
random sample in which X; = min(Y;, C;) and 8, = I(Y;) (1, is the character-
istic function of [0, ¢]). This corresponds to a sample of censored failure time
~ data common in survival analysis. We assume that the censoring time C; and
failure time Y, are independent. Let A,(¢) be the hazard function for the
failure time distribution and suppose A,: [0,1] - R is bounded away from
zero and infinity. Put 6, = log A,. Following Anderson and Senthilselvan

(1980), a penalized likelihood estimator of 6, may be developed; see O’Sullivan
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(1988). Here ,, is
1 n
(14) ln(o) = fea(t)Sn(t) dt - ; 2 6i0(Xi)’
i=1

where S, is the empirical survival function of the sample X,, X,,..., X,. If
the limiting survival function is denoted S, then

(1.5) 16) = [*®S(t) dt — [ 6(£)e"®S(¢) dt.
0 0
From this it can be verified that 6 is the unique minimizer of I.

ExampLE 3. Nonparametric logistic regression. (X, Y}), (X,,Y,),...,
(X,,Y,) is a random sample in which Y|X =¢ is Bernoulli with success
probability p(¢#). X has density f: [0,1] - R, which we assume is bounded
away from the zero and infinity. Suppose p(¢) is bounded away from zero and
one and let 8,(¢) = logit(p(¢)) = log(p(¢) /(1 — p(¢))). For penalized likelihood
estimation of 6, [see O’Sullivan, Yandell and Raynor (1986)], we let

(16) L(8) = - ¥ {loB(1+ %) ~ Y,o(X,)).
i=1

It follows that

1
(1.7) 1(6) = [ {log(1 +e*®) = p(80(£))O(}f(2) dt.
Again 6, may be shown to be the unique minimizer of /.

The parameter space for each of these examples will be a Sobolev space
given by
wyr[0,1] = {6: [0,1] - R|6, 6V, ..., 6™~ D
are absolutely continuous and ™ € L,[0, 1]}.

This is a natural choice given the penalty. There are many possible inner
products on WJ* under which it is a Hilbert space, for instance,

(1.8) (8,0 wgr = €6,{)1, + (6™, ™),

The Sobolev spaces will be useful not only as a parameter spaces, but we will
use their norms to measure the loss. Sobolev spaces with noninteger order m
are also used, see Adams (1975) for definitions. As an illustration of the theory
we obtain Theorem 1.1, which applies to the previous examples.

THEOREM 1.1. Suppose m > 2 and 6, € WJ*P[0, 1], where 3/(2m) <p <
1. If A, is a sequence such that A, = 0 and for some a € (1/(2m),(p —
1/(2m)) /2], n= [ 2e+1/@m) — O then for 0 < b < a,

lim liminf P[a unique minimizer 6,, ofl,, (8) exists and satisfies

Moo n—oow

16,5, — 8ollps < M(AZ® + n—ll\;(b+1/(2m)))] =1,

in any of the examples (1, 2 or 3).
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The proof is given in Section 4.

1.2. Informal description of the error analysis. Let the parameter space
be denoted ® and for the purposes of this description let ® be a subset of R?.
The symbol D denotes differentiation with respect to the parameter 6. The
theory developed in this paper relates to the large sample behavior of roots of
the penalized likelihood equations. That is, we look at the score vector Z,,
given by
(1.9) Z,)(0) = Di,\(0)
and discuss the properties of roots of the equations Z,, = 0 as the sample size
n — o, The limiting score vector is defined as

(1.10) Z,(6) = DI(8) + ADJ(8),

where 1(6) is the limiting version of /.

One step linearizations. The roots of Z, and Z,,, which will be shown to
exist in Section 3, may be approximated by linearized forms using a first order
Taylor series expansion of Z, and Z,,. Thus the method of analysis is similar
in spirit to Cramer’s (1946) analysis of maximum likelihood estimators. Let
G,(6) be the Hessian of the limiting penalized likelihood. We assume that the
penalty functional J has the form J(8) = 0'W6, where W is symmetric
positive semidefinite. Thus
(1.11) G,(8) = D21(8) + \W = U(6) + AW.

In general U(8) and W are linear operators but for the purposes of this
discussion, ©® is p-dimensional, so they are p X p matrices. The true parame-
ter 6, is assumed to be a locally unique root of DI(6,) = 0. Linearizing the
continuous score Z, about the true parameter value 6, and setting the result
equal to zero gives the approximate root

(1.12) 6, = 80— G\(80) " Z)(8o)-

We call this the continuous linearization and we use it to show that for all A
sufficiently small there is a locally unique root 8, of Z, in a neighborhood of
6, and 8, = 6,. There is a corresponding discrete linearization which arises by
first order linearization of the discrete score vector Z,, about 6,, but replacing
DZ,, by DZ,. The discrete linearization is the root 6., of the linearized
equation and is given by

(1.18) 0,0 =0, — G,\(GA)_IZM(BI\).

It will be shown that if A, is a sequence which does not tend to zero too fast
(see Theorems 3.2 and 4.2), then (with A = A ) for all n sufficiently large with
probability approaching unity there is a unique root 6,,, of Z,, in a neighbor-
hood of 6, satisfying 6,, = 6,,.

Taken together, these linearizations yield an expansion for the estimation
error as

(1.14) 6,, —05=1(6, — 0y) +(8,, — 6,) = (5)\ - 00) + (én)\ - OA)-
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The continuous linearization provides information on the asymptotic bias (first
term) of the estimator while the discrete linearization gives information on its
asymptotic sampling variability (second term). Explicit error estimates are
derived using spectral analysis which is described in Section 2. The entire
analysis draws heavily on the techniques developed in Cox (1988).

2. Theoretical framework. This section provides some of the formal
framework needed for the analysis to follow. For later reference we use the
notation A.1-A.4 to label the assumptions. We could have stayed in a frame-
work of function spaces but the arguments seem easier when given in a more
general setting.

2.1. Parameter space and penalty functional.

AssumPTION A.1. O is a real Hilbert space with norm | || and inner
product { -, - ). The penalty functional ¢ is a quadratic form J(8) = (6, W),
where W is a nonnegative definite linear operator on ©.

The latter requirement means that W is self adjoint on ® (W = W *, where
W* is defined through <(6,W¢) = (W*6,{) for all 0, € ®), and that
(8, W{) > 0 (compare with matrices). For each of the examples in Section 1, ®
is the Sobolev space W,"[0, 1]. In general, we will not require that the target
parameter 6, be an element of ©. For instance, it may happen that 6, is in
w$™0, 1] for some p < 1.

2.2. Spectral decomposition. To study convergence it is necessary to de-
fine some appropriate norms. Let B(0, ®) be the collection of bounded linear
operators on ©. B(0®,0) is equipped with the usual operator norm. We
introduce an auxiliary operator U € B(®, ®), which is equivalent in some
sense to D?1(6) (see Assumption A.4 ). Unfortunately, we need U for technical
purposes (defining norms and spaces) before being able to rigorously indicate
where it comes from [the derivative operator D2I(#) will be defined on spaces
derived from U].

AssuMPTION A.2. U is a compact positive definite operator and there exist
strictly positive constants m and M such that for all { € 0,

(2.1) mli¢lI? < <L, UL + (¢, WE)y < M|Z)2.

There is a convenient parameterized family of norms which are defined in
terms of U and W. From Section 3.3 of Weinberger (1974), (A.2) and the
construction in Section 2 of Cox (1988) there is a sequence {¢,: v = 1,2,...} of
eigenfunctions and {y,: v = 1,2, ...} of eigenvalues which satisfy

(2.2) (¢,,Us,) =5,, and (¢,,W¢,) =7,3,,,

for all pairs v, u of positive integers, where 8,, is Kronecker’s delta.
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For b > 0, let
1/2

(2.3) ol = { > (1+ )6, U¢>y>2}
v=1

and let ®, denote the normed linear space obtained by completing {§ € ©:
16]l, < o} in || - ll, norm. @, is a Hilbert space with inner product

(2.4) 0,00 =Y (1+v2)6,Us, ¢, Ug,).
v=1

For 0 < b < 1, ®, can be obtained by applying the K-method of interpolation
[Triebel (1978)] to ®, and ® = @,. Here, the notation = means the Banach
spaces are equal as sets and have equivalent norms. The equivalence ®, = ©
follows from Assumption A.2. Further, if b < a, then ©®, c ®, and has a
stronger norm, i.e., there is a constant C,, such that

(2.5) 61l < C,pllblla,

for all § € ®,. Without loss of generality (and in the interests of some
simplification) we will assume that C,, < 1. Formally, C,, < 1 whenever
v, = 1 which can be accomplished by trivial rescaling of W. The following
result is needed to show that our linearizations are well-defined.

LemMma 2.1. For 0 < b < 1, U extends to an element of B(0,,0,) and W
extends to an element of B(©,, 0,).

Proor. We first note that if § € ® = @, then § € ®,,, (c € R) if and
only if

sup (£,0) < oo,
¢€0,lllli-c=1

Further, the previous supremum defines an equivalent norm on 0, .. These
follow from Lemma 3.1(a) of Cox (1988). Now, (£, U8) = ({,8), for {,6 € O,
s0 (£, U8) < |I£lloll6llo and it follows that U6 € @,. Further,

U6l < constant sup <, U8) < constant||6llo,
lIiZllo=1

so U € B(0,,0,) and hence U € B(0,,0,), for any b > 0.
For W, first note that W¢, = v, U¢,, so if { € O, _,,

Wo,¢> = (W, L« Us.)4. )

=Y v, U, 0,Us,>
(2.6) v

1/2

< (T v 0e,?) (L 0,08, 7)

< IZllz-sll6ll5,
so W6 € @, and ||W6ll, < constant||6]5, thus proving the result. O
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2.3. Derivatives. Derivatives must be introduced in order to define and
analyze the linearizations. Here we use the Frechet derivative which is the
strongest notion of a derivative in a normed linear space; see, for example,
Chapter 3 of Rall (1969). We use the standard notation D for the Frechet
derivative operator. Let /(8) denote the limiting data fit functional.

AssumpTION A.3. For some a € (0, 1], there is a ®, € ®, and a @ _-neigh-
borhood N, of 6, such that

o, and [ are three times continuously Frechet differentiable in N, .
(i) 00 is the unique root of DI(8,) = 0 in N,

Part (ii) of A.3 may be viewed as a definition of the true parameter 6,. Note
that D*1(9) (and D*I (6)) is a bounded multilinear operator of order k. DI(6)
and DI ,(6) are bounded linear functionals on ©,. It will be necessary to
carefully represent the dual ®*. As in the proof of Lemma 2.1, a linear
functional f€ ©F may be represented via the @ duality pairing as f(8) =
(¢, 0), for all 6 € ®,, where { € @,_, and | flle+ may be bounded above and
below by strictly positive multiples of ||{||;—,. With this representation of @3,
we have DI(9) € ®,_, for § € N, and in particular DI(9) € ®. Now DI is a
mapping from 0@, to ©,_,, so for 6 € N, ,

(2.7 U(o) D2l(0) € B(0,,0,_,.).
Thus if {, n € 0, then
(2.8) D?1(6)¢{n = <, U(8)n).

[On the Lh.s. one sees our notation for multilinear operators which we have
borrowed from Rall (1969).] The next assumption guarantees in fact that
U(9) € B(0,,0,), similar to U.

AssuMPTION A.4. There are strictly positive constants m and M such that
for all ® € N, and for all { € 0,

(2.9) m({, UL < L, U(8)¢) < M(L,UL).
Further, for 6 € N, , D%(0) € B(®,, B(®,,0,_,)) and so D3/(6){n €
®,_,, for {,n€0,. All remarks above also hold for D*1,(8). For each

6. € N,,, there is a sequence {¢,,: v =1,2,...} of elgenfunctlons and {y,
v =1,2,...} of eigenvalues which satisfy

(2'10) <¢*p,, U(a*)¢*v> = 6!1;1. and <¢*/_L7W¢*v> ‘Y*y v

and for b > 0, we have norms
1/2

(2.11) l6ll., = { f (1+ vi’u)<0,U(0*)¢>w>2}
v=1

Let ®,, denote the normed linear space obtained by completing {6 € O:



PENALIZED ESTIMATION 1683

6]l.» < ) in || - ||.5 norm. From A.4, there are positive constants ¢, and c,
such that for all v large enough,
(2.12) C1Y, < Vip < CgY,.

The following proposition for b = 0 follows from A.4 and for 0 < b < 1 from
the K-method of interpolation.

PROPOSITION 2.1. For 0 <b <1,0,,=0,.

Various elementary facts relating to the convergence norms should be
noted. The proof of Lemma 2.2 is straightforward; see Cox (1988). We will
make repeated use of this in Section 4.

Lemma 2.2. For 6, ENo,b>0andv=1,2,...,

O 4,15 =1 +v2 and l$. 1% = 1+ 72,
Gi) [U + \AW]" WU, = 1 + Ay,) "¢, and [UG,) + AWIT'U,)é., =
(1 + /\Y*V)—l(b*v
(iii) Suppose vy, = v" for some r > 0, meaning v,/v" is bounded away from
0 and © as v = . Then for b > 0 and ¢ > 0 with b + ¢ < 2 — 1/r, uniformly

in 0, € N,,o,

(2.13) Z (1+92)(1+78,)(A +Ay,) 2= A7C* /D a5\ >0,

meaning that the supremum (infimum), over 6, € N, , of the ratio of the
quantity on the left to that on the right remains bounded away from =(0) as
A— 0.

Now we may show that the linearizations are well-defined. By the Lax-
Milgram theorem [Section 3.6 of Aubin (1979)], A.2 and A.4, the operator
(2.14) G,(8) =U(9) + AW

has a bounded inverse on ®. Hence, G(6)7'DI({) and G(6)'Dl({) are

well-defined elements of @ for 6, { € N, [recall DI({),DL,(¢) € O,_,CO,

since @ < 1]. Thus the continuous linearization in (1.12) is well-defined. To

show G,(8)7'Z,,({) is well-defined for 6,¢ € N, [see (1.14)], we need to show
G (O~ YAWY = [1I - GO U is Well-deﬁned But taking 6,

G,(0.)7'U(68.) = ¥ (G(6.)7'U(6,)¢,U(6.).,06.,

(2.15) B
=Y (1+Ay,,) KU,

and the series converges for { € @, to an element of @, ,. Finally note that if
{ €0, then for 8, € N, ,

(2.16) |G

=Y (1+92)1+My.,) XL U S,,)
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2.4. Linear expansions with bounds on remainders. Taylor series expan-
sion for the generalized score vectors is a key device used in the analysis to
follow. If f:H — H, where H is a Hilbert space, then assuming the requisite
Frechet derivatives exist, we have f(0 + ¢) = f(8) + [¢Df(6 + s¢p)pds. A
second expansion inside the integral sign yields

(2.17) f(6 + &) = f(8) + Df(8)d + folfolssz(O + s'sd) b ds' ds.

Note the H-valued integrals are of functions mapping [0,1] —» H. Under
continuity assumptions (which will hold for us by A.3), such integrals are
readily defined as limits of Riemann sums [see Rall (1969), for example]. It is
easy to verify from the triangle inequality applied to the Riemann sums that
the norm of the integral is bounded by the integral of the norm.

Before analyzing expansions for the generalized score vectors, we need to
define some norms for derivative operators. For 0 < b < a, A > 0,6,0, € Ny,
and u,v unit elements in O, (so |lull, = llvll. = 1), let

Ky,(A,b) = sup sup|/Gy(6,) [ D?L,(6,)u — D*(6;)u]|

6,,0, u

b,

(2.18) Ka(2,b) = sup sup|[G\(8,) [ D?L(6;)ur]|

6,,0, u,v

b’
K;,(A,b) = osug) sup ||GA(01)_1[D3ln(02)uv] ||b.
1,02 u,v

[The discussions following Assumption A.3 and Lemma 2.2 may be adapted to
show that quantities such as G,(8,) D2 ,(8,)u — D?1(6,)u] appearing in
these expressions are well-defined elements of ©.] By Taylor series expansion
if 6, + ¢ € N, , then

Z)(8o + ¢)

1,1
(2.19) =Z\(80) + D?,(8,)¢ + fo f()SDal(oo +s'sp)dpd ds’ds

=2Z,(0y) + G\(0,)0 + flflsD?’l(OO + 8'sp)pod ds' ds.
07’0
From the definition of K4(A, b), the integral remainder is bounded as

< (3K3(2, b)l$llHIlla-

b

(2.20)

G,\(HO)_lflflsD‘V(Oo +s's¢p)ppds'ds
o /o

(Note that a bounded linear operator can be interchanged with the integral.)
Similarly, for 6,,6, + ¢ € N,

ZnA(aA + ‘f’) = ZnA(BA) + DzlnA(aA)¢

(2.21) L
+f / sD31 (8, + s'sp)pd ds’ds.
0’0
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So
Zn).( 0A + ¢) - Zn).( OA) - GA(OA)¢

(2.22) = {D21,(6,)¢ — D%(6,)$} + flflsD"’ln(HA +s'shp)pd ds' ds.
0”0

Using the definitions of K,, and K,, the remainder is bounded as
”GA(BA)_I{ZM(OA + ) - ZnA(O/\) - GA(OA)';b}Ilb

< 1G,(6,) " '{D?1,(8,) ¢ — D21(8,) P}l

(2.23)
+

G,\(OA)_I{fOlfOlng'ln(O,\ +‘s's¢)¢¢ ds'ds}

b
< {K2n(2,0) + 3K5,(A, D)l$lla}lld .

3. General linearization results. Now we show that the linearizations
introduced in Section 1 accurately approximate the asymptotic bias and vari-
ability of roots of penalized likelihood variational equations. The existence of
locally unique roots of Z, and Z,, is first established. The method of analysis
uses a fixed point argument similar to the one employed by Huber (1973).
Assumptions A.1-A.4 are in force throughout the section.

3.1. Continuous linearization and bias approximation. It will be conve-
nient to have the following notation for balls in @,:
(8.1) Sy(r,b) ={n€0,:ln—0ll,<r}, S(r,b) =Sy(r,b).

For 0 <b<a and 0<A <o, put d(A,b) =10, — 0,ll, and r(r,b) =
K4 (A, b)d(A, a).

AssUMPTION A.5. As A = 0, both d(A,a) > 0 and r(A,a) — 0.

THEOREM 3.1 (Existence of 6, and the bias approximation). Under A.5
there exists Ay > 0 such that for A € [0, Ay],

(i) there is a unique 0, € S,(2d(}, @), @) satisfying Z)(6,) = 0 and 6, €

N,
o(ii) II(7A = 0,lly < 4r(A,0)d(A,a) as A = 0, for b € (0, al.
Proor. Let

(3'2) F,\(fb) =6 - GA(OO)_IZA(OO + ‘f’)

For convenience, put ¢, = 2d(A, @). The proof has three steps: (a) F\(S(¢,, @)) C
S(t,, a); (b) F, is a contraction map on S(¢,, @); and (c) obtaining the estimate
in part (ii) of the theorem.
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For (a), by A.5, let A, be chosen so that S, (¢,, @) ¢ N, and r(A, a) < j for
all A € (0, A,]. For ¢ € S(¢,, a),
(3.3) IE()lls <[|¢ = G(80) "' Z,(86 + &) = (B: = 0,)|, + 18, — 8ols.

Using the definition of 6, and a Taylor series expansion of Z(0, + ¢) as
described in Section 2,

|6 — G\(60) 2,8, + ¢) — (8, — 6,)|,
=[G (80)[Z:(00 + $) — Z,(85) — G\(6,) 9],
< 3K4(A,b)llolI2.
Thus (with b = a) for ¢ € S(¢,, @),
(3.4) IF(d)lla < [3K5(A, @)ty + 3]t = [r(A, ) + L2, < ¢,

which completes step (a) of the proof.
For step (b), let ¢,, ¢, € S(¢,, @), since

ZA(OO + ¢2) = Z).(Oo + ‘f’l)

3.5
(3.5) +f01DZA(00 + ¢y + 5(dy— 61))(by — b,) ds,

by Taylor series expansion about 6, inside the integral we have
Z,\(Oo + @) = Z)(6, + ¢1) + G).(Oo)(% - ‘f’l)

+/1f1D22)‘(00 +5'(¢1 + s(dy — ¢1)))
070
X(¢y— ¢1)(d; + s(dy — ¢,)) ds'ds.
Thus
FA(d’l) - FA(¢2) = GA(BO)_I{

%0 + (81 + 5(02~ 6))

0

X (b5 — $1) (b1 + (g — ¢1))ds'ds}.

Since ¢, + s(¢, — ¢,) € S(¢,, a) by convexity, for 0 < b < a,
(3.6) IF(61) = Fi(2)lly < K3(A, B)t,llbg = dbilla = 27 (A, 6)lg5 = .

From our choice of A,, it follows that F, is a contraction on S(¢,,a), for
A € (0,1,] (put b = a in the above line). The contraction mapping theorem
[Rudin (1976)] gives a unique ¢, € S(¢,, @) for which F\(¢,) = ¢,. Letting
6, = 05 + ¢,, 0, is the unique root of Z, in S, (¢,, ). This completes step (b)
of the proof.

For the final step of the proof, note, using the definition of F,, that

(3.7) 8, — 8, = (6, — 8,) — (B — 8,) = Fy($,) — F)(0).
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Thus, since ¢, € S(¢,, a),
(3.8) 116, = 6,lls = IFy(¢,) — Fy(0)ls < 27 (A, B)lld,lla < 47 (X, 5)d(A, ).
This completes the final step of the proof. O

3.2. Discrete linearization and variability approximation. The next result
justifies the discrete linearization for a fixed sequence of A’s. For 0 < b < «
and 6, € N, , put

(3'9) dn()"b) = ”§n/\ - OA”b and rn()‘yb) = K2n(A7b) + KSn()‘yb)d()‘,a)

AssuMPTION A.6. A, is a sequence such that for all n sufficiently large,
6, € N, and )

d,(A,,@) >,0 and r,(A,,a)—>,0.

THEOREM 3.2 (Existence of 8,, and the variability approximation). Let A,
be a sequence satisfying A.6. Then with probability tending to unity as n — o,

(i) there is a unique root 8, of Z,, (8) = 0 in Sy(2d (A, @), @),
@) forb €[0,al,116,, — 0, Il < 4r,(1,,b)d (A,,a).

Proor. For convenience, drop the subscript on A, and let ¢,, = 2d (A, ).
Let

(3.10) Fo(d) = ¢ — G(8,)7'Z,,(8, + $).

The proof proceeds in three steps analogous to the proof of Theorem 3.1,
except extra terms are introduced in approximating DZ,, by DZ,. Take n
large enough so that the event S,(¢,,, @) € N, and (A, a) < 3 occurs with
probability arbitrarily close to unity. This is possible by A.6. For the remainder
of the theorem we restrict attention to this event. Manipulating the expression
for F,, gives

F,\(¢) = —G\(6,)"'[D?1,(6,)¢ — D?(6,)¢]
(3'11) - GA(O,\)_I[Dln(o,\ + d’) - Dln(o,\) - Dzln(ﬂA)¢]
+(§n). - 0/\)

Now using the definitions of K,,(A,a) and K,,(A,a) and Taylor series
expansions as before,

IF.($)lle <[ GA(6,) '[ D?1,(6,) ¢ — D?1(6,)9]|,

+ sup [G(8,)"'D3,(6, + sp)do| + it
(3.12) se[o,l]“ e g ) ““ zna

< [K2n(/\7a) + %KSn(A’a)tn/\ + %]tn/\
< [ra(A, @) + 3]ta, <t
Thus, F,(S(t,,,a) c S(,,, a).
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For the second step, by considering the expression for F,, above and
expanding as in the proof of step (b) in Theorem 3.1, we have for ¢,, ¢, €
S(t,,, a),

IF(b1) = Fur($2)lls < [Koa(A, 0) + K3,(2, 0)2,,]lldy — ol
=< 27‘n(A,b)|l¢1 - d’z”m

for 0 < b < a. Letting b = a, this shows F,, is a contraction map on S(¢,,, a).
This suffices to establish part (i) of the theorem.

Letting 6,, = 6, + ¢,,, where ¢,, is the fixed point of F,,, Z,(6,,) =0
and ’

(3.13)

16,5 — 6nA”b =" GA(OA)_IGA(BA)(OnA - 5n).)”b ‘
(3.14) = IIGA(OA)_I[G/\(OA)On)« — G)(6,)6, + ZnA(oA)] ”b
= 1F(bn1) = Fua(0)ls < 4r,(2, b)d, (4, @),

proving part (ii) of the theorem. O

4. Some illustrative applications. We now consider the examples in-
troduced in Section 1. Our goal is to prove Theorem 1.1. We proceed by
verifying Assumptions A.1-A.6.

Assumption A.1 is immediate. For Assumption A.2, take U = J *J, where ¢/
is the injection of ® into L,[0,1], i.e.,

(4.1) (8,U¢) = fola(t){(t) dt.

(2.1) follows immediately. U is compact; see Cox (1988). From Cox (1988), the
convergence norms are immediately associated with Sobolev norms:

(4.2) 0, =WwW,%[0,1] 0<b<1,

and y, = v2™ as v > o,

4.1. Derivative formulas and assumptions A.3 and A.4. The following
expressions are easily established.

(4.3)
fl[e"(‘) — e%D]p(¢t) dt (i) log density,
0
DI(0)¢ = { [T[e"® — e ]p(¢) S(2) dt (ii) log hazard,
0
fl[p(()(t)) — p(0,(2))]d(2) f(¢) dt (iii) logistic regression.
0
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(Future instances of such multiline formulae will refer to Examples 1, 2 and 3
in that order.)

n

1
[le"0(t) dt — — ¥ #(X),
0 i1

(49 DL®6 = [ s @i -~ ¥ 58X,
i=1

1
n Y [p(6(X))o(X;) - Y6(X;)].
i=1
For the second and third order derivatives there are the representations:

D*(6)¢¢ = [ "o(£)¢(£)g(t,0(2)) dA()

and
D1,(6)¢¢ = [ #(1)(£)g(£,0(1)) dA,(8).
Furthermore,
DUI(0) 65w = [ S(DLDW(1)A(2,6()) dA(D)
and

DL, (0)éiv = [ () L) ()R (2,6(2)) dA,(t).
A(¢) and A ,(2) are given by

t, t,
(4.5) At ={ [8(s)ds, A1) = /Olsn(s) ds,
F(¢), F(2).

Here F and F, are the c.d.f. and empirical c.d.f. of the X’s in the density and
logistic regression settings; g(¢, 1) and h(t, u) are given by

et
g(t’/-") = {e””
p(u)(1 - p(r)),

e",

p(#)(l - p(u))(1 = 2p(p)).

The true parameter lies in ®,, where 3/(2m) < p < 1. We choose 1 /2m) <
a < p. It is not difficult to verlfy that the above derivatives are well-defined
and continuous in ®,. From (4.3), 8, is a root of DI(6) and since I(8) is
strictly convex, 6, is the unique root of DI(6) in @,. This verifies Assumption

(4.6)

h(t’lJ’) = {
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A3.

For any R >0, let N, =S,(R,a). If 0, lies in the interior of some
constraint set C c @,, then we should choose R so that N, c C.For 6 € Ny,
there are constants m z and My such that for ¢ € [0, 1],

(4.7) 0<mp<g(to(t) <Mg,
(4.8) |h(t,0(t)) < Mg.

Assumption A.4 follows from the first of these relations and the fact that
dA(t) = v(t) dt, where v is bounded away from zero and infinity.

4.2. Error analysis. The error analysis is carried out via the linearization
technique described in Section 3. We only consider results for a fixed sequence
of A’s. [Some uniformity in A should be possible, see O’Sullivan (1989) for
example, but we do not pursue that here.] Convergence characteristics in
| - ll;-norm for 0 < b < a are studied. The b = 0 case corresponds to the usual
integrated squared error.

ASSUMPTION A.5 AND THE SYSTEMATIC ERROR APPROXIMATION. From Theo-
rem 2.3 of Cox (1988), uniformly in b as A — 0,

(4.9) d(A,b) =10, — 0,lls = O(AP=872)|lg,ll, for0 <b <a.
Using the expansion indicated after Lemma 2.2,
"GI\_I(OI)Dal(G0 + u)vw”:
(4.10) ® ,
= L [1+92][1+ 0,175 D%(0, + u)rw, 6., Y,
v=1

where 6, = 0; € N, . Using the derivative representations, the second part of
(4.8), Holder’s inequality and Sobolev’s imbedding theorem [sup|v| < M|l»|l,
for a > 1/(2m), see Adams (1975)],
(4.11) 9
(DB, + wyvw, 857 = | ["h(1,06(8) + n(B)w(D()$(0)

0

< MllwlZlvI2lllI5,
where M is a positive constant. Invoking Lemma 2.2 we obtain
(4.12) ”G;I(BI)D‘"’Z(GO + u)vw”b < Mllwll vl A~ @C+1/@mN/2,
S0
K (A, b) < MA—®F1/@m)/2
From this and (4.9),
(4.13) r(A,b) < MAP~-a-b=-1/@m)/2

If p > 3/(2m), then there is an a« € (1/2m),(p — 1/(2m))/2] such that
r(A,a) - 0 as A — 0. This verifies Assumption A.5 so from Theorem 3.1 and
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the strict convexity of [,, we have the result:

THEOREM 4.1 (Systematic error bound). Suppose 6, € ©,, for 3/(2m) <
p<1land a € 1/2m),(p —1/(2m))/2]. Then there is some Ay, > 0 such
that for any 0 < A < Ay and 0 < b < a, there is a unique root 0, of Z, which
satisfies

(4.14) 10, — 8,lls < MA®P~0/2)\(P=2a=1/@m))/2
Furthermore, for 0 < b < a,
(4.15) 6, — 6,lls < MAP—D/2,
ASSUMPTION A.6 AND THE STOCHASTIC ERROR APPROXIMATION. Since A =

A, — 0, we can (by Theorem 4.1) choose A such that 8, € N, . An expansion of
the norm gives

d (A, b) =186,, — 6,3

= ¥ [1+y8]00+ Ay, ]2 DLL(6.) - DI(0.)}6., 1%

v=1

where 6, = 6,. We will need to study the behavior of [{DI,(8,) — DI(8,)}¢]%.
From (4.3) and (4.4),

(4.16)

(4.17) DL,(6,)¢ = Di(0,)é = [ "6(t) dUL(¢;6,),
with
F,(t) - F(t),

(4.18)  U(t:6,) = fole"A‘s)[S,,(s) — S(s)] ds - V(¢),

_/;)IP(OA(S))d[Fn(S) — F(s)] — W,(2).
V.(t) and W,(¢) are
(4.19) V.(2) = an [6,I(Y;) — E8,I,(Y;)],
i=1

n

Z [YiIt(Xi) - EYiIt(Xi)]'

n;_,

| = S| =

(4.20) W,(¢t) =

Here I, is the characteristic function of [0, ¢]. A direct computation of expecta-
tions gives

(4.21) E(DL,(6,)¢ — DI(6,) 8} E{ [lo@ dU,,(t;oA)} < Mn-Ygl1.
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Thus substituting into (4.16) and using Lemma 2.2 we have for 0 < b < q,

2 - - m
(4.22) d,(A,b)? = O (n~A-C+1/@m)),

Second and third order derivative analysis. Now we need to analyze the
second and third order derivatives. Note since

D%,(8,) = D°1(8,) + {D%,(6.) — D%(8,)},
K3, (A, b) < Ky(A,b)
(4.23) + sup  ||Gy(6,) {D®1,(6)uv — D(0)uv},.

u,veSQ1,a)
61,0 €Ny,

Thus it is only necessary to study the quantities
DL,(0)ud — DA(8)ud = [ u(t)d()g(t,0(t)) dH, (1),
0

(4.24) .
D%,(6)uve — DL(O)uve = fo u(t)v(¢)d(t)h(2,6(t)) dH,(t),

where H,(t) = A,(t) — A(?) [see equation (4.5)] and 8 € N, . For the density
case these quantities are both zero (U, (¢) = 0). In the hazard case, using
Kolmogorov’s inequality, Sobolev’s imbedding theorem and the assumption
that a« > 1/(2m),

(D%,(0)ud — DA(O)us)’ < lul2lglZ0,(n™Y),
{D%,(0)uvd — DU(8)uve)’ < lulZlvlZISI50,(n 1)

and from this using the expansion similar to (4.16) and applying Lemma 2.2
we have

(4.25)

K3, (A, b) < O,(n~Y/2)A~G+1/@m)/2,
K3, (X, b) < A~O+1/@mY/2 4 (n=1/2))~C+1/@m)/2,

A more elaborate argument is employed in the logistic regression case. For
u,v €S, a),

|G.(6)) "D, (0)uv — D1(0)uv}|,

= ¥ [1+ 28, ][1 + Ay, 3{D3,(0)uve., — D3L(B)uvé,,)’

v

with 8, = 6,. Let {(¢) = u(t)v(¢)s, (¢)h(t, 6(¢)) and expand ¢ in terms of the
eigenvalues ¢, defined in Section 2.

(426) { = Z {v’¢v’:

where {, = ({,U¢,.). Choose a such that @ > a = 1/(2m) + ¢ where ¢ €
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(0,1/(2m)] is arbitrarily small. By the Cauchy—Schwartz inequality,
(D%,(8)uvé., - D¥(O)uve,,)

- {g & "6, d(Fy(t) - F(t»}z

(4.27) ,
< T [+l T [+ o 6, am o)

- ||§||2[Z [+ 9217 [4sd(Fi0) - F(t))}z].

But since @ > 1/(2m) and y, = v?™, by Markov’s inequality the stochastic
order of the term in square brackets is OP(n‘l), because

(4.28) E[Z 1+ 217 '8, d[F(0) - F0)]) ] <M,

where M is an appropriate positive constant. Note that

(4.29) lZlla =lluve, h(-,0()la < llullg - Ivla - ld, la- IR, 00))a.
This follows by iterating the well-known inequality

(4.30) Il fgllws < Cll fllwg - llgllws,

which is true for f,g € W§ and s > 3, see Lemma X4 of Kato and Ponce
(1988) or the proof of Theorem 2.1 of Strichartz [(1967), page 1047]. Note
h(-,8(")) is clearly in ®_ by the chain rule since A is infinitely differentiable
and 6 € ©,. Also, |l¢,,llc =1+ y¢,. Therefore, we have using Lemma 2.2
again that

Ky,(1,b) < Ky, b) + A=Grerl/@myag (n=17%)

(4.31)
= O(A_(b+1/(2'"))/2) + A_(b+a+l/(2m»/20p(n_l/2).

An identical analysis for K,,(A, b) yields
(4.32) Ky, (A, b) < A-Crerl/Cm)/2Q (n~1/2),
Combining these results we have r, (A, b) = O,(a (A, b)), where
O + n—lA—(a+1/(2m))A—(b+l/(2m)) + 0’
n-) —®+1/@m)
@ (A,b)% = A @FL/EmY( ) (G +1/@mY) 4 =1y —(G+1/@m)

n—lA—(b+a+ 1/2m))
+n—1A—(a+1/(2m)){A—(b+1/(2m)) +n 1 —(b+a+1/(2m))} .

On each row in this display the first term comes from the K, (A, a) term, the
second term comes from K4(A, b)d(A, @) and the third term comes from the
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obvious quantity in (4.23). Simplifying

1,
(4'33) an()\,b)z = p~I\~Ha+1/@m)a=b/ ya+l/@m) 4 1 4 n_l,
Aa+1/(2m)—a +1+ n—l)‘—a.

It is clear that if A, is a sequence for which n~'A, 2**1/@™) — ( for some a
in the range min(1/(2m), b) < a < p, then we can choose a and a such that
1/(2m) < a < min(e,1/m) and then r,(A,,a) =, 0. Note A, — 0, so by
choosing n sufficiently large we have A, < A, where A satisfies Theorem 4.1.
Thus Assumption A.6 is satisfied and using the convexity of /,,, we have the
following result.

TuEOREM 4.2 (Stochastic error bound). Let A, < A, be a sequence such
that for some a € (1/(2m),(p — 1/(2m))/2ln~ A, Xo*1/@™) — 0. Then there
exists M > 0 such that with probability approaching unity as n — 0, 6, (with
A = A,) is uniquely defined and for 0 < b < a,

(4.34) 16, — 0—,””% < Mn_lA_(b+1/(2m)){n—1A—2(a+l/(2m))}’
and so for 0 < b < a,
(4.35) 16,, — 6,y < Mn =12\ ~G+1/@m/2,

Theorem 1 follows immediately from Theorems 4.1 and Theorem 4.2. An
optimal upper bound on the rate of convergence is obtained by equating the
asymptotic orders of the systematic and stochastic errors. We find that the
optimal upper bound on the rate of convergence applies if

(4.36) A% = pm2m/@m+D
and the resulting rate of convergence of the penalized likelihood estimator is
(4.37) 16,,: — 0,3 = OP(n_z"‘(P‘b)/(z'"”)).

The upper bound can be achieved in W,™ (i.e., A} satisfies the constraint)
provided m > 3.
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