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TESTING LINEAR HYPOTHESES IN AUTOREGRESSIONS

By JENS-PETER KREISS

University of Hamburg

The problem of testing linear hypotheses about the parameter vector of
an autoregressive process with finite order is considered. Based on the
property of local asymptotic normality, we derive asymptotically optimal
statistical tests. Additionally, we define and investigate so-called residual
rank tests. For these tests we obtain under the null hypothesis an asymp-
totic distribution which does not depend on the distribution of the innova-
tion.

1. Introduction. In this paper we deal with the problem of testing linear
hypotheses for the parameters of an autoregressive process with finite order.
For such models, the property of local asymptotic normality (LAN) holds [cf.
Kreiss (1987)]. Because of this, it is possible to construct optimal estimators
and optimal tests for linear hypotheses. Here optimal is meant in a local and
asymptotical sense. This methodology goes back to Le Cam (1960, 1986) and is
also fully exploited in Strasser (1985). Since we dealt with estimation problems
in the above-mentioned paper [Kreiss (1987)], the aim in the following is to
treat testing problems. Of course, the techniques for both kinds of problems
are somewhat similar. So we omit certain technicalities here. Nevertheless we
would like to mention that not all results of this paper are standard and easy
to obtain. This is especially true for the tests with ranked residuals to be
defined later.

Before introducing the underlying model we will describe the content of the
paper. Section 2 contains some notation and basic results used throughout the
whole paper. In Section 3 we restate some results concerning statistical tests
for linear hypotheses in LAN models. These results are presented in a version
adapted to the situation considered here. Section 4 introduces general score
and ranked residual score tests for autoregressive models. This part also
contains the main results of the paper. As a matter of fact we rediscover
Quenouille’s (1947) goodness-of-fit test for autoregressions as a score test with
score function adapted to the normally distributed case. To make the paper
more inviting to read, some proofs and auxiliary results are deferred to the
final section.

Now let us introduce the stochastic model which we deal with. Consider a
family of real-valued random variables ('X,: teZ={0,+1,+2,---})) on an
arbitrary probability space (Q, o7, P), such that

D
(1.1) X,= Y a,X, ,+e, te1,
i=1
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where (¢,: t € 7) is a sequence of independent and identically distributed
real-valued random variables. Further, we assume Ee; = 0 and Ee? =o0% €
(0, ®). To ensure stationarity of the considered stochastic process (X,: ¢t € Z),
we assume that the parameter vector ¥ = (a,...,a p)T € RP is restricted to
the following parameter space:

P

0= {(al,...,ap)T € RP:1— Y a,z” # 0 for all complex z with |z] < 1}.
v=1

Such autoregressive processes are well known in the literature on time series

models, cf. Anderson (1971) and many others.

2. Basic notation and results. We assume throughout the whole paper
that the distribution of ¢, possesses an absolutely continuous Lebesgue den-
sity f with finite Fisher information I(f) and with f(x) > 0 for all x € R.
Then the autoregressive process defined above is asymptotically normal. De-
noting by P, ; the distribution of (X,: £>1—p) on R” restricted to
o(X;_,,..., X,), this means that (2.1) and (2.2) hold. [Recall that P, , is
nothing else then the common distribution of (X .., X,) written as a
probability measure on R*.]

1-p>-*

For all sequences {#9,},.n C©® for which Vn (9, — 9) is

bounded
dP 1
(2.1)  Jog—= — Yn (9, — )TALD) + =n(d, — DTTHIFND, — F)
dP, , 2
= 0,(1),
(2.2) Z(A(9)|P, 5) = A#(0, I(£)T(D)).

Here we make use of the following notation.
1 2z T . ,
(23) An(ﬁ) = —\/E_Z (p(gj)(Xj—l"H,Xj—p) ’ ‘P= _f/f’
j=1

(24) F(ﬁ) = (EXth)s,t=1 ,,,, P

Furthermore, .~ (X) denotes the distribution of a random variable, .#(a, 3)
denotes the multivariate normal distribution with mean vector a and covari-
ance matrix 3 and o,(1) stands for convergence to 0 in P, ,-probability.

A detailed proof of this LAN result is given in Kreiss (1987). There the more
general ARMA situation is considered. Note that the assumptions made here
guarantee that the p X p-covariance matrix I'(%) is positive definite.

The above results together with standard techniques imply contiguity of

{Pyolnen and (P, 5 = P, 5. n-12, }pen, and
(2.5) Z(A(9) = T(N)I(f)h,|P, 5 ) = #(0,T(I)I(f)),

for each bounded sequence {4}, ., € R?. Using the terminology of Strasser

n[
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. &)

—preee n
(En = (Rw’ "g/n’ {Pn,t‘)+n_1/2W(1‘))I(f)_1/2h: h € Hn}))neN

is asymptotically normal with central sequence W(3)TI( f)~1/2A(9) [for every
matrix W(9) with W(3)W(3)T = I'(9) 1] [cf. Strasser (1985), Corollary 80.6].
H, is defined to be the following set of local parameters {h € RP”:
&+ n TV PWI(f) 1%k € 6).

For such experiments it is possible to treat linear testing problems in an
asymptotic manner. Some useful results are stated in the next section and are
later on used for the model considered here.

(1985), we obtain that the sequence of experiments [.27, = o(X,

3. Testing linear hypotheses. Given the (localized) sequence of experi-
ments (E,), suppose we are interested in testing

(3.1) H:heL versus K:heRP\L,

where L denotes a linear subspace of R? of dimension s,0 < s < p.

Since Theorem 80.13 of Strasser (1985) yields equicontinuity for the se-
quence of experiments (E,: n € N), we define the following sequence of tests
(¢¥: n € N) for the above hypothesis.

|Gd = m) o (W()TA))][ > e,

(3.2) ok = ; .
|Gd = mp) = (W(9)"A))| < e,
here 7; denotes the orthogonal projection onto L and id denotes the p X p
identity matrix. ¢, should be chosen in such a way that the tests asymptoti-
cally achieve level a, 0 < a < 1. Later on (cf. Theorem 4.1) we show how the
critical values ¢, can be chosen.

The sequence of tests defined above is asymptotically maximin in the
following sense.

THEOREM 3.1 [Strasser (1985), Theorem 82.21]. {¢}*},.n is asymptoti-
cally unbiased, that is (E, ; denotes the expectation according to

Pn, 1‘)+n‘1/2W(1‘))I(f)‘1/2h)

limsupE, ,¢f <a for allh e L

n—o

and l

liminfE, ,o¥ >a forallh € RP \ L.
n-—oo

If {p,}, cn denotes another arbitrary but asymptotically unbiased sequence of
tests for H versus K, then

lim sup 1nf En pon, < lim inf E, , ¢¥,
n—ow n—® heB,

where B, := {h € RP: |h — wL(h)||2 =c},c>0.
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In order to make it possible to apply this test ¢}, we have to construct a
version which does not depend on the underlying parameter 9. For simplicity
we only treat the special hypothesis (0 < s < p)

(3.3) L:= {xeRp:xs+1= oo :xp=0}.

In case the center of localization ¥ lies in the linear space L, the correspond-
ing linear hypothesis just describes the problem of testinga,,; = -+ =a, =
0. That is, we have a test for the order of the underlying autoregressive
process. The asymptotic properties (e.g., asymptotic power) of the test are
judged under local alternatives of the form & + n~'/2h, h € R?.

In order to construct an applicable version of the sequence of maximin tests
defined in (3.2) we make use of an arbitrary but vn -consistent sequence of
estimators 1§n for 9 and a consistent sequence of estimates for the covariance
matrix I'(9). If we assume, that we have observations X;_,,..., X,, n € N, of
the underlying stochastic process both estimates exist and, for example, may
be chosen according to (X, == [1/(n + p)IL?_;_,X;)

g0 he[3E (- R)%-R)|

and

85 9= (% L (X~ %)(% - Xn)) .

,,,,

The properties of the empirical autocovariance matrix F and of the
Yule-Walker estimate J, are well known [cf. Brockwell and Davis (1986),
Chapters 7.2 and 8.1].

Next define matrices J(s X s), B(p —s X s) and M(p —s X p —s) by
J(9) BT(9)
B(9) M(9)
and analogously J,, B, and M,. Then W(¢) equal to

J(9)V2 —d(9) 'B(3)TC(9) "V
0 Cc(9) 2 ’
C(®) = M(3) — B(3)J(9)"B(9)7, is a suitable choice for the matrix W(%)
occurring in (3.2), i.e.,, W(H)W(3)T = T'(8)~ 1. Recall that all required inver-

sions are possible since I'(«) is positive definite.
Thus we should use

r) =

W =

n

J;1/2 _J;lB"fé;l/2
( 0 G 12 )

as a consistent estimate for W(3). Now we are able to state one of the main
results of the paper.
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THEOREM 3.2. Assume that ¢ = —f'/f is twice continuously differentiable
with bounded derivatives and that Ee] < ». Define

1, |me (WIS > ca

(3‘6) QD,:— = A T A 2
0, [mpe (WA (mid,))|" = eca

where c,, is defined as given in Theorem 4.1, below. Here w, and w, denote
the projection on the first s, respectively last p — s components. Then the
sequence of tests {¢,}, cn IS maximin in the local sense of Theorem 3.1.

Proor. Since, with 9 € L,
7o (WA (7.3,))
= 7y (Wl [An(719,) = A,(9) + () I(f)Vnmy(d, - 9)])
1y o (W(9)'4,(9)) = mypo(W(8) T I(f)Vnmy(d, = 9)) + 0,(1)

=m0 (W(3) A,(8)) + 0,(1),

the assertion follows from Theorem 3.1, the consistency of Wn, the property
that W(8#)~! is upper triangular, the definition of ¢* and Lemma 4.2.
Moreover, we have that if 9 € L then W,'I(f)~'/?A (7,d,) is also a central
sequence for (E,: n € N). O

REMARKS. Dzhaparidze (1977) considered likelihood ratio procedures for
testing linear hypotheses. The associated test statistic is asymptotically equiva-
lent to the maximin test defined above [cf. Kreiss (1985b)]. A test similar to ¢,*
has been defined in Basawa and Scott (1983). They consider nonergodic models
and they calculate asymptotic power of their proposal. In Basawa and Koul
(1983) there are also some asymptotic optimality results for score tests like ¢,
in nonergodic models. OQur Theorem 3.1 is a completely different optimality
result for the ergodic autoregressive models considered herein. All results
given in this part extend directly to more general ARMA models, since the key
result (the LAN condition) holds for stationary ARMA processes as well [cf.
Kreiss (1987)].

4. General score tests. In the previous part we derived a sequence of
tests which is locally optimal. In real application of this test there occurs the
problem, that the so-called score function ¢ = —f'/f is rarely known. If we
replace this function ¢ by a suitably chosen function ¢: R - R we obtain
general score tests based on the following kind of score statistic '

1 n
(4.1) ¥(9) = = L ¢(e,(9)X( - ),
=
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where X(j - D =(X;_,,...,X; ;) and ¢(®) =X, - 9"X( - D, j =
1,...,n. ¢ is assumed to be square integrable according to f, and has to fulfill

(4.2) fwfdA = 0.

One possible choice is a bounded score function like ¢ = arctan in order to
robustify the procedure. Another possibility is to choose ¢ data-dependent, for
example ¢ = bo F; for a square integrable function b: [0,1] » R and the
empirical dlstrlbutlon function of £(3,),...,&,(8,). In this case we will
assume that [}b(¢) dt = 0. Moreover, (4.1) equals

()

(4.3) B.(9) - Z b( )X(j -1,

where R(9),..., R,(8) denote the ranks of the residuals &(#9),...,¢,(9).
One advantage of the ranked residual test, i.e. (again suppose that the hypoth-
esis of interestis a,,; = -+ =a,=0),

(4.4) b 1, ”77'2 °(WnTBn(1rlt‘3n))”2 > Cq b
. ol = ) )
||72°(WnTBn(1Tlﬂn))”2 < ca,b’

is that the critical value c, , can be chosen mdependently of the distribution
.Z(&,). Such a result is not ‘true for general score tests, i.e., for

(4 5) (p'l' = " T ° (WA’nT‘\Pn('17-11§n))"2 > ca,lll,Fy
' " T2 °(Wan’n(Wll§n))||2 < CuyFr

nor for the maximin test from the previous section. All critical values should
be chosen in such a way that the associate test achieves level «, asymptotically,
0<a<l.

To be more precise, we obtain the following essentlal result for the tests
(4.4) and (4.5).

THEOREM 4.1. Under the assumptions that ¢, b and F are twice continu-
ously differentiable with bounded derivatives, that Ee} < », that [p¢®dF,
[ab2d ) < » and that [py AF = [{bd ) = 0, we obtain

(i /(( forar) e ) = x2_.(53)

for the alternative 9, = & + n~'/2h, h € R? and ¢ € L, where the noncen-
trality parameter & of the x? distribution is equal to hTC(ﬂ)h( Juf /fdF)? -
(Jy?dF)~L
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A similar result holds for the test statistic of the ranked residual test,
namely

(ii) /((/Olbz(u)du)_1||wzo(

where

Pn,l?n) = Xg—s(al?)’

th(q_‘})h(fbf 5_1 dF) (/ b2d/\)

Because of this we may choose the critical values according to (0 < a < 1)

1
CartnF = Xp-s;a J[U2dF and c, = x,“,’_s;afo b2dA.

1

The asymptotic power of these tests according to the alternative {9, }, < can be
calculated easily from the noncentral x2-distribution.

The proof of Theorem 4.1 relies mainly on the following lemma, which
establishes a kind of asymptotic linearity of the statistics ¥, and B,.

LEMMA 4.2.  Assume ¢, b and F to be twice continuously differentiable with
bounded derivatives, Ee} < x, [p® dF, [{b?d\ < wand [g¢ dF = [3bdA = 0.
Then for all {8}, < € © for which { (19 — 9}, e Stays bounded

D W(9,) - ¥(8) - T(8)Vn (D, - 0)fwf7dF =0,(1)

and

A

B,(9,) - ‘/— Z beF(e;)X(j — 1)
(ii) o
—T(d)Vn (D, - a)/ f A = 0,(1).
In Section 5 we just give the proof of (ii): This is the much more difficult

case. In fact, (i) is an easy consequence of the assumption of differentiability
of .

Proor oF THEOREM 4.1. Exactly as in the proof of Theorem 3.2 we obtain
from Lemma 4.2(i) that

Ty (W, (7,8,)) = 730 (W(9)TE,(3)) + 0,(1).
Lemma 5.2() yields
./(17'2 o(W(ﬂ)T\Ifn(ﬂ))|PM,n) - /(—Cl/?(ﬁ)h[.ﬁ%d}r, s /c/;zdF)

(where I,__ denotes the p — s-dimensional identity matrix) from which (i) can
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be concluded. Exactly the same idea yields (ii) [use Lemmas 4.2(ii) and 5.2(ii)].
All other results are easy consequences of (i) and (ii). O

Let us finish this part with an example.

ExampLE 4.3 (Quenoullle s goodness-of-fit test). Using the score test g%
for yo(x) = x/0? together with the least squares estimator 918 we obtain (by
tedious but direct computation) that this test coincides with the one proposed
by Quenouille (1947) [see also Anderson (1971), Section 5.6.3] for testing the
order of autoregressions.

The asymptotic power for this case was discovered by Walker (1952). For
normally distributed innovations e,, this correspondence is also obtained in
Dzhaparidze (1977).

REMARKS. A possible way to construct adaptive tests for linear hypotheses
(adaptation implies independence from the distribution F of the innovations
and asymptotical equivalence to ¢*) is opened up by the ranked residual test:
The optimal score function b is of course —f'> F~1/f o F~!. Along the lines of
Beran (1974), this function can be estimated consistently from estimated
innovations &,(3,), ..., £,(8,). For a proof of this nontrivial result the reader
is referred to Krelss (1988) where the more general case of autoregressive
processes with infinite order is treated.

5. Some proofs and auxiliary results. In this final part of the paper
we will give proofs of some results stated in Section 4. Let us begin with an
evaluation of Lemma 4.2. Since part (ii) of this lemma is much more compli-
cated and part (i) is contained in Kreiss (1985a), we restrict our further
consideration to the second statement of Lemma 4.2.

PRrOOF OF LEMMA 4. 2(ii) We have with X(j — 1) = (X;_,,..., X; )T,

B,(3,) - T . b F(e)X(i = 1)
- % Z{ (—(f—)) - b(F(e,-))}X(j - 1)
1 » .
5.1) =ﬁj§1{ (Ba(2,(92)) = b(Fulep)
—b(F(e;(8,))) + b(F(e;)))X(j - 1)
+% zz‘,l{ (F.(e;)) — b(F(¢;)))X(j - 1)
+ % fl{b(F(ej(ﬁ,,))) ~b(F(;))}X(j - 1),

~.
I
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where we make use of the following notation:

. 1 N
(5.2) F(x)= — Y 1. (e5(8)), =z€R,
j=1
1 n
(5.3) Fy(x) = — Y 1. .(5(8), =x€R,
j=1
and )
(5.4) F(x) =P{e; <x}, x€R

We will deal with all summands of (5.1) separately. With the help of

(5.5) supVn | F,(x) — F(x)| = 0p(1),

x€R
[for proof of (5.5) see Boldin (1983)] together with the fact that

1 r .
;ngllx(.l -1

stays bounded in probability, we obtain from Taylor’s formula that the first
summand is equal to

= £ (6(les(82))) - b(F(e) = o(F(es(8)] + B(Fe)XC =1
_ % é{p,,(gj(s,,)) — F(e,(8)))5/(F(;(8,)))XG - D

1 » .
_ WJEI{FR(EJ.) — F(e,)}b'(F(e;))X(j — 1) + 0p(1).

This approximation is valid because of differentiability of b and the well-known
fact that vn sup,  glF,(x) — F(x)| stays bounded in probability. Since

(5.6) g,(9) —&,(9) = — (8, - 9)"X(j - 1)

and since Vn (8, —9) is bounded in probability, a Taylor expansion for
b'(F(+)) yields that the above expression equals

7 L {R(e(82)) = F(e,(8,)) - Fie) + Fe))

=1

(5.7)
xb'(F(e,))X(j - 1) + 0p(1).
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If we restrict our attention to the set S, = {max;_, ,le;(5,) - gl <n”1/4)
we can conclude that (5.7) is bounded by

1 e
Vo sup  [F(x) = F(x) = F(y) + F(y)|— ¥ IX(j ~ 1|

Jx—y|<n~1/4 j=1
1n )
=or(D) IX(G = D= 0p(D).

To see the next to the last equality, use a sequence of routine arguments,
which may be found in Billingsley (1968), proof of Theorem 13.1.
Eventually, we obtain that

P(87) < P{n |8, = o] max |X(j - DI> 04} >, .0
[recall that n~'*max, _, _,|X,| = 0p(1) for every stationary process with exist-
ing fourth moments]. These results imply that the first summand of (5.1)

vanishes in probability.
A Taylor expansion for the third summand leads to [e i =¢&;(9)]

1 n .
=L {e;(8,) — &;(N} (b F)(e;(9))X(j - 1)
(5.8) =

1 . ) _
2‘/_ Z { ( ) - Ej(ﬂ)} (bOF) (8n,1)x(.] - l)a

where 3, ; lies between ¢; (19 ) and &;(9).

Because of (5.6) and the fact that ¢;(9) = ¢; is independent of X(; (J— 1 we
obtain by direct computation that (5 8) equals [recall that Vn(d, — ) is
bounded in probability]

12 a
~7 L (6o FY(e)X(j = DX( = DV (5, = 9) + 0p(1)
= —E(b°F)'(e)T(9)Vn (8, - ) + 0p(1).

To see the last equality, use the ergodicity of the underlying process.
Further observe that we obtain from integration by parts

floF!

E(bo F)(el)—f (bo F)(x)f(x)dx——[bf T dA.

T'o conclude the proof of (ii), it now remains to show that the second summand
cf (5.1) vanishes in probability. To this end, consider the following Taylor
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expansion:

{(6(Fo(g;)) — b(F(&;))}X(j — 1)

3= 5~
T[\’Jz .\l_ll[\’lz

(5.9) (Fu(e;) = F(e)}/(F(e,))X(j - 1)

-

2‘/— Z {F (5 F(ej)} b”(8n,j)x(j - 1),

where 4, ,; lies between Fe;) and F(e;). Because of the fact that
Vn sup, |RIF (x) — F(x)| is bounded in probablhty, we obtain that the second
summand of the above expression vanishes in probability. Finally, a tedious

but straightforward computation of

2
n

Y (Fi(s;) — F(e))o/(F(e)))X(j - 1)
j=1

yields that this expression is bounded in probability. In the computation of the
above expectation we use the independence of ¢; and X(j — 1) in a fundamen-
tal way. From these facts we obtain the asymptotic negligibility of (5.9), which
implies that the second summand of (5.1) vanishes in probability. This con-
cludes the proof of Lemma 4.23ii). O

E

The following lemma is needed in the proof of Theorem 4.1.

LEMMA 5.2. (i) Assume that  and f are continuously differentiable, that
JY?dF < =, and that [y dF = 0. Then for each sequence ¥, =9 + n='/%h,
h € R?,

(5.10) ,/(xpn(a) + I‘(ﬂ)h/a/;ﬁdF

dP,M,n) = /V(O, F(ﬂ)[¢2dF)

(i) If b, f and F are continuously differentiable with [}b*>dA < © and
Jabd A = 0, then
P )

Proor. (ii) is a direct consequence of (i). Because of Theorem 7.1, Roussas
(1972), page 33, in order to obtain (5.10), it suffices to show

dP, , T
Z| |log dP’ 2 v.(9)] |P
n,d

3/1/((—1/2hTF(ﬂ)hI(f))’2(0))’
0

1 floF-
(‘/_ Zb F(a)X(J~1)+F(19)hfbf - ldA

- ./V(O,F(ﬁ)/()lbsz).
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where

RTT(3)RI(f) (—r(ﬂ)hf¢£dF)
3(9) = . f
—F(ﬁ)hfcp?dF I‘(ﬂ)fwzdF

To prove this, consider

dPn,ﬂn T T T 1 T
log—dP — "W, (9) =0p(1) + KTA(O) —t"P,(9) — Eh L(9)I(f)h,
b4

n,

see (2.1),
for t € R? \ {0}. Since

Z(hTA,(9) ="V, (9)|P, ,)
= 4|0, "TT(S)RI(f) + tTF(ﬂ)tfdfzdF + 2hTF(1?)tf¢/£f,dF),

as can be seen from the central limit theorem for martingales [cf. Brown
(1971)], we get the desired result. O
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