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MINIMAX RISK OVER HYPERRECTANGLES,
AND IMPLICATIONS
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Angeles, and Université du Quebec a Montréal

Consider estimating the mean of a standard Gaussian shift when that
mean is known to lie in an orthosymmetric quadratically convex set in /.
Such sets include ellipsoids, hyperrectangles and [,-bodies with p > 2. The
minimax risk among linear estimates is within 25% of the minimax risk
among all estimates. The minimax risk among truncated series estimates is
within a factor 4.44 of the minimax risk. This implies that the difficulty of
estimation—a statistical quantity—is measured fairly precisely by the
n-widths—a geometric quantity.

If the set is not quadratically convex, as in the case of /,-bodies with
p < 2, things change appreciably. Minimax linear estimators may be out-
performed arbitrarily by nonlinear estimates. The (ordinary, Kolmogorov)
n-widths still determine the difficulty of linear estimation, but the diffi-
culty of nonlinear estimation is tied to the (inner, Bernstein) n-widths,
which can be far smaller.

Essential use is made of a new heuristic: that the difficulty of the
hardest rectangular subproblem is equal to the difficulty of the full prob-
lem.

1. Introduction. Suppose we are given
(1.1) y; =6, + ¢, 1=0,1,2,...,

where ¢; are iid N(0,0?) and 6, are unknown, but it is known that 8 = (6;)
lies in O, a compact subset of /,. For example, ® might be a hyperrectangle

(1.2) 0(r) = {6:|6;| < 7},

where 7, > 0 as i > »; an ellipsoid {6: Y a;8? < 1} or more generally an
1,-body

(1.3) 0,(a) = {o: Y a6l < 1}.

We wish to estimate § with small squared error loss |6 — 6]|2 = L (§, —A()i)2,
and we use the minimax principle to evaluate estimates; an estimator 6* is
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minimax if

(1.4) supE||§* — || = 1nf supE|d — o]|".
00 00

We also speak of restricted minimax estimates. Thus, if 6* is linear and
satisfies (1.4) with the infimum over @ referring only to linear procedures, we
say that 6* is linear minimax.

The observations (1.1) represent a standard Gaussian shift experiment and
can arise as the limiting experiment in many curve estimation problems.
Efroimovich and Pinsker (1981, 1982) and Nussbaum (1985) have shown how
the study of the above model, with ® an ellipsoid, allows one to evaluate
asymptotic minimax risks in estimation of probability and spectral densities
and in regression. Bentkus and Kazbaras (1981), Bentkus and Sushinskas
(1982), Bentkus (1985a, b) and Jakimauskas (1984) have shown how this
problem, with ® a hyperrectangle, allows evaluation of asymptotic minimax
risk for linear estimation of densities and spectral densities and for nonpara-
metric regression. In this paper, we study the abstract problem, with white-
noise observations (1.1)-(1.3); the connection with curve estimation is taken
for granted. This connection has two implications for our study. First, that
asymptotic behavior, as o — 0 is important; in the connection with curve
estimation, o plays the role of (sample size)1/?—hence small o asymptotics
play the same role as large-sample asymptotics in curve estimation. Second,
certain sets ® are of particular interest: hyperrectangles ®(7) with 7, = ¢ci™¢
and [,-bodies with a; = ci?9; estinating § known to be in such a set corre-
sponds, if we interpret the 6, as coefficients of a function in a certain
trigonometric expansion, to estimating a function when the function is known
to have a gth derivative which is bounded in a certain norm—the / -norm on
the Fourier coefficients. More information about smoothness constraints of
this form can be had, for example, in Triebel (1987).

In the model (1.1) with ® ellipsoidal, Pinsker (1980) made a significant
discovery. Pinsker found that for ellipsoids meeting certain regularity condi-
tions, the minimax linear risk is asymptotic to the minimax risk among all
estimates as o — 0. This fact allowed the first precise evaluations of asymp-
totic minimax risk in function smoothing problems—the papers of Efroimovich
and Pinsker and of Niissbhaum mentioned above.

Because Pinsker’s result is specifically for the case where the unknown
mean lies in an ellipsoid, the question arises whether similar results hold when
the unknown mean lies in a set with a different “shape.” In Sections 2-5, we
show that if the mean is known to lie in a quadratically convex set, the
minimax linear risk is within a factor 1.25 of the minimax risk nonasymptoti-
cally. Thus, for ellipsoids, hyperrectangles and [,-bodies with p > 2, the
minimax linear risk is not very different from the minimax risk, for any o.
Almost certainly, the constant 1.25 can be replaced by 1.247.

The story changes appreciably when O is not quadratically convex. As we
show in Sections 7-9 below, for [/ -bodies with p < 2, the minimax linear risk
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need not tend to 0 at the same rate as the minimax risk. In this setting,
nonlinear estimators can improve dramatically on linear estimators!

An interesting feature of our approach is the use of geometric ideas,
including that of hardest rectangular subproblem and quadratic hull, to ex-
plain these phenomena. Another interesting feature is the close connections
we are able to establish between the usual Kolmogorov n-widths and difficulty
of linear estimation and between (a species of) Bernstein rn-widths and diffi-
culty of nonlinear estimation. As is well known the Kolmogorov and Bernstein
n-widths need not always agree; when they do not, this has significant
implications—see Section 9. Finally, in Sections 6-8 we give results showing
that linear minimax estimates do not improve dramatically on optimal trun-
cated series estimates.

2. The one-dimensional problem. Consider estimating a single
bounded normal mean, i.e., estimating # € R from the single observation,
y ~ N(8, 0?) with the prior information that |8| < 7. This problem has been
studied by Casella and Strawderman (1981), Levit (1980), Bickel (1981) and
Ibragimov and Has’minskii (1984). It is known that the minimax estimator for
this problem is Bayes with respect to a prior concentrated at a finite number of
points in [—7, 7]. Let 5N (y) denote this minimax estimator. 8~ is nonlinear
in y (e, it derives from a non-Gaussian prior). Let pN(’T, 0') denote the
minimax I‘lSk More information will be given below.

Consider estimating 6 in this setup by a (possibly biased) linear estimator.
The minimax linear estimator can be worked out using calculus; it is

r
F(y) = a4
and the minimax linear risk is
2 2
(2.1) p(r,0) = inf sup E(8(y) —6)° =
3 linear |g| < +

As it turns out, the minimax linear risk in this problem is not very different
from the nonlinear minimax risk. Consider the ratio of the two:
p(7, @) /pn(7, o). By the invariance p(r, o) = 0%(7 /0, 1) which holds for both
pr and py, this ratio depends on 7 and o only through the “signal-to-noise”
ratio v = 7 /0. Let u(v) denote the ratio of the two risks for a given value of v.
Ibragimov and Has’minskii (1984) pointed out three basic facts about u(v): (1)
it is continuous on (0, ©); (2) it is near 1 for v large:

pL(T,0)

(2.2) lim 22" =1
r/0—x pn(T,0)

and (3) also near 1 for v small:
pL( T, 0)

(2.3) im —=—— =1.
T/0-0 PN(T,O')
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Let u* denote the maximum value of u(v), i.e., the worst-case ratio of p; to
P>

(2.4) w* = sup M.

T,O PN ( T, 0)
Ibragimov and Has’minskii (1984) argued that (2.2), (2.3) and continuity of
w(v) imply that u* < o,

We can interpret (2.2) and (2.3) as follows. In the extremes where the prior
information || < 7 is weak compared to the noise level (i.e., /0 large) and
also where it is strong compared to the noise level (ie., /o small) the
minimax linear estimate is nearly minimax.

Actually, much more is true. u(v) never gets very far from 1 even at
moderate v. Birgé, in a talk on the work of Pinsker at the Mathematical
Sciences Research Institute in Berkeley in April 1983, mentioned that he had
convinced himself that u* < 1.7. In fact, as we shall explain, the
Ibragimov-Has’ minskii constant u* is less than 1.25.

In studying the ratio u(v) = p;(v,1)/py(v,1), we have information on p;
from (2.1). However, information on p,(v, 1) is more difficult to come by. For
small v we can use the fact that, for v < 1.05,

+o $(2)
2.5 1) =v2e 2 ———d,
(2.5) pu(r,1) =vie™ 2 [ oS
where ¢ denotes the N(0,1) density. This is proved in the technical report,
Donoho, Liu and MacGibbon (1988). For large v we can use the inequality
sinh » )

(2.6) pn(v,1) = (1 T S ooshy

which follows from Donoho and Liu (1988), Section 6.1. Actually, (2.5) implies
that w(v) < 1.25 for v < 0.42, and (2.6) implies that w(v) < 1.25 for v > 4.2.
[We remark that the important relations (2.2) and (2.3) follow immediately
from (2.1), (2.5) and (2.6).]

To get information about w(v) for moderate v, one has to resort to the
implicit characterization of p, as the maximum of Bayes risks:
(2.7) pn(v,1) = sup p(7),

well,

where p(7) denotes the Bayes risk
p(m) = inf B, By (8(Y) = 6)°, 0 ~m,

and II, denotes all prior distributions supported on [—v,v]. By Brown’s
identity p(w) =1 — I(®*7), where I(F) denotes the Fisher information
J(f)2/f, and ®*7 denotes the convolution of 7 with the standard normal
distribution function ® [see, for example, Bickel (1981)]. Thus, putting I*(v)
= inf{I(®*7): 7 € I1,} we have py(v,1) = 1 — I*(v). As I is convex, evalua-
tion of I*(v) presents a problem of minimizing a convex functional subject to
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TasLE 1
Risks in the one-dimensional problem

v 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
PL 0.038 0.138 0.265 0.390 0.500 0.590 0.662 0.719 0.764 0.800
PN 2= 0.037 0.137 0.261 0.373 0.449 0491 0.534 0.576 0.614 0.644
ratio££ < 1.032 1.009 1.016 1.046 1.114 1.201 1.239 1.248 1.244 1.242
PN
v 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0
L 0.829 0.852 0.871 0.887 0.900 0.911 0.920 0.928 0.935 0.941
PN 0.669 0.692 0.714 0.733 0.750 0.756 0.779 0.792 0.804 0.814
ratioiJ£ < 1239 1.231 1.220 1.209 1.200 1.191 1.181 1.172 1.163 1.156
PN

the convex constraint € II,. The technical report, Donoho, Liu and MacGib-
bon (1988), gives a numerical approach to obtain numbers I(v) approximating
upper bounds to I*(»). By assuming that no programming error was commit-
ted, and that machine arithmetic is performed with advertised accuracy, the
report shows that the resulting numbers p(v) = 1 — I(v) obey

(2.8) pn(v,1) > py(v) — 0.0005, v e [0.42,4.2].

Thus, they are ‘“lower bounds to four digits accuracy.”

Table 1 presents a small selection of the numerical results we have ob-
tained; it shows the numbers p,, together with the corresponding p; and the
ratio 4 = p,/(py — 0.0005) > .

This table, all our other numerical work and some analysis give the follow-
ing theorem.

THEOREM 1. Suppose (2.8) holds. Then u* < 1.25.

The proof is given in the Appendix. As indicated above, considerably more
information about our procedure and the claim (2.8) are available in the
technical report. Hasminskii has informed us that calculations performed in
the Soviet Union (but apparently unpublished) suggested similar conclusions.
Feldman, in a recent Ph.D. thesis at the Hebrew University of Jerusalem, has
made calculations by a different technique which suggest that the precise value
of the Ibragimov-Hasminskii constant is between 1.246 and 1.247.

An unconditional result is possible. Lét p,(7, o) = min(r2 ¢?). This is the
minimax risk of the truncation rule which estimates 6 by 0 if 7 < o and by y
if 7 > o (see Section 5). We have the following theorem.

THEOREM 2.
max pT(V’ 1) _
v pN(Vyl) pN(lyl)

The proof is in the Appendix. As p; > p; it follows that u* < 2.22.

(2.9) ~ 2.22.
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3. Hyperrectangles. We turn now to the hyperrectangle problem—
(1.1)-(1.2). If we let 6, be a random variable distributed according to the prior
supporting the minimax rule 65"“ » and independent of the other 6,’s, then the
Bayes risk for estimation of 6 is easy to calculate; due to the independence of
y, s it is just the coordinatewise sum X, py(7;, o). As the coordinatewise
estimate 6% = (8" (y,)) is Bayes for the indicated prior, and as the indicated
prior is least favorable for this estimator, this Bayes risk is the minimax risk
and this estimator is minimax.

PROPOSITION 3. The minimax risk for problem (1.1)-(1.2) is

(3.1) Ri(o) = infsup E|6 — 0]° = T py(7,,0).
6 00O

By similar reasoning, the linear estimator §* = (82 ,(y,)) is the minimax
linear estimator, and

PROPOSITION 4. The minimax linear risk for problem (1.1)-(1.2) is
(3.2) Ri(o) = X py(7;,0).

The minimax linear risk has been studied intensively in several papers by
Bentkus and members of his school; Proposition 4 appears implicitly in several
of their papers. The minimax nonlinear risk has not been intensively studied,
apparently because there is no tractable closed form expression for py(7;, o).
However, in view of Theorem 1, we know that each p;(7;,0) < u*pp(7;, 0),
giving the following corollary.

COROLLARY.

(3.4) #(o) <p*R¥(0) < 1.25R}(a).

Thus, the best nonlinear estimate of 6 cannot significantly improve on the
best linear one.

An asymptotic comparison, as ¢ — 0, of the two different risks can be made
as follows. Recalling the definition of u(v), R%(o) = Z(u(r;/0)) Yo (7, 0)
and so

R3(0) ¥ u(r/0) 'pulni, o)
£(0) T (i, )

As p; > 0 one may view this right-hand side as defining an ‘“‘average” of
u(r; /o)™t with respect to a “probability distribution” p;(r;,0)/L p;(7;, o) on
i. As many of the terms 7; occur at 7,/ large, and an infinite number occur at
7,/0 small, (2.2) and (2.3) might suggest that with high “probability” u(r;/c)
is close to 1. Consequently, the actual ratio of minimax risks will be closer to 1
than the bound 1.25.
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TABLE 2
Bounds on {;(q) and {;(q)

q 075 10 14 1.8 2.0 2.2 2.6 3.0 4.0 50 100 25.0 50.0
Q) = 0.903 0.906 0.912 0.915 0921 0.927 0.940 0.949 0.971 0.98 0.99
(r(@) < 123 127 125 122 121 119 117 112 112 110 1.05 1.02 1.01

THEOREM 5. Let g > 1/2. Suppose that 7, = ci~9. Then

. Rf(0) * -1
311%?2%@ = 2u(e) = [ w(») g, (v) dv,

where the probability density g, is supported on [0, »] and is defined by

V2

(3.5) g,(v) = —L5L

” .
f y~ A+ g,
0

y=+1/9)

1+ 2

The proof is given in the technical report. A table of lower bounds on ¢;(q)
is given in Table 2. The bounds were arrived at using techniques described in
Gatsonis, MacGibbon and Strawderman (1987), and in Section 2 above. The
related quantity {,(q) is defined in Section 5, Theorem 9.

CoroLLARY. For q € (1/2,%), {;(q) < 1. Consequently, 8" is not asymptot-
ically minimax as o —> 0. {;(q¢) > 1 as ¢ > 1/2 or . Consequently, 8~ is
nearly asymptotically minimax in the cases where the problem is very difficult
(q near 1/2) or very easy (q near ).

The proof is given in the technical report. Although 8% is not asymptotically
minimax for typical infinite-dimensional hyperrectangles, as Table 2 shows it
18 not far from minimax. If © is a finite-dimensional hyperrectangle, of course,
then 6 is asymptotically minimax as o — 0.

4. Quadratically convex sets. Suppose now that we observe data ac-
cording to (1.1), but instead of (1.2) we know that § € ®, where © is convex,
but not a hyperrectangle. If ® contains a hyperrectangle O(7), r = (7,)7_,, the
problem of estimating 6 under (1.1) and (1.2) is called a rectangular subprob-
lem. The minimax linear risk of the full problem is as large as that of any
subproblem, so

(4.1) Rf(o) = sup{R}(0o;0(7)): 0(7) c O}.
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When equality holds here, we have
R}(o) = sup{R}(0;0(7)): 0(7) C 6}

\

\

1
2 sup{E z(o;(a(f)):@(f)c@} [by (3.4)]

1
ERE(U)

This proves the following lemma.

LeEmMA 6. If the difficulty, for linear estimates, of the hardest rectangular
subproblem, is equal to the difficulty, for linear estimates, of the full problem,
then

(4.3) ¥(o) <p*R¥(0) <1.25R%(0).

We now show that equality often holds in (4.1). First, some definitions.

We say that O is orthosymmetric if, whenever 6 = (6,)7_, belongs to O,
(£6,)7_, also belongs to ® for all choices of signs +. Examples of orthosym-
metric sets include: ellipsoids, /,-bodies, sets {#: L a,(|6;]) < 1} and, of course,
hyperrectangles. We say © 1s quadratically convex if {(82)7_,, 8 € O} is
convex. Ellipsoids and weighted / ,-bodies with p > 2 are quadratically convex,
as are hyperrectangles, and sets {6: Ta,p(6?) < 1} where ¢ is convex. (To
make these examples more concrete, recall from the function smoothing
interpretation in Section 1 that constraints on the gth derivative of a function
can be expressed by weighted /,-bodies with weights a, = ci??.)

THEOREM 7. If @ is orthosymmetric, compact, convex and quadratically
convex, the difficulty, for linear estimates, of the hardest rectangular subprob-
lem is equal to the difficulty, for linear estimates, of the full problem:

(4.4) R¥(o) =sup{R}(0o;0(7)): 0(7) C 0}.

Thus, the factor 1.25 which we have established applies not only to hyper-
rectangles, but also to compact ellipsoids and compact [,-bodies, p > 2. Note
that the set {#: Y a,|6,° <1 and ||0|® < C} is orthosymmetrlc and quadrati-
cally convex and compact if all but a finite number of the a; are nonzero and
a; > .

The result (4.4) is also true for some noncompact cases—® = R™ being an
obvious example. Also, if ® = @, X 0,, and (4.4) is true for each factor 0,,
then (4.4) is true for ®. These two remarks may be combined. If a finite
number of the a; are 0, and if a; - », then ® = {8: La,6,P < 1} is the
product ® = R™ X @', where @' satisfies the hypotheses of the theorem. This
extends the result to cover the most important noncompact cases.
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Proor. The idea is as follows. First, we show there is a hardest rectangu-
lar subproblem O(7*). Let 6* be the minimax linear estimator for that
subproblem; we have automatically that for any linear estimator 6,

sup R(6,6) > sup R(6%,0).
e(r*) a(r*)

The key step is to show that 7* is as hard for 6* as the full problem:
(4.5) R(6*,7*) > R(6*,0) forall 6 € 0.
It follows that

Rf(0) = R(6*,7*) = R§(0;0(r%)).

Hence, (4.4).

To start, we identify the hardest rectangular subproblem. Let ®, denote
the positive orthant of ®. As ® is orthosymmetric, if § € ®, then so is
(+0,)7_, for all sequences of signs +. As O is convex, if 7€ O, all (£6,)7_,
with |0,| < 7, must belong to ©. Therefore, O(7) c O iff 7 € @,. Hence, if we
define for r € O _,

J(T) = Z pL(Ti’o') =Rz(0’®(7))y
then
sup{ R} (0;0(7)): 0(1) C O} = Sel)lp J(7).

We claim that J is an /,- continuous functional on © . From

rio? s?o?

r2+o?  s%+ ol <|r® =57,

we get |J(0) — J(7)| < Zl()2 —72|. Let (0, ) be a sequence in O, converging
l,-strongly to 7. Putting ¢, 03 ; and ¢, , we have Lo = 0 and ¢; > 0.
From the convergence 6, to 7, we have tn ;= t for each i, and ):tn ;> Lt
Applying Scheffé’s lemma ¢, converges to ¢ in l Thus ):]0 -7 - 0. By
the inequality above |J(8) — J(T)| - 0.

As J is continuous, it follows from compactness of ® that J has a
maximum in @,; 7* say. @(s*) is the hardest rectangular subproblem for
linear estimates.

To avoid typographical excess, let 7, denote the ith component of 7*. The
minimax linear estimator for ©(7*) is of the form (c,y,)7_,, where ¢, = 72/
(12 + 0®). For the mean-squared error of this estimator, we have

R(6*,6) = Bias? + Variance = ¥, (1 —¢;)%02 + 02 Y c2.

As we saw earlier, the theorem follows from the inequality (4.5). As the
variance of 6* does not depend on 6, the inequality is equivalent to saying that
Bias?(6) is maximized at § = r*. As Bias?(8) does not depend on the signs of
the components of 6, it is enough to check that it is maximized in the positive
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orthant at 7%, i.e.,
(4.6) Y (1 -c)X(2-62)=0 forallocoO,.

Consider once again the functional J. We are going to show that J(8) <
J(r*) implies (4.6); the theorem then follows by definition of 7* as the
maximizer of J in O . We first change variables. For a generic 6 in 0 ,, put
t = (02)7_,; put ©2 for the set of all such ¢. As @ is quadratically convex, ®2
is convex. Define J(t) = Zt,0%/(t; + 0?), so that J(t) = J(6). With ¢, =
(r3)7_,, we have

(4.7) J(t) <d(¢,), te02.
We claim o is Gateaux differentiable on [, at t,, with derivative
(4.8) (D, by = ¥ (1= ¢)’h;.

Now the maximum condition (4.7) gives (Dtoj, h) <0 for all A =(z—¢y).
Using this and the definition of ¢ and ¢, will establish (4.6).
We provide the needed details. Let r and s denote scalars; a bit of algebra

yields
2
(r +es)o? ro? 9 (1-¢)
49 — = 1-— + 22—~
(4.9) r+es+ao? r+o? es(1 =) E s+ o2

where ¢ = r/(r + 0?). Now if both r > 0 and r + e¢s > 0, then (1 — ¢)?/(r +
es +0%) < 1/0% Now let h € ly; if ¢, + ¢h > 0 coordinatewise, applying (4.9)
coordinatewise to the components of o/, with r = ¢; and s = h;, gives

2
&

Now let 6 € ® and let ¢ be the corresponding element of ©2%. Define ¢, =
(1 — &)t, + t. By convexity of ®2, ¢, € ®2. By (4.7), J(¢,) — J(t,) < 0. It
follows that

(4.11) e YJ(¢,) —JI(ty)} <0 fore e (0,1].
Now ¢, =t, + eh for h = ¢t — ¢t,. Also,
2 h% = Z (012 - Tiz)z = Z (6, - Ti)z(oi + Ti)z

<4M?Y (6, — 7,)° < 16 M*

(4.10) (J (2o + eh) = J(t,)) = eZ(1 = ¢;)°R,

(4.12)
where M = sup{||6|: 8 € O} < «, by compactness of . Using (4.10) and (4.11)
with (4.12) gives
€
2 (1- Ci)z(ti —to,;) < —516M*,
g

for all ¢ € (0, 1]. Taking into account the definitions of ¢, = 62 and ¢, = 72,
this implies that (4.6) holds for every 6 € ®,. O
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REMARKS.

1. The concept of hardest rectangular subproblems appears to be new. Pinsker
(1980) established a maximin property for ellipsoids which can be shown to
imply (4.4) for ellipsoids (see equations 17 and 18, page 122 of the English
translation). Thus, our result is an abstraction and generalization. How-
ever, even for ellipsoids, the implication (4.3) seems to be new.

2. Theorem 7 does not cover /,-bodies with p < 2. See Theorems 11, 12 and
13 below.

3. Pinsker (1980) showed that for certain ellipsoids,

£(0)
(4.13) Rt (o) -1
as o — 0. Fundamental to his argument is the idea that the hardest
rectangular subproblem be finite-dimensional. This is not generally true
for [ ,-bodies with p > 2, as one could discover from straightforward calcu-
lations based on Theorem 7. In fact, it seems only to happen when p < 2.
See Theorem 13 below.

5. Truncated series estimates. Suppose, once again, that ® = 0(7) is a
hyperrectangle, and recall that the minimax estimator and minimax linear
estimator for this situation are §Y and A%. A simple alternative to these
estimates is the truncated series estimate 67, obtained by letting y; serve as
the estimate of 6, in those coordinates at which , > o and lettlng 0 serve as
the estimate of 6, at those coordinates where 7; < o. Thus, 6T =Y, 50 We
remark that 47 Juses the data to estimate 6 at those coordlnates where the

‘““signal-to-noise” ratio 7,/ is bigger than 1; at other coordinates it ignores
the data and just uses 0.

The maximum r1sk of 67 as an estimate of 6,, pp(r,0) = maxg, .,
E(8T - 6,)? is just o2 or 72 dependmg on whether 7, > ¢ or 7, < o. Thus, we
have the s1mple formula whlch was used already in Sectlon 2. From this, we
have the worst-case risk of 97

F(o) = SUPE"éT - 0”62 = Lpr(7,0).
CISLC)

In fact, R¥(o) is the minimax risk among all truncation estimates; we omit
the (easy) argument.

A common objection to truncation estimates is that their transition from

“using the data” to “ignoring the data” is too abrupt. Estimates such as 6N
and 6L in some sense manage a smooth transition from using the data
(1, > o) to ignoring the data (r; < o). Surprisingly, truncated estimates do
not do too badly in terms of minimax risks. We have p;/p, = (72 +
o?)/max(r% %) < 2 so

Ri(o) = ¥ pr(7,0) < X 2p.(7;,0) = 2R} (0).
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From Theorem 2 we have, for similar reasons, R%(o) < 2.22R#(o). This
proves the following proposition.

ProrosiTION 8. To minimize, among truncated series estimates 6 =
(9:1; < py), the worst-case risk over the hyperrectangle ©(r), an optimal rule is
to set P={i: 7, > o}, i.e, to estimate by 0 those coordinates where the
signal-to-noise ratio is less than 1. The resulting risk is never worse than twice
the minimax linear risk, and never worse than 2.22 times larger than the
minimax risk.

For asymptotics as o — 0 we can use the same averaging argument that led
to Theorem 5, but this time on the ratio p;/p, rather than on u. This leads to
Theorem 9.

THEOREM 9. Letq > 3. If 7, = ci™9 then
R%(o)

lim —1——¢
o500 RE (o)

&) = [ 1+ v?)g,(v) dv + [ "1+ v?) /v2g,(v) dv,

where the density g, is defined in (3.5).

We omit the proof. We find the relatively good performance of truncation in
this minimax setting surprising. See Table 2.

6. N-widths and minimax risk. Suppose now that 0 is convex but not
a hyperrectangle, and we are interested in estimating ¢ from data (1.1).
Consider truncation estimates defined using projections—8 = Py, P2 = P.
Define

#(c;0) = inf supE|| Py — 6|2,
L)

where the infimum is over all linear projections. For hyperrectangles, the
optimal projections are of course parallel to the coordinates, so this definition
agrees with the one in Section 5, and R%(o;0(7)) = Lpr(7;,0). If O is not a
hyperrectangle, there is an obvious lower bound—the full problem is at least
as bad as any rectangular subproblem. The following is proved in the technical
report.

THEOREM 10. Let ® be orthosymmetric, compact, convex and quadratically
convex. The difficulty, for truncated series estimates, of the hardest rectangu-
lar subproblem, is at least half the difficulty, for truncated series estimates, of
the full problem:

(6.1) #(0) < 2sup{R#(0;0(7)): 0(7) C B}.
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CoROLLARY. If O is orthosymmetric, compact, convex and quadratically
convex, then

#(0) < 4.44R%(0).

As in Theorem 9, one could show in specific cases a more precise result in
the asymptotic case o — 0.

It follows that n-widths of the set ® determine the difficulty of estimation
with some precision. The (Kolmogorov linear) n-width of © is defined as [see
Pinkus (1985)] d, = infp_supe ||P,0 — 8|, the infimum being over all n-
dimensional projections. Then we have R%(o) = inf, d2 + no?. Thus, for ©
orthosymmetric and quadratically convex, the corollary shows that the purely
geometric quantity inf, d2 + no? is within a factor 4.44 of the minimax risk.

In particular, if the n-widths go to 0 at rate n™", then R}(o) — 0 at rate
(o2)2r/@r+1),

7. Nonquadratically convex sets. Let ® be a set. The quadratically
convex hull of O is

(7.1) QHull(®) = {6: (6?) € Hull(02)}.

For quadratically convex, closed orthosymmetric sets, of course, QHull(®)
= 0. On the other hand, for weighted [ -bodies with p < 2, the hull is strictly
larger than the set itself. Indeed, one can easily compute

(7.2) QHull(0,(a)) = {6: Za?/?|6,* < 1}.

Thus, for all the /,-bodies with p € (0, 2), the quadratic hull is an ellipsoid.
[More is true. Consider the function-smoothing interpretation, with a; = i??
representing smoothness constraints on the gth derivative. For every p €
(0, 2), the quadratic hull is the same: the ellipsoid with weights a; = i??!] The
key fact about quadratic convexification: It preserves minimax risk of linear
estimators. We prove the following in the Appendix.

THEOREM 11. Let ® be orthosymmetric and compact.
(7.3) R#(0;0) = R¥(0; QHull(®)),
(7.4) Ri(0;0) = Rf(o; QHull(®)).

REMARKs. First, for linear estimation, [ p-type constraints, with p < 2, do
not add anything new; by (7.2)-(7.4) the difficulty is the same as with the
ellipsoidal constraints of the corresponding quadratic hull. Second, Theorems
7 and 11 together say that the minimax linear risk is still determined by the
hardest rectangular subproblem—of the enlarged set QHull(®). Third, let
O(7*) be the hardest rectangular subproblem of QHull(®) for truncation
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estimates. Then by (7.3) and Theorems 8 and 10
Rf(0;0) 2 Rf(0;0(7%))
> 3R3(0;0(*)) = 7R#(o; QHul(0)) = R (0;0),
which proves the following corollary.

COROLLARY. Let O be orthosymmetric and compact. Then
(7.5) R%(0;0) <4Rj}(0;0).

So for weighted [,-bodies with p € (0,«), the minimax linear estimator
never improves drastically on minimax truncated series estimators.

As a final remark, note that the formula R%(o) = inf, d2 + no? always
determines the difficulty of truncated series estimates. It follows from the
corollary that under orthosymmetry the n-widths determine the difficulty of
linear estimation to within a factor 4.

8. Difficulty of nonquadratically convex classes. If O is orthosym-
metric but not quadratically convex, QHull(®) is larger than 0 itself. The two
sets can, in fact, be quite different. Consider the /,-body with weights a, = i
A calculation based on the results of the last two sections reveals that the
hardest rectangular subproblem of QHull(®) has risk which goes to 0 as
(02)29/24+D However, as explained in Section 9, the hardest rectangular
subproblem in ® has difficulty comparable to (02)29*1/29+2 This is of
different order; a difference of this sort guarantees that linear estimators are
not nearly minimax. This follows from the following theorem.

THEOREM 12. Let p € (0,). Consider the [,-body ©,(a) with weights
a; > ci?? for some q > 0. Then

(8.1) R}(0;0) <M(o)sup{R}(0o;0(7)): (1) C 0},
where

(8.2) M(o) = O(jlog o2)

as o — 0.

In words, the hardest rectangular ‘subproblem of ©,(a) is, to within loga-
rithmic factors, as hard as the full problem. Hence, if the difficulty of the
hardest subproblem of QHull(®) tends to 0 at a different rate from the
difficulty of the hardest subproblem for @, the risk of linear estimators cannot
tend to 0 at the optimal rate. So, for example in the /,-body case mentloned
above, linear estimators are not nearly minimax.

Proor. By Theorem 8, the difficulty of the hardest subproblem is within a
factor 2.22 of sup{R %(c, ©(7)): O(7) C 0}. The result (8.1) therefore follows if
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we can show that

(8.3) R}(0;0) < M(o)sup ). min(6?, 02),
60O

with M(o) satisfying (8.2).
We now construct an estimator which proves that (8.3) and (8.2) hold. Pick
C = C(co) so that C > 1 and C?%(0) = |log o|? as o — 0. Define

T= {i: sup|6;| > Ca-}.
) e
Define the estimator 6 by the rule

(8.4) b = {sgn(yi)(lyil - Co),, €T,
- o, igT.

In words, 6 is 0 at those coordinates which cannot possibly be large, and
translates toward 0 in those coordinates which might possibly be large;
compare Bickel (1983).

To analyze the worst-case behavior of 8, fix £ € (0, 1). Given 0, define

B = {i:|6;| > ec},
S ={i:|6;| <ea}

the indices of the “big” and ““small” coordinates of 6, respectively. Note that
if i € T, then §, = y, + Y(y,), where |¢(y,)| < Co. Therefore, if i € T,

E(Oi - oi) = E(yi -6, + ‘/’(yi))z

(8.5) ,
= (\/E(yi - 9;’)2 + \/E‘/f2(yi) ) <(o+ C(r)2.

Also,if i & T,

(8.6) E(éi - ai)z =67,

and, finally,if i€ SN T,
(8.7)  E(6;, - 6,)" < 202(1 + 4¢(C — ¢)) + 40%[C + 1]¢(C — ¢),

where ¢(¢) is the N(0, 1) density (this is proved in the technical report). For
small o, C — ¢ > 1, and so 4¢(C — ¢) < 1. Combining (8.5)—(8.7),

YEB,-6)<(C+1)’°L o?+4Y 02+ ¥ oX4[C+ 1]¢(C —¢).
i ieB ieS ieSNT
Now as C > 1,

2
2 (c+1)°
(CH+ 10y ooy + 40214 < ooy < Tmm(02, a?).

12
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Recalling the definitions of B and S, we have

ZE(éi—Bi)z_ (C+ b’ me(@ o?) + Rem(C, o),

where
Rem(C, o) = 402[C + 1]Card(T)¢(C — ¢).

Now, by the assumption that a; > ci??, we have Card(T) = O(c™") with
=r(q) =1/q + 1. Also, C + 1 = O(|log o|) by definition of C. Therefore, as
o—0,
Rem(C, o)
—% = O(|log ojo~"exp( — |log a|?/2)).

As o — 0, exp(— |log o|?/2) = o(exp(— R|log o)) = o(c ®) for every R > 0. In
particular, for R > r. We conclude that

Rem(C, o)
(8.8) ——= 0
ag

as ¢ — 0. On the other hand, as ® contains nonzero elements (otherwise the
theorem is trivially true),
(8.9) sup Y min(62, 02) = o%(1 + o(1))

00O
as o — 0. Defining

810 u (C+1)? Rem(C,0)

(8.10) (o) = g2 a?(1 +o(1))

with the o(1) term the same as in (8.9), we have

R% _<_supZE(0 )

< sup (C " 1) ——— Y min(6?,02) + Rem(C, o)
0

< M(o)sup Z min(6?, o2).
0

This is of the same form as (8.3), where M(o) satisfies (8.2) because of (8.8).
O

9. Hardest cubical subproblems of [,-bodies, p < 2.

DEFINITION. A standard n-cube of radius = is a set 0,(r,1) of elements
such that |6;| < 7 for indices i € i, 6, = 0 for indices i & i, and Card(i) = n.

THEOREM 13. Let © = 0,(a) for 0 <p < 2. Let ny = ny(o) be the largest
n for which an n-cube of radius o fits in ©. Then the difficulty, for truncation
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estimates, of the hardest rectangular subproblem, is essentially the same as the
difficulty of this ny-cube:

(9.1) nyo? = sup{R3(0;0,(0,i)): 0,(0,i) c 6},
(9.2) (no+ 1)o% > sup{R3(0o;0(7)): O(7) C B}.

The proof is given in the Appendix. Ignoring constants, the theorem reduces
the calculation of asymptotic behavior for the hardest subproblem to calcula-
tion of ny(c). This is straightforward. Consider the [,-body with weights
a, = i?? for p < 2. If an n-cube of radius o fits in @ at all, it can be fit using
the first n-coordinates for i. Therefore, n, satisfies

nog—1
o? Y iP1 <1,
0

g
oPY iPT> 1.
0

One sees immediately that o?n2?*! - pq + 1, and
(9.3) neo? = 0((0-2)(2PQ+2—P)/(2pq+2))
. o .

As p < 2, this goes to 0 faster than the risk for the linear minimax estimator
in this case, which by Section 7 is (¢2)2¢/27* D, Hence, the conclusion of the
Introduction: There exist settings in which nonlinear estimates improve on
linear ones by an arbitrarily large factor in the worst case.

REMARKS.

1. Formula (9.3) shows that p is, to some extent, a smoothness parameter.
Think of the function-smoothing interpretation. With ¢, the “order of
differentiability,” fixed, the optimal rate of convergence improves as p gets
smaller. As p — 0, in fact, the rate tends (modulo logarithmic factors) to
o2, which is the rate which would obtain if ® were finite-dimensional.

2. The quantity n, is closely related to the so-called Bernstein (or inner)
n-widths of © [Pinkus (1985)]. Let b, ., denote the largest radius of an
n + 1-dimensional [ -ball which can be inscribed in ®. Then n,=1+
sup{n: b, ,, = o}. Theorems 12 and 13 attribute a central role for b, ., in
determining the difficulty of estimation for / -bodies with p < 2. In particu-
lar, if the b, ., go to 0 at rate n™°, then, in the cases covered by Theorems
12 and 13, the minimax risk goes to 0 as (o2)(~25*1/2¢ (jgnoring logarith-
mic factors).

As seen above, the Kolmogorov n-widths of ©,(a) determine the perfor-

mance of truncated series estimates, and more generally, of linear estimates.

Thus, if the d,, go to 0 at rate n~", the minimax linear risk goes to 0 at rate
(g:2)~2r/@r+ 1),
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Comparing the last two paragraphs, we see that for the minimax linear risk
and minimax risk to converge to 0 at the same rate requires that (2s — 1)/2s =
2r/(2r + 1). Hence, s = r + 1/2. In other words, for n sufficiently large and
some ¢ > 0,

d,
vn

A comparison of d, and b, ., can be effected as follows. Let b, , denote the
largest radius of any n + 1- dimensional l,-ball which can be inscribed in ©.
[This is the classical Bernstein n-width; see Pinkus (1985).] As the sphere of
radius 1 inscribes the cube of radius 1, and as the cube inscribes the sphere of

radius vn + 1,

(94) b,.=c

(9.5) b,w<b,,<Vn+1b,
Also, we have [Pinkus (1985), page 13]
(9.6) byo<d,.

Combining (9.5) and (9.6), a sufficient condition for (9.4) is b, , = d,. This
equality of Bernstein and Kolmogorov n-widths occurs for elhps01ds [Plnkus
(1985), Chapter 6, Theorem 1.3, page 199], but for very few other cases. The
[ ,-bodies, with p < 2 show that we can have

d,
brz < I

If this sort of relation holds, and we put p < 1, (9.4) must fail, no matter how
favorable the relation between b, , and b, ., in (9.5).

To summarize, when Theorems 12 and 13 apply, the statement that the
minimax linear and minimax nonlinear risks go to 0 at different rates is
basically equivalent to the statement that certain Bernstein n-widths are
significantly smaller than the Kolmogorov n-widths. While this cannot happen
for l,-bodies, this is precisely what happens for [ -bodies with p < 2.

The linear n-widths of Kolmogorov have commonly been regarded as funda-
mental by approximation theorists, while Bernstein n-widths have been re-
garded as simply a tool for getting bounds on the n-widths of Kolmogorov
[Pinkus (1985), page 12]. In this setting of statistical estimation, the reverse is
true. Certain Bernstein n-widths determine (up to logarithmic factors) the
difficulty of estimation, while the Kolmogorov n-widths measure the difficulty
of linear estimation, which is in our view less fundamental.

APPENDIX

LemMMA A.1 (Monotonicity). For v > 3,

2 sinh(v)
2 /(1 B vcosh(v))

is monotonically decreasing as v increases.

m(v) =

1+v
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Proor. See the technical report. O

ProoF oF THEOREM 1. We proceed in three steps, showing that p,(v,1)/
pn(,1) < 1.25 on each of the three ranges [0, 0.42], [0.42, 4.2] and [4.2, ).
Range [0,0.42]. As p;(v,1) < pp(v,1),

sup pL(V’ 1) < sup pT(V’ 1)
v<0.42 Pn(¥,1) T <042 Pn(¥,1)
pr(0.42,1) 0.1762

< <
pn(0.42,1) — (0.145669 — 0.0005)

1.25,

by the monotonicity of pr(v,1)/py(v,1) for v € [0, 1] (see the proof of Theor-

em 2).
Range [4.2,»). By (2.6),

pr(v,1) vA(1+v?)

sup ———— < Ssu -
vzfz pn(v,1) V24I?2 1 - sinh(v)
v cosh(v)

(4.2)%(1 + (4.2)%)
- ( sinh(4.2) )

<1.25,
1 - ———~ "7
(4.2)cosh(4.2)

where we have used Lemma A.1, which establishes the monotonicity of the
ratio for v > 3. _

Range [0.42,4.2]. Suppose we have numerical approximations py(7;,1)
accurate to within 8, at a sequence {r,}. As p;(r,1) and py(r,1) are both
monotone in 7,

PL(Tv]-) < pL(Ti+171)
pn(7,1) = py(7,1) =8

where 7; < 7 < 7, ;. Therefore, picking {r;} appropriately

sup PL(T, 1) max pL(7i+111)
042<r<42 PN(7,1) T i py(r,1) =8

Our computations used the 656 points {r;} ={0.42,0.44,0.486,...,4.2} U
{1.381,1.382, ..., 1.859,1.860}. Detailed tables are listed in the technical re-
port. By (2.8) 6 = 0.5 - 10~* (four-digit accuracy), giving 1.2497... for the
right-hand side of the above display. O
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Proor oF THEOREM 2. We consider the supremum over two disjoint ranges.
First, v > 1. Now

(A1) min(v2, 1) 1 1
. sup —————— = sup =
v>1 pN(V’]') v>1 pN(V’]-) pN(]-’]-)

where the last equality uses the monotonicity of py(v, 1), which follows from
I, cIi,,, and (2.7).
In the other range we have

(A.2) min(»2, 1) v2
. sup ————— = sup ———.

o<v<1 Pn(¥,1) o<v<1 Pn(¥,1)
Now consider (2.5). As cosh(vy) is monotone incz:reasing in v for each y # 0,
the integral is decreasing in v. As the term e~ /2 is also decreasing in v, it
follows that this expression is decreasing in v. Hence, the supremum in (A.2)
occurs at ¥ = 1. Combining this with (A.1) proves (2.9). O

Proor oF THEOREM 11. As explained in the technical report, there is a
minimax linear estimator of the form 6, = ¢,y,, and in fact with each ¢; € [0, 1].
Similarly, the minimax truncation estimator is of the form 6, = ¢;y; with each
c; € {0, 1}. The risk of such estimators has the form

(A.3) R(6,0) = ¥ (1 —¢;,)%?2 + 02Y c2.

Viewed as a functional of ¢ = (82), this is linear; and so has the same
maximum over ©2 as over Hull(®2). Results (7.3) and (7.4) follow. O

Proor or THEOREM 13. We prove only the special case where all a; > 0.
Define new variables w; via w; = a;7P. In terms of these variables, the
problem of finding the hardest rectangle is to maximize

J(w) = ¥ min(w?/?/a?/?, 0?)
1

subject to the constraints (C1) each w; >0, and (C2) ¥, w; <1. As J is
monotone increasing in each w;, a maximum exists satisfying (C3) X, w; = 1.
Moreover, as J is constant in w, as soon as w?/? is larger than oZa?/?, it
follows that a maximum exists satisfying (C4) each w; < o”a;. Let W denote
the set of w satisfying the constraints (C1), (C3) and (C4). A maximum of J
with respect to the original constraints (C1) and (C2) exists in the special set
W, and W is convex.

The restriction of J to W is just ©; w?/? /a?/P—this functional is convex,
as p < 2, and strictly convex if p < 2. Any member of W may be expressed as
a mixture of extreme points, and by convexity of J, the value of J at any
member is less than the maximum value of J at some extreme point occurring
in this representation. It follows that the desired maximum value of ¢/ is the
maximum over extreme points.



1436 D. L. DONOHO, R. C. LIU AND B. MACGIBBON

An extreme point of W can be characterized as follows. First, the coordi-
nates sum to 1. Second, in all but one coordinate, the coordinate value is either
the minimum or the maximum value allowed for that coordinate. In the
remaining coordinate, the value is determined by the condition that
the coordinate sum be 1. Let now an extreme point w be given, and let i be the
indices of the coordinates taking on their maximum possible values under (C4).
The value of J at w is bounded by

Y (maximum allowed value for coordinate i )*? /a2/?
(A4) irw;#0
= (Card(d) + 1)o2.

We now interpret (C4) in terms of the original r-variables. Given an
extreme point w, define 7 by 7, = (w;/a;)'/?. The condition that w satisfy
(C1) and (C2) implies that the corresponding point 7 is in the positive orthant
of ©; as we have argued before, orthosymmetry implies that ©(7) c ®. The
extreme point w has the property that w; = (0%a;)?/? for i €i. This is
completely equivalent to saying 72 = 02 for i € i. The rectangle ©(r) there-
fore contains the cube 0,(o,i) [n = Card(i)]. Hence, 0,(c,i) C O, and so
Card(i) < ny(o). Hence, (A.4) implies inequality (9.2). (9.1) is immediate. O
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Note added in proof. L. D. Brown and I. Feldman [perhaps influenced by
an earlier unpublished technical report of Donoho and Liu (1987), that conjec-
tured a result like Theorem 1 of this paper] have independently investigated
what we call the Ibragimov-Has 'minksii constant, reaching conclusions simi-
lar to Theorem 1. Their paper is to appear in Statistics and Decisions in 1990.
A. S. Nemirovskii, B. T. Polyak and A. B. Tsybakov have, in a different
estimation problem, noticed that linear estimators are unable to achieve
optimal rates of convergence for estimating decreasing functions on [0,1] [see
Problems of Information Transmission 21 258-272 (1985)]. The notion of
quadratic convexity introduced here is related to the notion of 2-convexity
described on pages 53-54 of The Classical Banach Spaces II by J. Linden-
strauss and L. Tzafriri [Springer, New York (1979)].
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