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REMARKS ON FUNCTIONAL CANONICAL VARIATES,
ALTERNATING LEAST SQUARES METHODS AND ACE!

By ANDREAS BuJa

Bellcore

We discuss properties of some data-analytic methods which are inti-
mately related to each other: alternating least squares (ALS), correspon-
dence analysis and more recently Breiman and Friedman’s ACE algorithm.
The application of these methods to regression produces nonparametric
estimators of nonlinear transformations, both of the response and the
predictors. These procedures are among the most powerful tools for data
analysis, but missing awareness of some artifacts could lead to inappropri-
ate interpretations. We point out some anomalies as well as some curiosi-
ties in the mathematics of these methods, and we relate them to some areas
in computer-aided tomography, projection pursuit regression and nonlinear
devices in the theory of noise.

1. Introduction. Over many decades and in several contexts, there have
emerged a host of intimately related and partly identical techniques variously
known as optimal scoring, dual scaling, reciprocal averaging, simultaneous
linear regression, alternating least squares, correspondence analysis, nonlinear
multivariate analysis and homogeneity analysis. Prior to 1985, not much of
these developments had shown up in the mainstream statistical literature,
with the exception of canonical analysis of contingency tables [Kendall and
Stuart (1979), 33.44-33.51; more recent is Gilula and Haberman (1988).] The
emphasis of these approaches is on the analysis and quantification of categori-
cal data as they arise typically in social sciences, but a different use for the
nonlinear transformation of quantitative data has been known all along. See
for instance Young, de Leeuw and Takane (1976), page 509, equation 9, for a
polynomial, and de Leeuw, van Rijckevorsel and van der Wouden (1981) and
van Rijckevorsel (1982) for a B-spline approach, and more recently a book
edited by van Rijckevorsel and de Leeuw (1988) which covers many of these
topics. Papers related in philosophy are Kruskal (1965) and Bradley, Katti and
Coons (1962), who allow arbitrary monotonic transformations of a regression
response. In the scaling literature, these methods are usually not introduced
by way of an estimation problem based on a model involving parameters and
error terms, as is done for example in the approach by Box and Cox (1964).
Rather, one directly poses an optimization problem for some loss or stress
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function. This has led to the creative development of a host of algorithms and
data-analytic methodology which comprise scaling versions of most of multi-
variate statistics: regression, analysis of variance, principal components,
canonical correlations and discriminant analysis [Young (1981) and Gifi (1981).]
For the purposes of the present paper, the most relevant work is that by van
der Burg and de Leeuw (1983) on nonlinear canonical correlation. These
exciting developments enabled researchers to analyze both quantitative and
qualitative data as well as mixed data by any multivariate estimation tech-
nique. Meanwhile, statistical inference had to take a back seat, although it is
being picked up for instance by the Dutch school of nonlinear multivariate
analysis as the problem of “replication stability’’ [Gifi (1981), Section 12.4, and
de Leeuw and van der Burg (1986)].

In a regression context with quantitative response and predictors, the
scaling problem boils down to a search for optimal nonlinear transformations
of the variables, both the response and the predictors if one likes. In a
population (rather than finite-sample) formulation, the regression version of
the scaling problem can be stated as that of finding arbitrary nonlinear
(measurable) transformations 6(Y) and ¢,(X)), ¢5(X,), ... ¢,(X,) which max-
imize

corr(O(Y), Z ¢>j(Xj)).

The response Y and the predictors X,, X,,... X, are assumed to be random
variables which take on values in arbitrary measurable spaces (!), and the
transformations 6 and ¢, ¢,,...$, are measurable, real-valued functions
defined on the respective measurable spaces such that 6(Y) and ¢,(X)),
$o(X5), ... ¢,(X,) are square-integrable random variables. These functions are
called transformations for quantitative variables, and scalings, scorings or
quantifications, for categorical variables. The most fundamental assumption is
that the response and the predictors have a joint distribution. This applies
mainly to data which may be considered as observational and representatively
sampled or as results of a designed experiment where the design can be taken
as an approximation to a meaningful distribution of the predictors. Perhaps
even more importantly, one should notice what is not assumed: There is no
assumption being made on the conditional distribution of the response given
the predictors, such as a common error distribution for all points in predictor
space or, even more specifically, normal errors. This breaks with entrenched
thinking habits of statisticians who are usually preoccupied with error models
and corresponding dichotomies like ‘“smooth and rough” or ‘“signal and
noise.”’

The homecoming of these scaling ideas to mainstream statistics was marked
by the paper by Breiman and Friedman [Breiman and Friedman (1985a);
abbreviated B & F hereafter], who gave a framework in terms of populations
and formulated an estimation problem for the nonlinear transformations.
They propose estimation of transformations from data via an iterative algo-
rithm which uses computationally inexpensive smoothers as building blocks.
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Like much of the scaling literature, B & F’s paper is centered around their
algorithm which they call ACE (alternating conditional expectations). This is
to some extent a special case of an alternating least squares (ALS) algorithm
by van der Burg and de Leeuw (1983) except for the use of fast smoothers and
some . additional complications arising from the generality of the van der
Burg-de Leeuw algorithm. We are not sure whether this algorithmic orienta-
tion is fortunate. Ultimately, the most successful implementations might
resort to more conventional numerical linear algebra even when modern
nonparametric curve estimates are used as building blocks. In spite of this
minor squabble, we will use the established algorithmic acronyms and refer
(redundantly and clumsily) to these methods as the ALS-ACE approach,
partly to do justice to the psychometric literature which precedes B & F.

Despite its technical demands, B & F is probably easier to read than the
scaling literature since it is written in a language more amenable to statisti-
cians. It should convince statisticians that ALS-ACE is one of the most
powerful and universal tools for the analysis of multivariate data due to its
ability to recover frequent types of nonlinear structure and its applicability to
categorical data. The publication of B & F was accompanied by a series of
discussion papers by Pregibon and Vardi (1985), Buja and Kass (1985) and
Fowlkes and Kettenring (1985), who all pointed out that ALS-ACE can show
some unexpected behavior data analysts should be aware of. This seemingly
anomalous behavior may appear upsetting at first glance, but we will show
that it can be understood as a direct consequence of some simple spectral
decompositions. As a method for finding transformations of regression data,
ALS-ACE is more an outgrowth of canonical correlation than regression, and
as such it is based on spectral theory rather than least squares principles. An
understanding of the spectral behavior of ALS-ACE leads to insights into its
anomalies, and in fact, their discovery by analytical means preceded their
confirmation in computer simulations. The material presented in our discus-
sion paper included the following seemingly anomalous effects:

1. ALS-ACE produces nontrivial transforms in cases which are generally
considered as null situations such as joint unimodal spherical distributions.
The reason is that ALS—ACE responds to any type of stochastic dependence in
a distribution, and even for perfectly independent predictors and response, it
will transform the data nontrivially due to sampling fluctuations which create
minor deviations from independence.

2. ALS-ACE transforms can change abruptly even as the underlying distri-
bution of the data changes very slightly. This may happen even in the most
well-behaved situations where smooth densities exist and closeness is defined
in the most stringent sense. The reason is that the eigenvector which belongs
to the largest eigenvalue does not necessarily depend continuously on the
underlying situation, a well-known fact in numerical analysis and perturbation
theory.

3. Multivariate clusters may lead to approximate step functions as optimal
transforms. Clusters can represent a form of dependence among variables and



ALTERNATING LEAST SQUARES AND ACE 1035

ALS-ACE will pick them up since it responds to general dependence, not just
the type which can be modeled by regression.

4. If data are generated according to a predictor model 6(Y) = ¢(X) + £ (X
and ¢ independent), ALS-ACE will not necessarily find § and ¢. Examples can
be constructed using situation 3 above with a strongly bimodal distribution for
X in the model Y = X + ¢. ALS-ACE will not find the identity transforma-
tions: Rather it will indicate that there are two clusters present by returning
approximate step functions as optimal transforms.

5. Highly deterministic data which lead to a correlation of (or close to) one
after transformation, may produce nonunique transforms; in fact, there might
exist an entire infinite-dimensional space of optimal transformations.

These ‘“anomalies’ should not, however, invalidate ALS-ACE as a tool for
data analysis. If properly understood, they should lose their current status of
‘“deviant behavior.” There exists a large literature which can provide insight
into ALS-ACE. It falls under the topics of functional canonical variates, series
expansion for bivariate distributions and maximal correlation.

Some authors in these areas are Hannan (1961), Dauxois and Pousse
(1975), Chesson (1976), Naouri (1970), Barrett and Lampard (1955), Brown
(1958), Lancaster (1958, 1969, 1975, 1980, 1983), Eagleson (1964, 1969),
Rényi (1959) and Sarmanov (1958), among many others. Based on this litera-
ture, we present some analysis of two families of bivariate distributions which
are flexible enough to exhibit features such as clustering and null situations:

(a) mixtures of product distributions (Sections 4 and 5) and
(b) some circular and elliptic probability measures (Sections 8-12).

While (a) may be new, some of the theory relating to (b) has parallels in a
diversity of fields:

In engineering in the theory of noise and nonlinear instantaneous devices,
McGraw and Wagner (1968) obtained results which can be read as partial
answers to questions about the behavior of ALS-ACE under certain null
situations. Much later and independently, Davison and Grunbaum (1981)
developed similar theorems in the theory of computer-assisted tomography
(CAT). Donoho and Johnstone (1986, 1988) developed an impressive and very
far-reaching apparatus for projection pursuit regression (PPR) based on bivari-
ate normal designs, which, however, can be extended in part to the distribu-
tions considered by McGraw and Wagner and Davison and Grunbaum.

Thus, the same mathematics of a peculiar family of distributions give
insights into the working of methods as diverse as ALS-ACE, nonlinear
devices, CAT and PPR.

The present paper is confined to populations or distributions, i.e., it does not
immediately apply to finite-sample implementations of ALS-ACE. Therefore,
computer simulations are necessary to confirm the qualitative validity of
theoretical calculations for finite samples, where conditional expectations are
estimated by curve estimates such as polynomials, splines or fast smoothers.
The role of sampling fluctuations and peculiarities of the curve estimates used
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are probably accessible only to asymptotic theory (e.g., B & F, Appendices A.4
and A.5), hence simulations have to be carried out at any rate. All we can say
offhand is that for sufficiently large sample sizes and consistent smoothers, the
qualitative statements of this paper will hold to some degree of approximation.
(See, however, Section 12 for examples where the connection between samples
and populations breaks down.)

The limitations of a population approach are minor, however, in comparison
to a deeper problem which aggravates the present author considerably more:
The evidence we give for the performance of ALS-ACE on, say, null situations
and clustered data, is based on examples alone—which means that our evi-
dence is somewhat anecdotal. It is not quite clear how a theoretical feature
which we derive for a particular distribution generalizes to a more general
statement, such as ‘“multivariate clusters cause ALS-ACE to generate approx-
imate step functions.” Even so, we consider the evidence hard enough to
warrant reasonably general warnings of pitfalls of interpretation. We hope
that future research will reveal a more complete picture and provide us with
diagnostic tools for detecting potentially misleading ALS-ACE transforma-
tions.

Another limitation of this paper lies in the fact that we confine ourselves to
one single predictor. This simplest case is analytically more tractable and yet
ALS-ACE shows some of the behavior that distinguishes it from more conven-
tional regression methods.

To the hurried reader we recommend having a look at Section 13, and then
reading the initial paragraphs of other sections he or she might be inter-
ested in.

Abbreviations. Due to frequent citation, we will abbreviate A& S for
Abramowitz and Stegun (1972), besides B & F for Breiman and Friedman
(1985a).

For historical remarks and detailed references to the vast literature on the
subjects of scaling, correspondence analysis and alternating least squares, see
the books by Greenacre (1984), Chapter 4, Nishisato (1980), Section 1.2, and
Gifi (1981). Gifi is a pseudonym for a group of authors at the Department
of Data Theory, Leiden, The Netherlands. Members include de Leeuw and
van der Burg who are cited on other occasions in this section.

2. Functional canonical correlation. We introduce some technical
language by way of analogy with canonical correlations, of which the popula-
tion ALS-ACE problem is essentially an L, version. Let X;,...,X, and
Y,,...,Y, be centered random variables with finite variances. The canonical
variates are defined as pairs (X, Y) which are nonzero elements of the linear
spaces span(X,...,X,) and span(Y,,...,Y,), respectively, and stationary ele-
ments with regard to the correlation corr[ X, Y],

P,X=1Y, PyY=21X.
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The operators Py and P, are the orthogonal projections onto the above
spaces. Orthogonality is understood with regard to the inner product given by
the covariance or equivalently the product moment, since we deal with cen-
tered variables only:

(X,Y)=Cov[X,Y] = E[XY], |X|°=Var[X]=E[X2].

The population ALS-ACE problem can be viewed as the extraction of the
strongest variates in a nonlinear or functional version of the canonical correla-
tion problem. Focusing on the one-predictor situation with a single X and a
single Y, we arrive at nonlinear, or better: functional, variates if we replace
the linear spaces by

H(X) = {¢(X)|E[$(X)] = 0, Var[¢(X)] < =},
H(Y) = {8(Y)|E[6(X)] = 0, Var[o( X)] < =}.

The corresponding projection operators are just the conditional expectations
given X and Y, respectively, restricted to the centered square-integrable
variables. We denote them either by EXZ or E[Z | X], and E¥Z or E[Z|Y].
Functional canonical variates are defined as pairs (¢(X), 6(Y)) which are again
stationary with regard to the correlation corr[¢(X), 6(Y)]:

E¥¢(X)=10(Y), EX9(Y)=21¢(X).

This amounts to a singular value problem for the pair of operators EY and
EX. While the more familiar singular value problem for a matrix A amounts
to finding values A > 0 and unit vectors « and v satisfying Au = Av and
A'v = Au, we notice that the restricted projections EX|H(Y): H(Y) —» H(X)
and EY|H(X): H(X) —» H(Y) are duals of each other, as is recognized from
the identities

(E"$(X),6(Y)) = ($(X),6(Y)) = (¢(X), E¥6(Y)).

The solutions which belong to the largest A are the optimal or ALS-ACE
transformations, and the value of A is the maximal correlation. Every singular
value problem is associated with two decoupled eigenproblems:

EXEYp(X) = A%p(X), EYEX*9(X)=2a%20(Y).

If none of the eigenvalues A% is multiple, then any pair of eigensolutions
(¢(X), 6(Y)) for the same eigenvalue A? also solves the singular value problem,
and one can arrange A > 0 by changing the sign in one of the transforms if
necessary. If multiplicity occurs, not all possible combinations of eigensolu-
tions of the decoupled problems will satisfy the singular value conditions; this
has to be reinforced by picking an eigensolution ¢(X), say, and pairing it with
0(Y) = (1/A)E¥$(X), or vice versa. (Solutions whose stationary correlatlons A
are 0 cannot be sensibly matched up.)

Singular values and associated transformations do not necessarily exist
unless additional restrictive assumptions are made. One way of dealing with
this problem is by bypassing the existence question and recasting the frame-
work in the language of general spectral theory using spectral measures. This
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approach, which does not require additional assumptions but more advanced
tools from functional analysis, is carried out in Hannan (1961), Dauxois and
Pousse (1975) and Chesson (1976). Unfortunately, the fact that general spec-
tral theory does not guarantee the existence of largest eigenvalues still leaves
us with a need to find more restrictive regularity conditions which single out
situations in which they do exist. For a simple example where no largest
eigenvalue exists, see Section 11. In those cases where one of the spaces H(X)
or H(Y) is finite- dimensional (e.g., when the sample space is finite, or one of
the variables is discrete such as in Fisher’s scoring [Fisher (1970), Sec. 49.2]
for contingency tables), linear algebra ensures the existence of singular value
and eigendecompositions. For part of this paper (Sections 4 and 5), we will
indeed consider cases which lead to finite-dimensional problems, while in most
infinite-dimensional situations a common simplifying condition, compactness
of the restricted projections EX|H(Y) and EY|H(X), and hence of EXEY|H(X)
and EYEX|H(Y), is met. The former form a dual pair as noted above, while
the latter are easily seen to be self-adjoint as mappings H(X) —» H(X) and
H(Y) —» H(Y), respectively. The elementary spectral theorem for compact
dual pairs and self-adjoint operators then grants the existence of a sequence of
singular values A,, and of associated transformations ¢,,(X) and 6,,(Y) which
satisfy the following conditions:

(a) each nonzero value appears with finite multiplicity at most;

(b)A,, 10,1, >0;

(©) {¢,(X)} and {6,,(Y)} form complete orthonormal systems in H(X) and
H(Y ), respectively;

(d) E¥,(X) =1,,0,(Y), EX0,(Y) = A, ¢,(X).

For an elementary reference, see Naylor and Snell (1982), Sections 6.11 and
6.14, and also B & F (Section 5.3). As a corollary, we obtain that not only are
the two sets of transformations orthogonal (uncorrelated) within themselves,
but it also holds that

(%) (6:(X),60,(Y)) = E[6,(X)0,(Y)] = 2,8,

as may be seen by a routine manipulation with the conditional expectations
EX or EY. Thus, the singular values are the correlations between matched
pairs of transforms (which implies |A,,| < 1), while all other pairs are uncor-
related. This justifies the terms functional canonical correlations for the
singular values A,,, and functional canonical variates for the corresponding
transforms.

The singular value decompositions which correspond to these functional
canonical correlations and variates can be written as follows:

E*9(Y) = L (0(Y), dn(X))d(X),

m

E'$(X) = X (d(X),0,(Y))0,(Y).
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For the subsequent sections we should comment on the role of centering in
the definitions of the spaces H(X) and H(Y). As far as the optimization of
correlations is concerned, one must eliminate constants, but for the eigenprob-
lems, we may feel free to ignore this artificial condition as long as we realize
that the constants will always appear as singular transforms with singular
value A = 1 and hence should be discarded. The remaining eigensolutions will
be orthogonal to the constants, i.e., centered. As we will concentrate on the
singular value problem and consider the ALS-ACE optimization as the derived
problem of picking the (second) largest singular value and its transforms, we
may as well neglect centering in practical computations. Thus, from now on we
assume that A, = 1 is the first singular value with ¢, =1 and 6, = 1 as its
eigenfunctions.

3. The singular value decomposition for bivariate distributions.
While the previous section was concerned with a singular value decomposition
for conditional expectation operators, the present section deals with an equiva-
lent singular value decomposition for the underlying bivariate distribution, as
described by Lancaster (1958, 1969, Chapter 6, Section 3). This decomposition
will show that the two sets of eigenfunctions ¢,, and 6,, in general capture all
dependence between the variables X and Y. The derivation has the flavor of a
null hypothesis calculation because we are to consider the Radon-Nikodym
derivative

QX,Y(dx,dy)
Qx(dx) X Qy(dy)’

which may be viewed as the density of the actual distribution @y y w.r.t.
independence. This function is constant 1 (@4 X Qy-a.s.) iff X and Y are
independent; hence, deviations from constancy can be seen as indications of
dependence. For the above definition of f(x,y) to make sense, we need
Qx, y(dx, dy) to be absolutely continuous w.r.t. @x(dx) X @y(dy), an assump-
tion which is not always satisfied. Cases not amenable to this approach include
deterministic dependences such as X = Y a.s. However, the common situation
where both @y y and Qx X @y have densities gy y(x,y) and gx(x)gy(y)
w.r.t. a common product measure A(dx,dy) on x —y space (usually the
Lebesgue measure in the plane) is covered by

f(x’y) =

qX,Y(x”y)

ax(Dar(y) "

f(x,y) =

Another useful interpretation of f(x,y) is as a kernel of both conditional
expectations, not w.r.t. Lebesgue measure, but the marginal distributions:
EX~*h(Y) = E[f(x,Y)h(Y)], E"~g(X) = E[ f(X,)g(X)].

Continuing in the spirit of a null hypothesis calculation, one expands
f(x,y) in a complete set of @y X @y orthonormal functions. For this expan-
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sion to make sense in Ly(@x X @y), one assumes

J[F(2,5)*Qx(dx)Qy (dy) <,

which in terms of densities reads as

dx, Y( :y)
U gx(x)qy(y) Mde, dy) <,

i.e., assumption 5.4 of B & F. This is a common condition to assure that both
conditional expectations are Hilbert—Schmidt operators, and it implies that
both of them are compact. The Hilbert—Schmidt property is also equivalent to
the statement that the sum of the eigenvalues of EXEY as well as EYE¥ is
finite [Jorgens (1982), Section 6.6]. As for the expansion of f(x,y), it is natural
to use the functions ¢, ,(x,y) = ¢,(x)6,(y), I,m =0,1,2,..., since they
form an orthonormal system w.r.t. the product measure @y X @y. The L,
expansion

Fxy) = % conbi(x)0,(3)

I,m=0

simplifies due to property (*) of the preceding section:

= fff(x,y)¢z(x)0m(y)Qx(dx)Qy(dy)

= f/(ﬁl(x)f)m(y)QX’Y(dx,dy)
= E[$,(X)0,(Y)] =A,,8; .-

Recalling our convention ¢, = 1, §, = 1 and A, = 1, we thus obtain:

ProposITION 3.1. If the Radon-Nikodym derivative Qx y(dx, dy)|Qx(dx)
X Qy(dy) exists and is square-integrable w.r.t. Qx X Qy, then the following
expansion holds in the L(Qx X Qy) sense:

f(5,9) =1+ T 4u0n(2)0n().

In statistics, this result was introduced by Lancaster (1958, 1969), but the
special case where the transformations dre orthogonal polynomials (Section 7)
has been considered by Barrett and Lampard (1955) earlier in problems of
noise and nonlinear devices; see also Leipnik (1959). In functional analysis,
this expansion has an older history which goes back at least to Schmidt’s
(1907) work on integral equations. The expansion may justifiably be called a
singular value decomposition (svd) of the bivariate distribution @y y(dx, dy).
It is at the root of correspondence analysis of the French school [Lebart,
Morineau and Warwick (1984), Section 2.4., equation 39; and Greenacre
(1984)], when applied to discrete variables and estimated from data, but
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so-called “continuous correspondence analysis” [Naouri (1970)] is exactly the
population case covered by the above proposition. For a more careful treat-
ment of bivariate (possibly nondiagonal) expansions under weaker conditions,
see Cambanis and Liu (1971).

We indicate some connections of the ‘“‘density w.r.t. independence” f(x,y)
with some related notions which have a history in statistics. Rényi (1959)
introduces what he calls ‘““mean square contingency’’:

1/2

C(X,7) = | [[((x.9) = D*Qx(d)Qy(d)

The bivariate distributions with finite mean square contingency are exactly the
ones with iterated conditional expectations of the Hilbert—-Schmidt type.
Clearly, C(X,Y) is a reasonable measure of dependence since it vanishes if
and only if X and Y are independent, in contrast to the Pearson correlation
for which the same statement holds only under additional assumptions such as
normality. Since the expectation of f(x,y) under independence is 1, C(X, Y)?
may also be considered as the variance of f(x,y) under independence. It
therefore becomes

C(X,Y)* = [[f(x,5)*Qx(dx)Qy(dy) — 1,

which, written in this form, is also known as Pearson’s #? functional for the
measures Qyx y and @y X @y [see Lancaster (1969), Chapter 6, Sections 1 and
3]. The mean square contingency specializes to the y? functional for discrete
random variables:

_y [ax,v(%:9;) = ax(x)ay(3)]’

C(X,Y) = ax(x;)qy(y;)

bk

where x; and y; are the discrete values taken on by X and Y, respectively, and
AM(dx,dy) is counting measure. The singular value decomposition for f(x,y)
also results in a decomposition for the C(X, Y)? or ¢ functional:

C(X,Y)"=¢>= ¥ 22,
m=1

The relevance of the above statements for ALS-ACE consists of the fact
that ALS-ACE extracts the most significant “rank 1" term ¢,(x)8,(y) in the
expansion of the function f(x,y) — 1, ‘which measures pointwise deviation
from independence. ALS-ACE also extracts the maximal squared correlation
as the dominant term in the decomposition of the mean square contingency,
which is a global measure of dependence.

The most basic point of this section is the interpretation of population
ALS-ACE as a comparison of a bivariate distribution with the null hypothesis
of independence. This view prepares the ground for phenomena which would
appear anomalous in the original interpretation of ALS-ACE as a regression
tool.
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4. Distributions of finite rank. We move the focus from generalities to
some distributions which are accessible to finite-dimensional linear algebra,
namely, mixtures of a finite number of product measures:

N

Quy= T Q¥ x Q¥

i=1

N
ai>O,Zai=1.

i=1

To fix notation, we introduce the associated joint, marginal and conditional

densities:
N
ax,v(%,5) = X ;,qP(x)q¥(y),
i=1
N N
ax(x) = ¥ a,q9(x), qy(y) = L a;:q(y),
i=1 i=1
N (t)( ) )
QY|X(y|x) =Y a a¥(y),
21 Tax(x)
N (i)
G () = T a o2 gy,
i=1 4y\Y y)

The ‘““density with respect to independence’” becomes:

N (l) (1)
fry) =3 a ¥(x) ¢¥'(y)

1 tax(x) av(y)

This mixture representation resembles very much the svd of Section 3, the
difference being that the component functions are not orthonormalized but
have to be nonnegative. As in the previous section, we assume that f(x,y) is
square integrable w.r.t. Qx X @y, which implies that the components
q(x)/qx(x) and q§(y)/qy(y) are elements of Ly(Qx) and L,(Qy), respec-
tively. The spaces spanned by these two sets of functions or variables.

a9(3)| ) |
2l o, 1,...,N},
Y

are the images of the conditional expectation operators EX and E?Y, respec-
tively, as may be seen from the form' of the conditional densities above.
Finding the svd of the joint distribution therefore reduces to a problem of
finite-dimensional linear algebra. The number of nontrivial terms in the svd is
N — 1 rather than N, since the constants are still part of the above spaces:

N q¥(x) NooaV(y)

Lz =L La T

i=1 qX(x) i=1

We may then eliminate them by considering the N — 1-dimensional spaces of
centered variables.

1,...,N} and span

span {
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ProPOSITION 4.1. The singular value decomposition
N-1

f(2,9) =1+ ¥ 2,6,(2)6,(y)
m=1

of a finite mixture of product measures
N

Qx y= Y a,QY x QY

i=1

can be obtained from a canonical correlation analysis of the two spaces

O(x

an M—1i=1,...,N—1 ,
QX(X)
@)
QY(Y) .

span -1i=1,...,N-1
QY(Y) }

according to Section 2, using Qx y as joint distribution of the variables X
andY.

For a proof we only have to note that these variables are indeed centered:
[ 29(X) W)\
gx(X) qy(Y)

)=1 and E O

The special case N = 2 can be solved explicitly. The examples to be consid-
ered in the next section are examples of such ‘“rank 2 distributions.” In their
svd, there is only one nontrivial term left:

f(x,9) =1+ A¢(x)6(y),

and the above spaces of centered variables are one-dimensional. Therefore, any
one of the two standardized elements of these spaces can serve as an eigen-
transform.

ProPOSITION 4.2. The ALS-ACE transforms of a mixture of two product
measures Qx y = (1 — )QY X QY + aQP X QP are given by

o(x) o W) 4R() —¢R(x)
qx(x) (1-2)qgP(x) + ag(x)’

o0y) o w0 o avO) e
RN C)) (1= a)gP(y) + aqP(y)

The transform ¢ is determined by the marginal distribution of X regardless of
the mixture components in the marginal distribution of Y, and vice versa for 6
and Y.
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ReEMARK. Initially, it may seem surprising that knowing the marginal
distribution of X in terms of its mixture components allows one to infer the
optimal transform ¢, irrespective of the marginal distribution of Y. This fact
by itself opens up the possibility of constructing ‘‘anomalous” situations,
which is the program of the next section.

5. Anomalies of ALS-ACE on binary mixtures of independent
sources. Binary mixtures of product measures (which we call mixtures of
“independent sources’’) give us a scenario for two very different situations for
ALS-ACE artifacts: (1) clusters and (2) certain types of heavy tails. Using
normal distributions as building blocks, we can mix standard normals with
centers —u and +u, respectively, to obtain a simple illustration for clusters.
Again using normal distributions only, we arrive at an example for heavy tails
by a contamination model: Mix two normals centered at the origin, a fraction
1 — a with marginal standard deviation 1.0, and a fraction a with a marginal
standard deviation o > 1. In what follows, we denote by (¢) =
(27)~1/2 exp(—t2 /2) the univariate standard normal density. With Proposition
4.2 in mind, we can ignore what the mixture components of the Y distribution
are and restrict our attention to the variable X alone since its transformation
is independent of the Y components.

Location mixtures: Clusters. We consider only clusters of equal weight,
ie., @ = 0.5, and we leave the components with unit standard deviation:

P (x) =d(x —p), q9(x) =v(x +n).
The optimal transform calculated according to Proposition 4.2 is

O(t//(x—u)—t/f(xﬂt)
p(x —p) +(x+p)

An example with shift 4 = 2 is shown in the left half of Figure 1, where both
the population transform and an estimate from a sample of size 500 are
plotted. The implementation of the ACE algorithm supplied by B&F was
used.

Qualitatively, ¢ approaches a step function as u — o, with a jump from —1
to +1 at ¢ = 0. We could have constructed examples with nonoverlapping
clusters which lead to exact step functions, e.g., a mixture of uniform distribu-
tions on the unit intervals [—1, 0] and [0, + 1]. With clusters we encounter a
type of deviation from independence which is nonstandard from the point of
view of regression analysis, but nevertheless, ALS-ACE as a detector of any
type of dependence picks them up. We have seen clustering effects in real data,
most recently in some market survey data at Bell Laboratories where ACE
pinpointed real but visually undetectable clusters.

#(x) = tanh(ux).
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Fic. 1. Optimal tranforms for binary mixtures of independent sources. Left: location mixture,
50% N(2,1) and 50% N(—2,1), n = 500. Right: scale mixture, 50% N(0, 1) and 50% N(0, 100),
n = 500.

Scale mixtures: Mass concentrations and heavy tails. We pick a fraction
1 — « from a standard normal,

a%(x) = ¥(x),

and another fraction « from a centered normal with standard deviation o > 1:
q9(x) = y(x/0) /0.
We obtain as optimal transforms (up to a sign change):
Y(x/0)/0 = (x)
(1 -a)¢(x) + ay(x/0) /0’

The right half of Figure 1 shows population transforms and estimates for a
sample of 500 cases with @ = 0.5 and o = 10. The difficulty in capturing the
features of the population transform may partly be attributed to boundary
effects in the underlying smoothers. This is hard to avoid as the variance-bias
trade-off implicit in smoothers is tested the most near boundaries.

Major features of the transforms are on the one hand the steep valley
caused by the concentration in the center, and on the other hand the asymp-
tote which is due to the fuzzy scatter. This example is somewhat related to the
effect noted by Pregibon and Vardi (1985) who show that mass concentrations
in arbitrary locations can induce arbitrary values between +1 and —1 in the
optimal correlation. Essentially, this is possible by choosing transformations
which separate the mass concentration from its surroundings, very much like
the valley and the asymptote do in the present example.

The scale mixture example would allow another interpretation as well: One
could consider the fuzzy scatter as a heavy tail (especially if the fraction «
were chosen smaller). One might then speculate that heavy tails have a
flattening effect on the wings of the transforms much as the asymptotes in the

é(x) «
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FiG. 2. Scatterplots of binary mixtures of independent sources. Top left: y = location mixture,
x = location mixture. Top right: y = location mixture, x = scale mixture. Bottom left: y = scale
mixture, x = scale mixture [y center N(0,1) matched with x center N(0,1)]. Bottom right:
y = scale mixture, x = scale mixture [y center N(0, 1) matched with x tail N(0,100)].

current example. We will see in Section 12 that this expectation is wrong:
There we will give an example of much heavier tails with parabolas apparently
being the optimal transformations. A more correct interpretation would be
that the minimum at the origin and the high plateau in the wings indicate two
different sources, one dominant at the origin and the other out at infinity.

By Proposition 4.2, we were able to discuss these examples using just one of
the two marginals. This allows the curious possibility that the type of mixture
in the X marginal may be different in the Y marginal; e.g., the two mixture
components may differ in location in X while they differ in spread in Y; or,
while both variables are scale mixtures, one can match up the central spike
component in one variable with the flat wing component in the other. The four
scatterplots of Figure 2 illustrate the shapes of samples which can be obtained
by matching location and /or scales mixtures in all possible ways.

6. Symmetric bivariate distributions. We simplify the singular value
decomposition (Section 3) in the case of symmetry, i.e., when the laws of
(X,Y) and (Y, X) are the same. These simplifications were first exploited by
Sarmanov (1958) in probabilistic terms, although it is really just a special case
of what is known in analysis as Mercer’s expansion of symmetric kernels.



ALTERNATING LEAST SQUARES AND ACE 1047

The assumption of symmetry implies that the ranges of X and Y are the
same (usually, but not necessarily R) and that X and Y have the same mar-
ginal distribution Qy(dt) = @y (dt) = Q(dt). We can then consider the condi-
tional expectation operators E*=*h(Y) = [PX=*(dy)h(y) and EY=7g(X) =
JPY=¥(dx)g(x) as transition probabilities between the ‘“same” spaces H(X) =
Ly(Q) and H(Y) = L,(Q), and, as such, they are identical: EX = EY = P,
Equivalently, we may consider P as an operator in, say, L,(Qy) and define it
as follows.

PRrROPOSITION 6.1. Assuming that the distribution of (X,Y) is symmetric,
the operator P: L,(X) — Ly(X), g(X) - P(g(X)) defined by P(g(X)) =
EXg(Y) is symmetric, and all of its eigenfunctions are also eigenfunctions of
EXEY. The eigenvalues of the latter are the squares of the eigenvalues of P. If
the “density w.r.t. independence” f(x,y) is square integrable w.r.t. @x X Qy,
the svd for the distribution @ x.y of (X,Y) can be written as

Fxy) =1+ % Apbn(x)n(y),
m=1

where the transforms ¢,, form a complete set of orthonormal eigenfunctions
for P and the eigenvalues A,, can have arbitrary signs.

For general bivariate distributions, it makes sense to assume A,, > 0 as
there does not exist a more natural way to choose between ¢,, and —¢, and
same for 6,,, but for symmetric distributions it is more convenient to adopt the
following convention.

CoNVENTION. We impose ¢,, = 0,, and permit an arbitrary sign in A,
whenever the distribution is symmetric. This convention will hold throughout
this paper.

7. Bivariate distributions with polynomial eigentransforms. We
now describe a method for finding the singular value decomposition of those
bivariate distributions whose eigentransforms ¢,, and 6,, can be chosen to be
polynomials of the same (!) degree. The corresponding singular value decompo-
sition in terms of orthogonal polynomials is called a Barrett-Lampard expan-
sion (1955) in the engineering literature. This case, which will occupy much of
the remainder of this paper, is so important due to its analytical tractability
that Lancaster (1975), equation 3.5, introduces a special term: polynomial
biorthogonality. We adopt the following convention.

CONVENTION. In polynomially biorthogonal situations, we sort the trans-
forms ¢, and 6,, according to polynomial degrees rather than decreasing
(absolute) singular values.
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As a consequence, the transforms ¢,, and 6,, will both be polynomials of
degree m. This convention is independent of and compatible with the one of
the previous section: In symmetric and polynomially biorthogonal cases, both
conventions can be reinforced simultaneously.

Polynomial biorthogonality is a very strong condition which implies that
moments of all degrees exist. Examples with tail weight as heavy as the ¢
distribution are therefore excluded a priori (see Section 12 for this case).

The following proposition is basic for much of the remainder of this paper.
A slightly different form is referred to as Brown’s criterion (1958) in the
engineering literature on nonlinearities and noise. See also Csaki and Fischer
(1960) in the theory of maximal correlations.

ProposiTION 7.1. The bivariate distribution Qx y of (X,Y) is polynomi-
ally biorthogonal if and only if the following conditions hold:

(i) The conditional moment E[Y ™| X] is a polynomial of degree < m in X
for all m, and the same holds for E[X™|Y]in Y.
(ii) The powers X™ and Y™ form complete systems in the respective spaces

L,(Qx) and Ly(Qy).

The condition of completeness of the system of powers is generally not a
problem. For probability measures with bounded support in R, polynomials are
dense in L, due to (a) the Weierstrass approximation theorem (on a finite
interval, any continuous function can be approximated uniformly by polynomi-
als), and (b) the fact that continuous functions are dense in L,. For probability
measures with unbounded support, we may use techniques similar to those
used in moment problems based on characteristic functions.

LEmMA 7.2. Either of the following are sufficient conditions for complete-
ness of the system of polynomials w.r.t. a given distribution:

(i) The support of the distribution is bounded in R.

(ii) For the even moments M,, = E[ X?"] we have lim sup My/*"/n < .

As an example for (i), for the even moments of the standard normal
distribution M,, =1-3:---(2n — 1), the above lim sup is 0, which proves
the well-known completeness of the Hermite polynomials w.r.t. the normal
distribution.

Condition (ii) must be standard. One has to show that f = 0 a.s.if f € L,(Q)
and E[X"f(X)]=0for all »n =1,2.... This can be done by introducing the
finite signed measure du(x) = f(x) dQ(x) and adapting the proof of Feller
(1971), XV.4, 4.14, which applies not only to probability measures.

The next proposition provides a simple rule for calculating eigenvalues for
polynomially biorthogonal distributions: '

PropPOSITION 7.3. If a bivariate distribution has the polynomial biorthogo-
nal property, the eigenvalues A2, are the products of the leading coefficients in
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the polynomials given by the conditional moments E[Y ™ X] and E[X™|Y]. If
the distribution is symmetric, A2, is the square of the leading coefficient of
either polynomial.

This is a simple consequence of the fact that EXEY as a mapping of L,(Qx)
onto itself is in triangular form with regard to the basis of monomials X*, and
the diagonal elements are exactly its eigenvalues. O

Here is an example of polynomial biorthogonality to illustrate the applica-
tion of 7.1-7.3: Define what we may call a triangular bivariate beta distribu-
tion by the following density:

a+bd e
Qx,y(x,5) =mx“ y forx,y>0and x +y <1,

and 0 otherwise. [ B(a, b) is the beta function; see A& S, 6.2.] Our standard
procedure, which will be repeated several times throughout this paper, consists
of:

1. finding the conditional distributions and checking whether the mth condi-
tional moment is a polynomial of degree less than or equal to m [condition
(i) of Proposition 7.1];

2. finding the marginal distributions and their orthogonal polynomials (which
should form a complete system along Lemma 7.2); and

3. obtaining the eigenvalues A%, via Proposition 7.3.

In this instance, the conditional distribution of Y given X for the triangular
bivariate beta is (1 — X)B(b, 1), where B(b, 1) stands for the univariate beta
distribution with parameters b and 1 (A& S, 26.1.33). With this and a dual
statement for the conditional distribution of X given Y, we obtain

E[y"|X] =

m m _ a m
b+m(1 X)), E[X™Y] a+m(1 Y)",
which are indeed polynomials. The marginal distribution of X is B(a, b + 1),
which has the Jacobi polynomials with parameters p =a + b and ¢ = a on
the interval (0, 1) as orthogonal polynomials and hence eigentransforms ¢, of
X (A&S, 22.2.2). Similarly, we get Jacobi polynomials with p = a + b and
qg=>b for 6,. The leading coefficients in the conditional moments are
(=D™b/(b + m) and (—1)"a/(a + m), which by Proposition 7.3 give

. ab
A = G s m)bam)

The maximal value is attained for m = 1, i.e., the linear transformations of X
and Y. In other words, for these variables the raw correlation is the maximal
correlation, and no nonlinear transformation is needed to attain it.

From a practical point of view, examples such as this one remind us that an
ALS-ACE analysis resulting in linear optimal transformations does not neces-



1050 A.BUJA

sarily indicate a satisfactory error structure. For example, the conditional
distribution of Y given X [which is (1 — X)B(b, 1)] has inhomogeneous vari-
ance, and is also skewed except for & = 1 (see A& S, 26.1.33). Marginal
transformations are clearly unable to rectify the situation.

A further and related conclusion is that ALS—-ACE does not necessarily
attempt to transform to normality, as one might initially expect, and in this
light the developments in Kendall and Stuart (1979), Section 33.44, seem
somewhat inappropriate in their suggested informal interpretation of the fact
that for bivariate normal distributions the untransformed variables attain the
maximal correlation. The unsuspecting reader might conclude that this prop-
erty is peculiar to the bivariate normal, although this is not spelled out
directly. In contrast, the bivariate triangular beta distribution is a first exam-
ple in which the maximal correlation is attained without transformation as
well.

Many other examples of polynomially biorthogonal distributions appear in
the literature. Some sources are Lancaster (1969, 1975, 1983), Eagleson (1964,
1969), Griffiths (1969), McFadden (1966), Lee (1971), Rényi (1959), Sarmanov
(1963) and the references therein. We will not pursue this topic in full
generality but focus in the next sections on circular and elliptic distributions
which are also polynomially biorthogonal.

8. Circular bivariate distributions. We apply polynomial biorthogo-
nality to some circular distributions and derive a few facts which have implica-
tions for the performance of ALS-ACE in nonstandard cases of stochastic
dependence. We also give a characterization theorem due to McGraw and
Wagner in order to indicate how pervasive and/or limited the parabolic
ALS-ACE transforms are in noisy data.

Nonstandard stochastic dependence and its effects on ALS-ACE. Fowlkes
and Kettenring (1985) and Buja and Kass (1985) in their discussion of B& F
noticed an anomaly in the behavior of ALS-ACE when applied to null situa-
tions. The transforms produced by ALS-ACE in these situations looked like
parabolas. We will show here and in the next section why this is a systematic
effect.

We start with the uniform distribution on the unit disk x? + y? < 1, which
served in Buja and Kass (1985) as a simple example of an unstructured or null
situation with raw correlation 0 and yet stochastic dependence. This distribu-
tion is symmetric and also polynomially biorthogonal: The conditional distri-
bution of Y given X is uniform between — V1 — X2 and + V1 — X?; hence,
for odd powers the conditional moments vanish, and for even powers we obtain

(%) E[y>X] =1 -X>"/(2m + 1),

which are indeed polynomials. The eigentransforms are the orthogonal polyno-
mials with regard to the marginal distribution of X which has density 27~ 1/2
(1 — x)/2; i.e., they are the Chebyshev polynomials of the second kind (A & S,
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Fic. 3. Optimal x and y transforms of the uniform distribution on the unit disk. The y variable on
the right was entered first in the ACE iterations.

22.2.5). For even order, the singular values are the coefficients of the largest
power in (*) and for odd order they vanish:

A2m=(_1)m/(2m+ 1)9 A2m+1=0'

The absolute largest singular value is obtained for order two: p .. = |A,| =
1/3, a figure that may appear large, given that we are facing what is com-
monly seen as a null situation.

Simple simulation experiments confirm that this qualitative behavior of
optimal transformations is reflected in finite-sample applications of ALS-ACE.
Figure 3 shows transformations obtained from B & F’s ACE implementation
on a pseudorandom sample of 500 points drawn from a uniform distribution
on the unit disk. The agreement between population and sample transform is
not great, but the theoretically predicted parabolic shape is recovered by the
sample ACE transforms. ACE seems to favor the variable which enters the
iterations first: The Y transform gets considerably more variance than its
counterpart.

The effect discussed here is not just of academic value: Parabolic transfor-
mations as shown in Figure 3 do not only appear in simulations but real data
as well. The author has encountered some multivariate data of defects in
newborn infants and alcohol consumption of mothers where ACE produced a
relatively low squared correlation of about 10% and a parabolic transform in
one of the quantitative variables—a strong enough hint at a null finding.

In a sense to be made precise in Section 9, the uniform distribution on the
unit disk is halfway between independence represented by the circular normal
distribution and extreme dependence represented by the uniform distribution
on the periphery of the unit disk (hence a degenerate measure with support on
the unit circle). This latter case is almost deterministic in that the conditional

distribution of Y given X puts equal mass on only two points: — V1 — X2
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and + V1 — X?. Thus the conditional moments are easily computed once
again, leading to polynomials in X once more:

E[y*X] =(1-Xx*".

The eigentransforms are the orthogonal polynomials with regard to the
marginal distribution of X which has density (1/7)(1 — x2)~/2; i.e., they are
the Chebyshev polynomials of the first kind (A &S, 22.2.4). The singular
values are A,,, = (—1)™, that is, only three different values, each with infinite
multiplicity:
Aogmi1 = 0, Agm = +1, Agmie = — L.

This reflects the trivial fact that the deterministic relation Y2 =1 — X2
entails an infinity of derived relations Y 2™ = (1 — X%)™, all being determinis-
tic, hence adding to the multiplicities of the singular values + 1. Deterministic
features in a distribution which can be represented by a relation of the form
g(Y) = f(X) in general lead to infinite-dimensional eigenspaces for the ex-
tremal correlations +1 due to the possibility of transforming the relation in
trivial ways such as h(g(Y)) = h(f(X)). This effect, too, is not merely of
academic interest: Real data can come close to being deterministic when the
optimal correlation is close to 1. ALS—ACE may then be ill determined, and
diagnostics are required in the form of additional values Ay, A, ... in order to
detect the problem.

Near multiplicity in near-deterministic bivariate distributions also provides
an explanation for the behavior of ALS-ACE on the phone-call data presented
by Fowlkes and Kettenring (1985). Although these data have two predictors,
they behave more like a one-predictor case as one of them has very low
explanatory power. See the discussion in Breiman and Friedman’s rejoinder
(1985b). Only in the presence of more than one strong predictor does a
near-deterministic dependence not necessarily result in a proliferation of
derived dependences. This is why data with high optimal correlations and only
one essential predictor represent situations which are most vulnerable to ill-
determined ALS-ACE transformations.

Parabolic optimal transformations: A characterization theorem by
McGraw and Wagner. It is a coincidence that some very strong results
relating to parabolic transformations are implicit in the engineering literature
in a paper by McGraw and Wagner (1968). These authors dealt with elliptically
symmetric distributions in the theory of noise and nonlinear devices where
they showed in effect that any circular second-order distribution with quadratic
eigentransforms belongs to one of four families of distributions. It should be
noted, however, that this theorem does not yet prove that the quadratic
transformations are the optimal ones. For each of the four families, one has to
check optimality of the quadratic eigenvalue separately. We will perform some
of these checks below in Sections 9 and 12.
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THEOREM 8.1. Any circular second-order distribution which has quadratic
eigentransforms is one of the following (if suitably scaled):

(1) a bivariate standard normal distribution, for A, = 0;
(ii) a degenerate uniform distribution on the unit circle, for A, = —1;
(iii) a member of the bivariate Pearson Type II family for —1 < A, < 0:

ax y(x,) O[(1—362—3’2)a_1, a>0,

for x2 + y2 < 1, and 0 otherwise;
(iv) @ member of the bivariate Pearson Type VII family for 0 < A, < 1:

ax,y(x,y) @ (1 +2° +y2)a+1 ) a>1.

The Pearson Type II family is dealt with in Sections 9 and 10 and the
Pearson Type VII family in Section 12. The latter is essentially a set of
bivariate ¢ distributions with continuous degrees of freedom (df = 2a). An
important aspect of Theorem 8.1 is that moments higher than the second do
not have to exist, and that Brown’s criterion [Proposition 7.1(i)] of invariance
of polynomial spaces under conditional expectations is assumed only for order
2. This makes it possible to include ¢ distributions in the characterization,
even though they have only finitely many existing moments.

The proof of Theorem 8.1 is based on the fact that circular symmetry links
the marginal characteristic function {(¢) = E[expiX¢] and the bivariate charac-
teristic function by Elexpi(Xs + Y¢)] = {(r), where r = (22 + y?)'/2. One can
then reexpress the eigenequation E[(Y?2 — 02)|X] = A,(X? — ¢?) in terms of a
second-order differential equation in {(#) which characterizes exactly the four
families of distributions listed in Theorem 8.1.

The eigenvalues A, in Theorem 8.1 indicate that the tail weight determines
the sign of the singular value: Lighter than normal tails (Type II) give negative
values, while heavier than normal tails (Type VII) lead to positive ones. The
way optimizing algorithms for sample versions of ALS-ACE work, negative
optimal correlations are impossible since the sign gets pushed over to one of
the transforms. Thus, in sample ALS-ACE, positive singular values are indi-
cated if the parabolic transformations have the same orientation (Figure 5),
and opposite orientation if the singular values are negative (Figure 3).

It is remarkable that the Pearson Type VII family allows A, and hence
maximal correlation arbitrarily close to + 1. Strangely, one can achieve eigen-
values A, > 1 by removing the second-order restriction. That this is not
contradictory will be shown in Section 12.

9. Circular Pearson Type II distributions and their limiting cases.
The circular Pearson Type II distributions [Johnson and Kotz (1972), Chapter
42, Table 3] form a parametrized family which connects the circular bivariate
normal (independence) with the degenerate uniform distribution on the circle
(deterministic dependence), while the uniform on the disk is an intermediate
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case between these extremes. All distributions of this type are polynomially
biorthogonal, and parabolas are the optimal transformations for all members
of this family. We consider for simplicity only those members which are
concentrated on the unit disk x2 + y2 < 1 with a density given by
a-1
ax,y(x,y) =m(1—x2—y2)+ ,  a>0,
where we use (---)%"! short for (---)2"! if the value in parentheses is
positive, and 0 otherwise. [ B(a, b) is again the beta function; see A & S, 6.2].
We will abbreviate these distributions by the symbol II,(a), where the sub-
script 2 indicates a bivariate situation. In the engineering literature, McFad-
den (1966) analyzed these distributions from the point of view of series
expansions. Some examples and limiting cases are the following:

1. the uniform on the unit disk, obtained for a = 1;

2. the degenerate uniform on the unit circle, which does not have a density
but is obtained as the limit for a — 0;

3. the bivariate standard normal distribution, which is the limit for a — «
after suitable scaling, e.g., V2a I1,(a) — bivariate standard normal in the
sense of convergence of densities:

1 x? +y?
2amB(1,a) 2a

For the marginal and conditional distributions we introduce the univariate
Pearson Type II distributions, denoted by II(a):
- 1 2y2-1
q(x) B(%,a)(l x%). 7, a>0.
The moments of II,(a) vanish for odd orders while for even order m = 2k they
are B(k + 3,a)/B(3, a). The systems of complete orthogonal polynomials are
of the ultraspherical or Gegenbauer type (see A& S, 22.2.3; A& S use the
parameter @ = a + 3).

The marginal distribution of the bivariate II,(a) is a univariate II,(a + 3).
However, not all univariate II,(a) distributions are marginals of bivariate II,
distributions: This is the case only for a > 3, where a = ; stems from the
uniform on the unit disk and a > ; from the bivariate II, distributions. The
conditional distribution of Y given X is V1 — X2II,(a). Polynomial biorthogo-
nality follows immediately according to Proposition 7.1: Odd order conditional
moments vanish, while

a—1

1 1
- (2 4 a2
Py 27Texp( 2(x +y ))

+

B(k+ 3,a)

B(3,a)

E[Y?*X] = (1 - X»)"E[1,(a)*] = (1-x%"
is a polynomial of order 2k. We summarize: '

ProposITION 9.1. The bivariate circular 11,(a) distribution is polynomially
biorthogonal. The eigentransforms are the Gegenbauer polynomials of order a,
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and the singular values are
B(k + 1, a)
)\(5113_,_1 =0 and A(gk) = -F(é,—a)—( —l)k.

Using some standard formulas for the beta function (A & S, 6.2.2), one can
rewrite the nontrivial singular values as
o TPy
@ Tarrrnr) Y

which allows us to analyze their qualitative behavior as follows.

a)

PROPOSITION 9.2. The absolute singular values |X§)| are
(i) strictly monotone decreasing as functions of a for fixed k > 0,
and [X§)| 10 fora— o,
(ii) strictly monotone decreasing as functions of k for fixed a > 0,
and |X$)| L0 for k-,

The proof of monotonicity is probably standard, but a simple method would
use logarithms and derivatives, thus deferring the problem to the Digamma
function (A & S, 6.3) which is known to be monotone increasing on the positive
reals. The limit at « can be obtained using Stirling’s formula. O

From Proposition 9.2 follow some sensible conclusions concerning the be-
havior of ALS-ACE:

CoroLLARY 9.3. (i) For a > 0, the optimal eigentransforms are parabolas.

(ii) For a — 0, we obtain the singular values of the degenerate uniform on
the unit circle, and the Gegenbauer polynomials specialize to the Chebyshev
polynomials of the first kind.

(iii) For a — «, we approach the singular values of the bivariate standard
normal, and, if suitably scaled, the Gegenbauer polynomials converge to the
Hermite polynomials.

The first statement follows from Proposition 9.2(ii) and the second from
Proposition 9.1. For the third, one uses the fact that independence is equiva-
lent to A,, = 0 for m > 0, so it follows from Proposition 9.2(i). The remarks
regarding the eigenpolynomials are lifted from A & S (22.2.3, 22.2.4, 22.15.6).

’ O

10. Elliptic bivariate distributions with polynomial eigentrans-
forms. This section presents theorems for polynomially biorthogonal elliptic
distributions. The two main results which we reconstruct here with ALS-ACE
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in mind are (1) that polynomial biorthogonality carries over from circular to
elliptic distributions, and (2) another characterization theorem [due to Davison
and Grunbaum (1981)], which points out once more the unique role played by
the bivariate Pearson Type II distributions and their limiting cases. Davison
and Grunbaum obtained their result in the context of computer-aided tomog-
raphy independently but much later than McGraw and Wagner (1968). We will
show how to reduce the Davison-Grunbaum theorem to the one by McGraw
and Wagner.

Elliptic distributions may be conveniently generated from circular distribu-
tions by suitable linear transformations. For instance, if we assume a circular
distribution for (X', Y’), we may define

(%) X=X and Y=pX +1-p%Y,

which yields an elliptic distribution for (X,Y) with (raw) correlation p. For
later (Section 12) we observe that p as a measure of ellipticity makes sense
even if X and Y do not have second moments. For elliptic distributions, the
identity transforms are always eigentransforms with singular value A = p.

In what follows, it is important to remember that the marginal distributions
of X' (=X), Y and Y are all the same because of the assumed circular
symmetry in the law of (X', Y").

ProrosiTioN 10.1. () If the circular variables (X', Y') have conditional
moments up to degree m, and if the polynomial subspaces up to degree m in X'
and Y', respectively, are invariant under conditional expectations, then the
same holds for all derived elliptic variables (X,Y) generated by (*), regard-
less of the ellipticity p.

(i) In particular, if the circular variables (X', Y') are polynomially
biorthogonal, so are the elliptic variables (X,Y).

For a proof, calculate once more the conditional moments for the variables
X and Y, observing that for the circular (X', Y’) the conditional expectation of
odd-degree monomials vanishes:

E[y™|X] = E[(pX’ + /1= p2 Y’)m‘X’]

= f (’I:')pm—k mkxfm—kE[YIk,X/]
k=0 .
[m /2]

= X (I )omrk(1 - o) xRy x].
k=0

This is a polynomial of degree m in X' since E[Y'**|X'] is a polynomial of
degree 2k. O

ProposiTiON 10.2. In an elliptic polynomially biorthogonal family of dis-
tributions, the eigenpolynomials are the same, regardless of the ellipticity p.
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The singular values are functions of p:

[m/2]

_ m m—2k1_2k2k0.
Am(P) k§0(2k)p (1 —p?) A2,(0)

Thus, we obtain the following systems of polynomials as simultaneous
eigentransforms of elliptic distributions:

1. the Hermite polynomials for the standard normal (A & S, 22.215),

2. the Gegenbauer polynomials of suitable order for Pearson Type II (A& S,
22.2.3),

3. the Chebyshev polynomials of the first kind for the degenerate uniform on
the unit circle and its elliptic siblings (A & S, 22.2.4).

For the Pearson Type VII family, no complete system of polynomials exists,
but finitely many orthogonal eigenpolynomials exist for degrees m such that
X?2m is integrable. In order to derive this, one could have formulated Proposi-
tion 10.2 more carefully similar to part (i) of Proposition 10.1 as follows: If
polynomial subspaces up to degree m are invariant, and if moments up to
degree 2m exist, then there exist orthogonal polynomials up to degree m
which are eigentransforms for all ellipticities. One has to ask for moments up
to degree 2m to ensure that the usual scalar product is defined for polynomials
up to degree m.

Proor ofF ProrosiTiON 10.2. The eigentransforms are the same for all
ellipticities p because they are the orthogonal polynomials w.r.t. the marginal
distributions of X and Y, which are the same for all p. The eigenvalues can be
gotten from the proof of Proposition 10.1 as the leading coefficients in the
polynomials E[Y™|X]. To see this, use Proposition 7.3 again and recall that
the leading coefficient is the 2%th eigenvalue A,,(0) for the circular case p = 0.

]

The following is Davison and Grunbaum’s (1981) characterization theorem
which shows that ellipticity together with shared eigentransforms across all
correlations p is so strong a condition that it characterizes the II, family
among distributions on the unit disk.

THEOREM 10.3. Make the following assumptions for a circular distribu-
tion:

(i) Its support is contained in the closed unit disk, but not in any smaller
circular disk.

(ii) All the elliptic distributions derived from it have a common set of
eigentransforms independent of the ellipticity p, and these eigentransforms are
continuous on [—1, +1].

Then this is either a 11,(a) distribution for some a, or the degenerate uniform
distribution on the unit circle.
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We can reduce this theorem to that of McGraw and Wagner by showing that
a quadratic eigenfunction exists. To this end, we borrow an idea of Davison
and Grunbaum (1981), page 90, for which we give a proof in probabilistic
language.

LEMMA 10.4. Under the assumptions of Theorem 10.3, we have for the

singular values:

$.(p)
¢,(1)°

An(p) = where ¢ (1) # 0.

Proor. Evaluate the conditional expectation of the ¢, transform of Y =
pX' + \/1 —p?Y given X' (=X) at X' = 1. This is one of the two points
where dependence between X' and Y’ is at its extreme: Given X' =1, we
know that Y’ = 0. To make the argument rigorous, one would have to consider
limits, whence some technical assumptions like the presence of mass arbitrar-
ily close to the boundary of the unit disk, and continuity of the eigenfunctions.
We dispense with the details and simply write:

EX':ld)m(pX' +1/1 - p? Y’) =A,(p)d,(1) =¢,(p)

The first equality follows from the eigenproperty of ¢,, and the second from
the dependence Y’ =0 at X' = 1. Finally, we note that ¢,(1) # 0 since
otherwise ¢,,(p) = A,,(p)¢,,(1) would vanish globally, which is impossible for
proper eigenfunctions. O

Proor or THEOREM 10.3. Since the eigenfunctions form a complete system,
there must exist ¢,, for which (¢,,(X), X?) # 0. We wish to show that ¢, (X)
is a parabola by showing that A, (p) is a quadratic function of p. Lemma 10.4
together with Theorem 8.1 then yields the conclusion of Theorem 10.3 since
among the possibilities listed in Theorem 8.1 only the Pearson Type II
distributions and the degenerate uniform on the unit circle satisfy the assump-
tion regarding support on the unit disk.

To show that the singular values are quadratic in p, we use

(DX + V1 =p2Y'), X% = 1,(p) (b, (X)), X?),
which is a simple consequence of the eigenequation for ¢,,. Since the distribu-

tion of (pX' + {1 — p?Y", X') is symmetric, we get

(On(X), (pX + V1= p2Y) )= 0(0) (B ( X, X

Expanding the left-hand side, we can drop the cross-product term due to
E[Y'|X'] = 0, and solve the equation for A, (p):

(P (X),Y?)
An(p) =p* + (1 - Pz)m- m
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The invariance property of Proposition 10.1(i) is pervasive in the
Donoho-Johnstone (1988) theory of projection pursuit regression (PPR) and
Davison and Grunbaum’s work on tomographic reconstruction (1981). The
special case of the uniform distribution on the unit disk dates back to Logan
and Shepp (1975) and Hamaker and Solmon (1978). The importance of the
normal and Pearson Type II distributions as weight functions in tomography
stems from the following fact: The least squares problem of reconstructing
functions from projections can be block-diagonalized in terms of the Hermite
and Gegenbauer polynomials, and thus reduced to subproblems of lower
dimensionality. This derives from the simultaneous eigenproperties of these
polynomials across all ellipticities.

In the theory of noise and nonlinear devices, eigenproperties of bivariate
distributions have an inherent interest because they allow one to analytically
investigate the covariance functions of nonlinear transforms of certain
stochastic processes [see, e.g., Barrett and Lampard (1955), Nuttall (1958),
Brown (1958), McGraw and Wagner (1968) Cambanis and Liu (1971) and the
references given in these papers]. Nonlinear transforms of stochastic processes
are interpreted as random signals which were subjected to nonlinear, instanta-
neous, memoryless devices.

11. Discussion of some examples of elliptic distributions. The in-
tention in this section is to investigate the dependence of the eigentransforms
and eigenvalues on the ellipticity p for the simplest elliptic distributions and,
as one of the main points, we wish to demonstrate the phenomenon of
discontinuity of ALS-ACE transforms which was described in Buja and Kass
(1985). We consider (1) elliptic normal distributions, (2) uniform distributions
on elliptic disks and (3) degenerate distributions on the periphery of elliptic
disks. Cases (1) and (2) would probably be judged trivial for the purposes of
data analysis, as linear fits seem to summarize the dependence between X and
Y well and no nonlinear transformation can help in any fruitful way. Case (3),
again, is different in that a nontrivial implicit equation is satisfied with
probability 1, but this time we might expect it to represent a true interaction
in general; i.e., the implicit equation is no longer of the form g(x) + f(y) = 0.

Elliptic normal distributions. The circular case amounts to independence
which is always polynomially biorthogonal in a trivial sense due to A,,(0) = 0
for m > 0. To determine the singular values as functions of p, we specialize
Proposition 10.2 making use of the vanishing singular values for p = 0:

An(p) =p™,

which is well-known, see, e.g., Lancaster (1975), equation 4.6. The behavior of
the singular values follows our expectations: As the degree increases, they
decrease to 0 quite rapidly, and as the raw correlation approaches 1, the
correlation of all eigenpolynomials approaches 1. In particular, the linear
transforms or, equivalently, the raw data are optimal for all p, which is a
special case of a theorem by Kolmogorov [see Lancaster (1975), Section 10.4).
For p 11, however, the suboptimal singular values cluster around 1 as well:
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Fic. 4. Switchover point between a linear and a quadratic optimal transform illustrated with y
transforms of two nearby uniform distributions on elliptic disks. Left: approximate parabola.
Right: approximate straight line.

A,(p)11; ie., we encounter badly determined eigentransformations for nearly
deterministic data once again.

Uniform distributions on elliptic disks. We specialize Proposition 10.2 with
Agm+1(0) = 0and A,,(0) = (—1)"/(2m + 1) from Section 8. We carry this out
for m = 1,2 only:

M(p) =p, Aalp) = =35 + 302

The optimal transform is the second-degree polynomial for p beiween 0 and },
and the identity transform for p between i and 1 [Buja and Kass (1985),
Section 2]. The transition from one to the other at p = % is abrupt and
represents a discontinuity in the behavior of ALS-ACE. In the low range of p,
linear dependence is overwhelmed by a peculiar type of (generally uninterest-
ing) circular dependence, while for larger p the more meaningful linear
dependence takes over.

This behavior is real and reflects in finite-sample implementations. For
illustration, we used a single sample from a uniform distribution on a circular
disk to generate elliptic uniform samples for various ellipticities p. We then
applied B & F’s implementation of ACE. As one would expect, the locally linear
smoother used by ACE favors linear transforms over quadratic ones, lowering
the theoretically expected switchover point from ; to about 0.2035 in case of
the data at hand. Figure 4 shows two Y transforms which are recognizable as
approximately quadratic and linear, respectively, at ellipticities of 0.203 and
0.204, narrowing down the switchover point to an interval of size 1073,

Optimal and second suboptimal transforms similar in appearance to a
straight line and a parabola, respectively, appear frequently in real quantita-
tive data. In (possibly unordered) categorical data, however, a related effect is
known to occur quite often as well: If scores of the optimal and second
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second suboptimal transforms ¢,(X) and ¢,(X) are plotted against each
other, one often encounters what is called in the psychometric literature a
‘“horseshoe.” If in the simplest case this can be interpreted as ¢,(X) being
approximately a quadratic function of ¢,(X), this is taken as an indication
that ¢,(X) recovers a good scaling or ordering of the categories of a contigency
table. Schriever (1983) justified this reasoning and related the horseshoe effect
to order and total positivity properties of discrete distributions. With the above
example of switchover from linear to quadratic optimal transforms, however,
we have an indication that the horseshoe effect can go in reverse if the optimal
correlation is low enough. The oscillatory behavior of eigentransforms implied
by the theory of total positivity may still appear, but the eigenvalues may not
be ordered according to increasing number of oscillations.

Degenerate elliptic distributions derived from uniforms on the unit
circle. The singular values are obtained by specializing Proposition 10.2 with
Agm+1(0) = 0, A,,,(0) = (—=1)" from Section 8:

[m/2] m
An(p) = kZ (g,i)p’"‘z’“(l - 2" (=1)* = Re(p + /1 - p?i)
=0

Re(e'™™*) = cos(mrma),

where cos(ma) = p and Re denotes the real part. As a consequence, whenever
ma is an integer, we obtain A,, = +1, and a deterministic relation of the form
either ¢,(X)=¢,(Y) or ¢,(X)= —¢,(Y) holds true (i.e., an algebraic
equation with separated variables). Suitable m’s exist for any rational «, and
in this case there are only finitely many different singular values, each with
infinite multiplicity. For irrational a’s, the sequence (ma) mod2 fills the
half-closed interval [0, 2) densely (with a uniform distribution), but it does not
take on the values 0 or 1. As a consequence the spectrum

{A,, =cos(mma)m =1,2,...}

does not attain its supremum and infimum values +1, and the population
ALS-ACE algorithm fails to converge. The fact that the spectrum has other
values besides 0 as cluster points (« irrational), or has infinite-dimensional
eigenspaces for eigenvalues other than 0 (a rational), shows that the condi-
tional expectations are not compact operators in either case.

12. Bivariate ¢ distributions: Eigenvalues greater than 1. We are
going to address heavy-tailed situations again, but with a scenario which
differs from that of Section 5. We consider essentially the family of bivariate
Pearson Type VII distributions, which contain the ¢ distributions as special
cases. These allow us to generate heavy-tail behavior which could not be
achieved with mixtures of normal distributions. The analytical results are very
peculiar: We encounter singular values greater than 1, and even more, they
can be arbitrarily large. For this to happen we have to break the usual rules
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Fi1c. 5. Quadratic x and y eigentransforms for a bivariate t distribution with 1.5 degrees of
freedom.

by abandoning marginal integrability, thus giving up both L, and L, geome-
try. At the root is a discrepancy between marginal and conditional integrabil-
ity: Conditional expectations may still exist while marginal expectations do
not.

The tail weight is the driving factor in the sense that the higher some
singular values go, the heavier the tail has to be. Estimating singular values by
means of correlations, as is done in finite samples, will be blind to this
phenomenon. In fact, finite-sample smoothers in their simplest (non-cross-
validated and nonrobustified) versions are typically shrinking linear mappings
[Buja, Hastie and Tibshirani (1989)]. They are therefore unable to recover
nonshrinking behavior of conditional expectations. There is no serious practi-
cal problem in this inability since samples from bivariate ¢ distributions with
low degrees of freedom generally exhibit ““outliers’ of such a serious nature
that an analysis based on automated data transformations would be avoided
on grounds of simple common sense. For illustration, we show in Figure 5
transformations obtained from a sample of (essentially) a bivariate ¢ distribu-
tion with 1.5 degrees of freedom. The sporadic outliers determine the shape of
the transforms and combine with artifacts of the locally linear smoothers to
create two almost linear slopes with a sharp bend in the center. In contrast,
the population eigenfunctions which come closest to these empirical trans-
forms are parabolas once again, but the only shared qualitative feature is the
presence of a valley-like shape. The reason for the presence of two opposite
slopes is different in the Pearson Type II and Type VII distributions: The
former have too much mass along the horizontal and vertical axes, whereas
the latter have too much mass along the 45 degree lines. This is backed up
below by an analysis of the “densities w.r.t. independence” (Section 3).

In order to parallel the analytics of the II, distributions (Section 9), we will
work with a subset of the family of Pearson Type VII [Johnson and Kotz
(1972), Chapter 42, Table 3; see also Chapter 37 for the multivariate ¢]. We
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consider the following bivariate densities:

a 1
a>0.

qX,Y(x7y) = )a+1’

T (1 +x2+y2
In analogy to the notation II(a), we write VII,(a) as shorthand for a random
two-vector with this density. Once again we obtain the bivariate standard
normal as a limit of, e.g., V2a VII(a) as a — ». The marginal densities are

1 1
B(ha) (1+ 9

Random variables with this law will be denoted VII,(a). The VII(3) distribu-
tion is just the univariate standard Cauchy, and the actual ¢ distributions are
obtained as t, = Vv VII (v/2), where v is the degrees of freedom. The condi-
tional distribution of Y given X for VII,(a)is V1 + X2 VIIy(a + 3), which is
reminiscent of the conditional distributions for the II, family.

In the following remarks, we list some curiosities in the simplest possible
formulation for quadratic transforms.

gx(t) =qy(t) = a> 0.

REMARK 12.1. The bivariate VII,(a) distribution has a quadratic eigen-
function exactly for 3 < a < 1 and for a > 1.

This means that the Cauchy case (a = 3) and the ¢ distributions with 2
degrees of freedom (a = 1) do not have a quadratic eigenfunction, but any-
thing in between or greater does have one.

REMARK 12.2. The quadratic eigenfunctions are 6,(¢) = ¢,(¢) o 2 —
1 -1
sla— 17N
2

The “centering constant” 1(a — 1)~! is negative for 3 < a < 1. In contrast,
a typical argument based on L, techniques and symmetry would force ¢,(X)
to be orthogonal to constants, i.e., ¢,(X) ot X2 — E(X?). Since ¢,(¢) =t — ¢
with ¢ < 0 for 3 < a < 1, the constant ¢ cannot play the role of a marginal
variance in this case.

ReEMARK 12.3. The singular values of the quadratic eigenfunctions are
Ay =1/(2a —1). Thus A, < 1fora>1,but A\, > 1for 3<a <1, and A, T
for a | 1.

The value +1 is not taken on by A,. The cut point +1 separates the
well-behaved case A, < 1 (shrinking) from the pathological case A, > 1 (ex-
ploding). The discontinuous behavior at @ = 1 is explained as follows.

REMARK 12.4. The two-dimensional space spanned by #2 and 1 is invariant
under conditional expectations for all a > %, but for a = 1, the action is
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described by 1 — 1 and ¢ — t2 + 1, which corresponds to a nondiagonalizable
Jordan block: ( é i)

This block has an eigenvalue + 1 with algebraic multiplicity 2 and geometric
multiplicity 1. The problem is that for a = 1, the eigenvalue A, steps on the
trivial eigenvalue +1 of the constant functions and ends up in degeneracy
because of the nilpotent effect of the off-diagonal element.

Some background for these pathologies is given in Remark 12.5.

REMARK 12.5. The transformation X? is marginally square-integrable for
a > 2, integrable for @ > 1 and not integrable for @ < 1. Yet, X2 is condition-
ally integrable for all a > 1.

The discrepancy between marginal and conditional integrability is behind
the present problems: Conditional expectations may exist outside of L;, but
their familiar properties may be sacrificed. Within L,, conditional expectations
behave like symmetric shrinking mappings; in L, they are still shrinking, but
outside any behavior is possible.

Some intuition into the properties of the VII, distributions may be gained
by an examination of the ‘“density w.r.t. independence” (Section 3). This
density cannot be square-integrable, since otherwise L, theory would be
applicable:

xz)a+1/2(1 + yz)a+ 1/2

([ Qx(dn)@y(an) a [f &

— dxdy
(1 + 2 +y2)2 2
(1 + r?+ r*cos?asina)*""/?
a ff TS rdrda,
(1+r?

with a switch to polar coordinates (x = r cos a, y = r sin «a). The integrand as
a function of r is of the order 1/r for large values of r, hence the integral over
r is infinite for all but finitely many values of a. The role of the angle «a in the
integrand is of particular interest: It shows that the stochastic dependence
between X and Y consists of high mass concentrations along the 45 degree
diagonals and mass deficiency along the axes. This makes it plausible that a
quadratic transformation is able to pick up positive correlation (if defined) or
at least to generate positive eigenvalues by mapping the high mass concentra-
tions onto the 45 degree diagonal in the positive quadrant. A similar analysis
for the II, family would show that just the opposite is true there: Mass
concentrations along the coordinate axes permit the quadratic transformations
to fold the mass onto a triangle in the positive quadrant with a resulting
negative correlation.

In the following proposition we draw a more complete picture of the
eigenpolynomials of VII, as far as they exist. However, the proof is too arcane
to be reproduced here.



ALTERNATING LEAST SQUARES AND ACE 1065

ProposiTION 12.6. For the VII(a) distributions, polynomials in X and Y
of degree m are marginally square integrable for m < a, marginally integrable
for m < 2a and conditionally integrable for m < 2a + 1. There exists exactly
one degree which is conditionally but not marginally integrable.

Orthogonal eigenpolynomials 6,(t) = ¢,,(¢) exist for square-integrable
degrees, i.e., m < a. Outside of L,, there generally exists a series of eigen-
polynomials for all conditionally integrable degrees, i.e., m <2a + 1. An
exception occurs when a is an integer, in which case no even degree eigenpoly-
nomial of degree m = 2k > a exists.

The singular values are

B(k + 5,a +

A _k)
2k B(3,a +

) and A2k+1 = 0.

[MES

(SIS

The behavior of the even degree singular values can be described as follows:

Only those singular values Ao, with square-integrable eigenpolynomials
(i.e., 2k < a) can be interpreted as correlations. They form a decreasing
sequence for increasing degrees.

The singular values Ay, for marginally integrable but not square-integrable
degrees (i.e., a < 2k < 2a) are no longer correlations. They form an increas-
ing sequence which is bounded by +1.

If the conditionally but not marginally integrable degree (2a <m <
2a + 1) is even, its singular value A,, exceeds +1, unless m = 2a when it
equals +1.

One could continue with an examination of the elliptic VII, distributions
but we found it not very informative. Finally, it should be mentioned that a
more complete analysis of the circular VII, within L, is possible. It involves a
partly discrete and partly continuous spectral decomposition, with results
which are likely to be similar to those of Wong (1964), page 270. However, we
do not expect that the continuous part of the spectrum will contribute to our
understanding of the empirical behavior of ALS-ACE or the theoretical prob-
lem of exploding singular values outside L,.

13. Conclusions. In spite of Breiman and Friedman’s statement that the
eigenproblems for the ALS-ACE integral operators appear most intractable,
we have found two rich classes of tractable situations: distributions of finite
rank and polynomially biorthogonal distributions. We summarize a few practi-
cal points from these examples.

1. Linear optimal transformations do not necessarily indicate a satisfactory
error structure (Section 7).

2. Null situations may result in misleading nontrivial transformations, mostly
in the form of parabolas and maximal correlations up to about 0.3 (Sections
8 and 12).

3. Crossing-phenomena of eigenvalues and more general degeneracies may
lead to un<table ALS-ACE transformations (Section 11).
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4.

In high-correlation situations we encounter indeterminacies as well, al-
though this danger subsides if more than one strong predictor is present
(Section 8).

Clustering is often picked up by ALS-ACE before any other structure. This
may be indicated by approximate step functions as optimal transforms
(Section 5).

There is no unique way for ALS-ACE to respond to heavy tails in null
situations. Sometimes, they are indicated by a tendency to finite asymptotes
in the wings (Section 5), but more often they show in steep, vaguely
parabolic transformations with equal signs (i.e., positive singular values,
Section 12). Light tails may be indicated by parabolas with opposite signs
(i.e., negative singular values, Section 8).

On the technical side, we have the following points:

1.

2.

ALS-ACE extracts the dominant term in the singular value decomposition
of a bivariate distribution (Section 3).

The maximal squared correlation is the dominant term in the expansion of
Pearson’s x? or ¢2 functional (Section 3).

. Correspondence analysis is ALS—-ACE applied to two-way contingency ta-

bles, extracting not only the dominant but also the subdominant terms
(Section 3).

. ALS-ACE analysis on finite-rank distributions, and especially finite mix-

tures of independent sources, amounts to a canonical correlation analysis
on certain density ratios (Section 4).

. Circular polynomially biorthogonal distributions lead to elliptic polynomi-

ally biorthogonal distributions, for any degree of ellipticity. In terms of CAT
literature this is equivalent to the following statement: If the conditional
expectation operators given two orthogonal directions can be simultane-
ously diagonalized by polynomial eigenfunctions, then the same holds true
simultaneously for all directions (Section 10).

. Results by McGraw and Wagner (1968) and Davison and Grunbaum (1981)

which were obtained in an engineering context and the theory of tomo-
graphic reconstruction, respectively, yield characterization theorems which
explain why and where parabolic eigentransforms are likely to appear
(Sections 8 and 10).

The mathematical curiosities we found concern

1.

2.

the existence /nonexistence proof of equations f(x) = g(y) for ellipses (Sec-
tion 11), and

the investigation of conditional expectations outside L,, which lead to
examples of exploding (noncontracting) conditional expectations with eigen-
values larger than 1 (Section 12). '
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