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where

Ly(x) = [ 2(1 ~ ®(xu + yue))d(u) du.
_ Consider B~ N(B,S™1), given S. Then we want to find an estimator
B = B(B, S), given S, such that

Eg| Ly(11B - BI)IS] < E,[ Lo(18 - BI)|S].
This again follows from Theorem 3.3.1 of Brown (1966). O
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1. Conditionality. A paradox is a self-contradictory statement, and a
paradox in science demands resolution. The discovery of each new paradox
creates an opportunity for a new growth and deeper understanding as we seek
explanation.

Professor Brown’s paradox is that conditionality is at odds with uncondi-
tional admissibility. While his concluding remarks do not resolve the paradox,
he seems to take sides by insisting that we account for ‘‘the unconditional
frequentist structure of the situation.” I see it differently, and argue for being
as conditional as possible in making statistical inferences.

It can happen, and did in Brown’s example, that decision rules 1 and 2 with
risks R; and R, obey R, < R, uniformly in the parameters when we average
over an ancillary V, but that the conditional risks, given V, satisfy R,(V) >
R (V) for some parameters and some values of V. If V occurs and is observed
and it happens to be a value for which R (V) > R,(V), then rule 2 is better for
that V. It matters not at all that for most V, R,(V) < R4(V). Brown’s example
is less clear. We do not know for the observed V which R(V) is smaller,
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because these risks depend also on the unknown parameter g, even though we
have the weaker result that R, = E[R(V)] < R, = E[R,(V)] for all B. The
inequality would be more convincing if expectations were over the distribution
of likely B values rather than the observed V, but one might be hard pressed
to find such information. Thus, it seems appropriate to be as conditional as
possible, in this case using the distribution of Y, given V, but not V to make
the inference.

In Section 3.4, the unconditional risk of the standard unbiased estimator 8,
of a exceeds that of any of the three “improvements’ by a fixed amount at
B = 0. However, when V = 0 is observed, all three estimators equal Y exactly.
Furthermore, 6, = Y has conditional risk o2/7 in this case, which is less than
the conditional or unconditional risks of the other three estimators. Which
measure of risk is appropriate in this case V = 0 and which estimator should
be preferred? Unconditionally we are saying 8§, has largest risk. Conditionally,
8, = Y has the smallest risk. Actually, all estimators are numerically equal to
those in Section 3.4. I find this disturbing.

Use of the unconditional risk when V = 0 requires knowing which rule the
statistician would have used if V had been other than 0. We may not know
this. (Of course, V = 0 occurs with probability 0, in theory at least, but it can
happen in practice, or nearly so. I think this consideration does not weaken the
case being made.)

2. Simplified special case of the paradox. The generality of Brown’s
paper yields the broad conclusions he seeks, but I find the paradox itself to be
more easily stated in the simpler setting of Section 3.3 with r > 3, and we can
simplify much further, to increase understanding. We may suppose that S is
predetermined, letting only V be random, imagining that somehow V is only
partially random. This happens, for example, if the column vectors of V can be
controlled by the statistician, except for an error term (the ith component of
V) which is additive to the column. Many technicalities of Section 3 are
avoided in this fashion without altering the concept of the paradox. Let us
further assume S = cI is diagonal, ¢ > 0 known. Then the mean squared error
of a* =Y — Vp*is

(1) E(a* — @)’ =E[(Y — « — VB) — V(B* - B)]”

— + E[V(p* - B)]’,

with B* depending only on
. o?
(2) B~N, B’_c—l .
Brown has V ~ N,(0,(1/n)I), independently of B. Then the risk (1) is

0_2

1
J— —_ * _ 2
(3) — + —E|g* - B>
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This (3) is (1 +r/c) o?/n when B* = B. The squared error loss (3) and
distribution (2) for B suggest choosing B* to be Stein’s estimator and leads to
risk dominance and Brown’s paradox.

With fixed V, and if B* is Stein’s estimator, the latter term in (1) is obtained
from the component risk for Stein’s rule. The risk (1) may be computed from
component risk formulae of Baranchik (1964) and Efron and Morris (1972). It
is

2 2

(4) E(e* - a)* = = + V2R
n n

and R is the component risk for Stein’s rule

1 2J
= R 2 —_ —_
(5) B=R, +2r 4)(” )E(r+2J)(r—2+2J)’
where o is Poisson with mean
_cler o (VB)
202’ IVII%181>

and R, is the average risk per component of Stein’s estimator, having
maximum of 1. The maximum of R in (4) and (5) is about (r + 2)/4, occurring
when V and B are collinear (when p = 1), and when 22 is near r. Numerical
values are in Efron and Morris (1972, Section 5).

If p=1/r, (4) is given by Stein’s risk. But for p = 1, the risk (5) starts
above 0?/n when B = 0 and increases to a value exceeding (substantially, for
large r) the risk of the MLE & and then diminishes as g — .

Perhaps this risk formula (5) will help us to understand the paradox. We
should advocate these estimators for practical use only if we are sure they are
appropriate. I do not think we know that yet.
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Both the mathematical results and the conceptual aspects of this paper are
very interesting to me. Most of my remarks, which are numbered for conve-
nient reference, are related to my rejection of the principle of conditionality,
which is stronger than Brown’s rejection of that principle.



