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The paper gives a counterexample against two common assumptions about
shrinkage estimation: First, that shrinkage applies only to vector parameters
with a single loss function allowing exchangeability of errors between compo-
nent estimates; second, that shrinkage estimates are necessarily biased. In this
important paper Dr. Brown provides a shrinkage estimate which is both scalar
and unbiased. Particularly interesting and surprising is the finding that
improved estimation of « is possible only when the mean of the V’s is known.
Are there intuitive grounds for expecting this to be so?

In Section 3 of the paper, suppose that the values of the V;’s are temporarily
lost. Can anything then be said about a? Usually the answer is no, but if we
have the additional information that the Vs are known to have mean zero,
then &, = Y becomes a (globally) unbiased estimate. With the full data & is
available as a second unbiased estimate, suggesting that we could do even
better with the combined unbiased estimate

a(A) = (1 - 2@, + Ma.

Evaluating global moments (averaging over Y as well as V) we obtain the
variances of &, and & as n” Yo% + B'8) and n~ 0?1 + r/(n — r — 2)), re-
spectively, with covariance n~!o2. The variance of &(A,) is therefore mini-
mized when

BB -r-2)
- BB(n—-r—-2) +ro?’
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A (globally) unbiased estimate of 8’8 is

ro?

BB -

n-r—2°

Constructing the corresponding estimate of A; then suggests the estimate

This is very similar to Dr. Brown’s estimate using j, in (3.3.4). Note that the
argument cannot apply if the mean of the V,’s is unknown.

A second argument is based on prediction. This makes a different, but
related, assumption, namely that a future value of v can be assumed to arise
with the same mean and variance as the sample mean and variance of the V’s
in the data. The idea is that validating a predictor in terms of its performance
on such a new observation is similar in spirit to cross-validation on the
observations in the sample. Adding normality, suppose that v ~ N(V,n~1S)
and that a new observation y is then sampled from N(a + vB, 02). The least
squares predictor of y is § = & + vB. Then conditional on Y and V, (y, §) is
bivariate normal from which we obtain

E(y19) =a+ VB +A,(9 - ¥),
where A, = 8'SB/B'SpB. Now conditional on V we have
E(B'SB) = BSB + ro?
and
E(B'SB) = BSB.

Thus the natural estimate of A, is ;\2 =1 - ro2/f'SpB, which with « and g
estimated in the obvious way suggests that the above conditional expectation is
estimated by

F(v) =Y+ A,(v — V).
Now the value of a is the expected value of y at v = 0; hence the estimate
_ re? \_.
a;=5(0) =Y - (1 - E,—S—BA')Vﬁ,

similar to Dr. Brown’s estimate using $; in (3.3.5). Note that if no assumption
can be made about the process generating the V’s, then the above argument
based on the similarity of present and future values of v would be unreason-
able, and hence the motivation for &, would not apply.
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Of course, these arguments prove nothing about admissibility but do sug-
gest that the necessity for the known mean of the V;’s is not unreasonable.
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Here is a slightly simpler version of Brown’s nice paradox: the statistician
observes X ~ N,(u,I), p >3, and also an integer J that equals j =
1,2,3,..., p with probability 1/p, independently of X. It is desired to esti-
mate p; with squared-error loss. Then o is ancillary, and conditional on J = j
the obvious estimate d (X, j) = X, is admissible and minimax. Uncondition-

J
ally, however, the Jth coordinate of the James—Stein estimate,

dy(X,J) =[1-(p-2)/1XI?X,,

dominates d (X, J), with E[d (X, J) — p ;I < E[d (X, J) — p;]? for all vec-
tors u.

In other words, Brown has restated Stein’s paradox, that d; dominates d,
in terms of total squared error loss, in an interesting way that casts some
doubt on the ancillarity principle.

[The example above does not look much like Brown’s regression paradox,
but we can fix things up by supposing that given J =j the statistician also
observes X, ~ N(a + p;,1), independent of X ~ N, (u, I), the goal now being
to estimate a with squared-error loss. Then &, = X, — d(X, J) dominates
a, = X, — d (X, J) unconditionally but not conditionally. This situation might
arise if X; was the placebo response of patient j on some physiological scale
and X, was patient j’s response when given a treatment of interest; we
placebo-test p patients and then choose one at random to receive the treat-
ment.]

Why do we intuitively accept the ancillarity principle in Cox’s example,
Section 5, but doubt it in the example above, or in Brown’s regression
paradoxes? I believe that the answer has more to do with single versus
multiple inference than with hypothesis testing versus estimation.

Notice that d (X, j) disregards all of the data except X;. There is nothing
in the ancillarity principle to justify this.. All that ancillarity says is that we
should do our probability calculations conditional on o = j. In Cox’s example
on the other hand, the conditional solution makes use of all the data and the
ancillarity principle works fine. '

Even when the choice J = j is totally nonrandom it is not obvious that d,
is preferable to d,. The real question is whether or not the ensemble estima-
tion gains offered by d, are relevant to the specific problem of estimating ;.



