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In his customary, penetrating way, Professor Brown has discovered and
illuminated a fascinating admissibility paradox. This paradox brings together
the elusive concept of ancillarity with the (still somewhat puzzling) Stein
phenomenon and, through this synthesis, perhaps explains both a little better.
The goal in this discussion is to understand and explain Brown’s admissibility
paradox in a simple intuitive way.

Using the notation of Section 3, we observe Y,.; and V,,,, where EY =
al + VB, and we want to estimate a using an estimator that is a function of Y
and V, say d(Y, V). The loss function given by (3.1.2) is squared error loss

(1) L(a,d) = (a —d)>

In a regression problem, we estimate a based on observing values Y = y and
V = v. Brown’s paradox asserts that the admissibility of &, the least squares
estimator, depends on whether V is treated as constant or as a realized value
of an ancillary random variable.

An important distinction between the two problems lies in the risk func-
tions: Although the loss function remains the same, the risk function changes
depending on whether we consider the matrix V to be fixed or random. If V is
fixed, then the risk of estimating a is conditional on the value V = v, that is,

(2) R(a,d|V=0) = E[(a - d(Y,0))|V =]

Here the expectation is over the distribution of Y given V = v which, of
course, depends on a. If V is considered a random variable, then the risk of
estimating a is unconditional on the value V = v, that is,

(3) R(a,d) = [R(a,d|V =) fy(v) dv,

where f,(-) denotes the density of V.

Keeping the risk relationship (3) in mind, we can now reexamine the
admissibility /inadmissibility results of Proposition 3.1.1 and Theorem 3.2.2
(or their predecessors, Proposition 2.1.1 and Theorem 2.1.2). The admissibility
results relate to the risk function R(a, d|V = v) of (2), while the inadmissibil-
ity results relate to the risk function R(e, d) of (3). Furthermore, the relation-
ship in (3) amplifies the paradoxical nature of Brown’s results. Note that from
(3) we immediately get the implication that if an estimator d(Y,v) is domi-
nated for every v by d*(Y,v) using R(a,d|V = v) of (2), it is inadmissible
under R(a, d(Y,V)) of (3). But this does not happen for d(Y, v) = &. Since the
least squares estimator is admissible under R(a, @|V = v), this implies that it
cannot be dominated in risk for every v by the same estimator.
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We therefore see that the inadmissibility of a under R(a, &) is really tied to
the distribution of V. Since the estimator & cannot be dominated for each
V = v, the domination is through the integration against f(v). The dominat-
ing estimators (such as those in Section 3.3) must improve greatly for values of
v yielding large values of f,(v), for the risk must surely be larger than that of
& for other values of v. The distribution of the ancillary statistic is central to
the dominance result. (Consider an analogous, although different, occurrence
in the classic Stein problem of estimating a multivariate normal mean. Al-
though the usual estimator can be dominated using sum-of-squared-errors
loss, it cannot be dominated componentwise. Thus, on some loss components
the improved estimators must offer a large improvement, since they surely will
lose on other components.)

The influence of the ancillary statistic V, or of any conditioning statistic, can
also be seen through the following decomposition. For any estimator d(Y,V),
the risk given by (3), R(a, d) = E[a — d(Y, V)]?, can be decomposed into
(4) E[a—d(Y,V)]’ =E[a - E(d(Y,V)|V)]® + E[Var(d(Y,V)|V)].
Although this decomposition works for any conditioning statistic, risk im-
provement will obtain only if the statistic behaves in a certain way. In order to
improve on the unconditional risk [the left-hand side of (4)], knowing that the
conditional risk (the first term on the right-hand side) cannot always be
improved, the variance of the estimator, with respect to the conditioning
statistic, must behave correctly. For the estimator d to dominate & we must
have

(5)0 <R(a,&) — R(a,d)
= E[(a - E(&V))® - (a - E(d|V))?| + E[Var(&|V) - Var(d[V)],

so dominance requires that the statistic V imparts the correct influence on the
variance (precision) of the estimator d.

Another remark of Brown’s becomes clearer when seen in the light of (3)
together with the admissibility of & using R(a, d|V = v). In Remark 4.3.2 it is
conjectured that & remains admissible if the mean of V is unknown, but is
inadmissible if this mean can be independently estimated. From (3) we know
that & is only inadmissible when the risk function R(a, &|V = v) is integrated
against [, (v). Hence, this distribution (or some independent estimate of it)
must be known for the inadmissibility result to hold. In the case considered
here f,(v) is a member of a parametric family, so only the parameters need to
be known. ‘

Another explanation of Brown’s ancillarity paradox, one that is more closely
tied to Stein estimation, emerged from .discussions with David Lansky, a
Cornell graduate student. If we look more closely at Brown’s Lemma 3.3.1, we
can write [using the definition of § and 8 in (3.3.1)]

E(a— &)’ - E(a - 5)2

©) — B[(5 - BYVV(B - B)] - E[(B - BYTV(E - B)].
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Notice that (6) is valid whether V is fixed or random, and it links the
dominance of & by & under squared error loss to the dominance of 8 by f
under weighted squared error loss.

If V is random, we can further simplify the expectation on the right-hand
side of (6) and obtain Lemma 3.3.1. If V is fixed, however, the term V'V
cannot be removed from the right-hand side of (6). Furthermore, the matrix
V'V is of rank 1, making the right-hand side of (6) equivalent to a one-dimen-
sional risk difference. In such a case it is well known that g is admissible.
Thus, in the case of fixed V the estimation of « is a one-dimensional problem,
but if V is random the assumption that E(V'V) = I/n turns the estimation of
a into a multivariate problem (and leads to the inadmissibility results).
Although this argument is restricted to the class of estimators given in (3.3.1),
it clearly shows the influence of V on the admissibility of «.

Perhaps one of the most important effects of Brown’s work will be the
rethinking of the notion of ancillarity. Fisher, in his wonderfully vague way,
left us with this idea of ancillarity, but not with any unequivocal definition.
[The article by Buehler (1982) ably demonstrates this.] The main problem
seems to be that ancillarity is defined by a marginal distribution, fy,(v), when
the more useful definition would be in terms of a conditional distribution,
fyw(y|v). This idea may be closer to how Fisher thought of ancillaries, for he
was most interested in the case where the pair (Y, V) is a sufficient statistic
(but Y alone is not), and the marginal distribution of V does not depend on
the parameter of interest. In such cases Fisher recommended using fy,(y|v)
for inference. The major reason for this, which bears on the reasoning behind
(4) and (5), is that the ancillary statistic contains information about precision.
Fisher (1936) states ‘‘Ancillary information never modifies the value of our
estimate; it determines its precision.”

Connecting ancillarity with precision is a subtly different notion from that
expressed by Brown in the first paragraph of his introduction. The quote from
Savage, in Section 5, is closer to this sentiment, since the values of the
independent variable have a direct impact on precision. In Brown’s examina-
tion of the influence of ancillary statistics, he has substituted ‘‘admissibility”’
for ‘“‘precision”, bringing new understanding to this elusive concept. [Some
problems with the influence of ancillarity on precision are discussed by Basu
(1964, 1981).]

Rather than classify a statistic as ancillary or otherwise, a more useful
categorization may be whether the statistic can influence an inference. This
notion can also be traced back to Fisher and is made mathematically precise by
Robinson (1979). Although Robinson is mainly concerned with conditional
inference from confidence statements, conditional evaluations can also be tied
into admissibility of point estimators. A decomposition such as (4) shows that
the usual definition of ancillarity is not strong enough to be of use in decision
theory. We need to take into account the conditional distribution of Y given V,
and the effect that V has on the precision of our estimator. This consideration
is, perhaps, equivalent to what Brown means in the last sentence of his article.
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The paper gives a counterexample against two common assumptions about
shrinkage estimation: First, that shrinkage applies only to vector parameters
with a single loss function allowing exchangeability of errors between compo-
nent estimates; second, that shrinkage estimates are necessarily biased. In this
important paper Dr. Brown provides a shrinkage estimate which is both scalar
and unbiased. Particularly interesting and surprising is the finding that
improved estimation of « is possible only when the mean of the V;’s is known.
Are there intuitive grounds for expecting this to be so?

In Section 3 of the paper, suppose that the values of the V;’s are temporarily
lost. Can anything then be said about a? Usually the answer is no, but if we
have the additional information that the V;’s are known to have mean zero,
then &, =Y becomes a (globally) unbiased estimate. With the full data & is
available as a second unbiased estimate, suggesting that we could do even
better with the combined unbiased estimate

a(Ay) = (1 — 2@ + A6,

Evaluating global moments (averaging over Y as well as V) we obtain the
variances of &, and & as n” Yo% + B'8) and n~ 0?1 + r/(n — r — 2)), re-
spectively, with covariance n~!o2. The variance of &(A,) is therefore mini-
mized when

_ BB(n-r-2)
- BB(n—r—-2) +ro?’

Ay



