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THE EXPECTATION OF X ~! AS A FUNCTION OF E(X) FOR AN
EXPONENTIAL FAMILY ON THE POSITIVE LINE

BY GERARD LETAC AND VANAMAMALAI SESHADRI
Université Paul Sabatier and M cGill University

If the distribution of X belongs to a natural exponential family on the
positive real line, this note studies the expectation of the reciprocal of X as a
function of the expectation m of X and characterizes the cases where this
function is an affine function of m~! as gamma, inverse-Gaussian, Ressel or
Abel families.

1. Natural exponential families. Let us first recall a few features of the
natural exponential families on the line R. All proofs can be found in [4] (consult
also [1] and [2]).

If p is a positive Radon measure on R, we consider its Laplace transform L
defined on R by

L(6) = f+wexp(0x)u(dx) < 0.

— 00

Holder’s inequality implies easily that the set D = {|L(8) < oo} is an interval
and that k(8) = log L(#) is convex on D.

We denote by .# the set of measures p such that the interior ® of D is
nonvoid and such that p is not concentrated on one point. For p in #, k() is
real analytic on ©, and for § in ©, one considers the probability distribution

(11) P(6)(dx) = exp{x — k(8)}p(dx).
The set F = F(u) = {P(0); 0 € (0)} is called the natural exponential family
generated by p. Now observe that

(1.2) k'(6) = [

o0

xP(0)(dx).

Hence the image M of © by 8 — k’(0) is called the domain of the means of F.
Since p is in ., then k is strictly convex on ©; the map 6 — k’(6) is a bijection
from © onto M, which is an open interval, and we denote by

'LI/Z M'F -0
its inverse map. Note that  is real analytic on M. We also denote

Q(m, F) = P(y(m));

therefore, the map My — F, defined by m — Q(m, F), provides another
parametrization of F by its domain of the means. Finally, we introduce the
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variance function of F as a function V defined on M by

V(m) = [ (x = m)’Q(m, F)(ds).
It is easily proved that

(1.3) V(m) = 1/4'(m).

This function V occupies a central position in the classification of natural
exponential families since V characterizes F. More precisely one has the following
result.

ProPoOSITION 1.1. Let F, and F, be two natural exponential families on R
with variance functions V, and V,, respectively, and assume that there exists a
nonvoid open interval I contained in My N My, such that V, and V, coincide on
I. Then F, = F,.

For a proof see, for instance, [2]. [2], [3] and [4] give all natural exponential
families on R such that V is the restriction to M}, of a polynomial of degree less

than or equal to 3.

2. The expectation of X 1. We restrict ourselves now to the natural
exponential families concentrated on (0, + 00). Here is our main result.

THEOREM 2.1. Let p in A be such that p((— ,0]) = 0 and My, = (a, b) C
(0, + 00). Then (i)

#(m) = ["x7Q(m, F)(ds)

is finite for all m in My if and only if

(2.1) [xu(dx) < .
0
(ii) If (2.1) is true, denoting G(m) = k(y(m)), one has for all m in M,
m dx
(22) #(m) = exp(=G(m)) [ exp(G(x)) s
1 m dx
(23) = -+ ep(=G(m)) ["exp(G(x)) 3
and (iii) ¢ is a solution of the differential equation
(2.4) V(im)e'(m) + me(m) = 1.

CoMMENT. Recall that a positive random variable X always satisfies 1 <
E(X)E(X 1) by applying Schwarz’s inequality to the product VX vX~'. Hence
(2.3) gives an explicit expression for the positive difference p(m) — 1/m.
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ProoF oF THEOREM 2.1. (i) Suppose that ¢(m) is finite for all m in M.

Clearly, since p is concentrated on (0, + o0), ® contains a half-line (— oo, ;).
Hence for § < 0 and 6 < 6,,

[[x 7 w(dx) < exp(k(6) = 0) =" exp(6x — k(0))(d)
< exp{k(6) — o}[omx-lp(a)(dx) < 0.
Now suppose that fjx~'u(dx) < oo. If 6 is in O,
[ P(0)(dke) < exp(16] — k(0)) [x " n(dk)

+ j;oo exp{0x — k(8)}p(dx)<oo.

To prove (ii), observe that for ¢ in ® and m in My an application of Fubini’s
theorem on

(25) exp(k(t) = [ exp(tx)n(dx)

gives

(2.6) JH " exp(k(t)) dt =[x explxd (m))u(d).

Note that since G(m) = k(y(m)), using (1.3) and (1.2) one easily obtains
k(Y

(2.7) G'(m) = (V(En";)) - V(":n) .

The change of variable ¢ = Y(x) in the left-hand side of (2.6), and the fact that
V(x) = 1/¢'(x) gives
dx

[ exn(e) de = [ exp (42} 5

m (tx
= j:l exp(G(x)) Vo)

Hence,

m dx
#(m) = exp(=G(m)) [ " exp(G(x)) 5 -

Now to obtain (2.3) we observe that if
x exp(G(x))

o(x) = exp(G(x)), v(x)= V(x)

[using (1.3) and (2.7)]. Therefore, integrating the second member of (2.2) by parts
with this v’(x) and u(x) = x~* will give (2.3), provided that we show that

lim x 'expG(x) =0,

xla
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which is equivalent to

(2.8) expk(8) = 0.

1
im ——
6o B'(0)
To prove (2.8) we introduce »(dx) = x~'u(dx); condition (2.1) implies that » is
in A.If

0 . .
A":fo x’/ exp(0x)v(dx) for j=0,1,2,

Schwarz’s inequality implies A? < A,A,, and we have [1 /k'(0)]exp k(0) =
Al/A,. Since A, - 0 as § > — oo, (2.8) is proved.

(iii) Clearly ¢ is real analytic in My; differentiating with respect to m in 2.2)
gives (2.4). O

The next corollary shows that ¢ characterizes F.

COROLLARY 2.2. Let p, and p, in M be such that p ] —0,0]) =0 and
Jox~n(dx) < o0, j = 1,2; denote F; = F(p;). Assume that there exists a non-
void open interval I contained in M, r, N My, such that ¢ and ®F, coincide on I.
Then F| = F,.

PROOF. (2.4) and (2.3) show that 1 — megp = Vg(m)ep(m) < 0. Hence Pp =
9r, on I implies Vi = V. on I, since ®r, # 0 on My and this implies F, = F,
by Proposition 1.1. O

We now make the following remark.

Let F be a natural exponential family on (0, + o0) fulfilling condition (2.1).
Let ¢ > 0, A(x) = cx and h(F) be the image of F by h. Then if Mg = (a,b)C
(0, + 0),

1 m
Mh(F) = (ca, cb) and (Ph(F)(m) = ;‘PF(?)
3. Examples and applications.

ExXAMPLE 3.1 (The gamma families).. Let p > 0,

dx
Pp(dx) = xp_ln(o, +oo)(x)m-

It is easily seen that ®(p) = (—00,0), k(8) = —plog(—0), ¥(m) = -p/m,
Mg = (0, + o0) and V(m) = m?/p. Clearly p, fulfills (2.1) if and only if p > 1. In
this case, a direct computation, or (2.2) or (2.3), gives, for F = F(u o)

3.1 m ————1 form > 0
. = > 0.
(3.1) ¢(m) p—1m or
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ExamMpPLE 3.2 (The inverse-Gaussian families). Let p > 0, p,(dx) =
p(2m) 232 exp(—p?/2x) g 4 (%) dx (a stable law with parameter 3).
Clearly ® = (— 0,0). A not entirely trivial computation gives the known result

k(0) = —pV-20;

one deduces from this y(m) = —p?/(2m?), M, = (0, + ) and V(m) = m®/p*.
A direct computation of ¢ from the definition is rather tedious, but one can use

one form of (2.5) to get
9 9\ 1/2
} b 0 D
p(m) = exp(;)j(; exp —p(2s + ;5) )ds,

or use (2.2) or (2.3). We obtain

1 1
(3.2) p(m) = -+ > for m > 0.

ExAMPLE 3.3 (The Ressel families). Let p > 0,

ptx—1

N R L

IM(p+x+1
(See [2] for further details about this distribution.) Again we have ® = (— 0, 0)
and M, = (0, + o), but the explicit computation of & is rather intractable, since

it is obtained as the solution of an implicit equation. However, the main interest
of this p, is the simplicity of the variance function of F = F(p,,), which is

2

m m
V(m)=?(1+;), m> 0.

Even if we don’t know k, we can compute G(m) up to a constant, since
G'(m) = m/Vi(m), and we can apply (2.2) or (2.3). Therefore, we get

G =C+pl .
(m)=2¢C plog——

Now from the definition of p,, one has [lx~lu o(dx) < oo if and only if p > 1.
Therefore, using (2.3) we get, for p > 1,

(m) 1 m+p)1’m xP~2 &
m)=—+ .
¥ m ( o (x+p)”
We make the change of variable y = x/(x + p) and we get
p 1 1

— +
-1m p(p-1)

m

for m > 0.

(3.3) v(m) =~
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ExXAMPLE 3.4 (The Abel families). Let p > 0,

i p(n +p)"_1(S

n! n

pplde) =

n=0

where §, is the Dirac unit mass on n. Here we have a point mass on 0 and if the

dlstrlbutlon of X belongs to F(p,), the Abel family with parameter p (see [2]

and [3]), clearly E(1/X) = + 0. Note also that from Lagrange’s formula, one
has the equality

ip(nﬂo) B

' hne—nh = eph’
n:

for |A| small enough, % is therefore not an elementary function. However, it can
be proved that My, , = (0, + %) and that V(m) = m(1 + m/p)>.

Now, instead of con51der1ng the Abel family F(p ), let us consider the shifted
family F of F(p,) which is the image of F( ) by the map x —» x + p. [Thus,
with the previous X, we are lead to compute [E(l /(p + X)).] It happens that the
result is simple. Actually, one has

m2
M= (p, +»), V(m)=(m—p);é- for m > p.

Hence G'(m) = p(1/(m — p) — 1/m), and there exists C in R such that

m
G(m)=C+plog

A computation, similar to Example 3.3, gives

p 1 1
4 = — + f .
(3.4) o(m) prim  p(ptD) orm > p

We now remark that in the above examples, described by (3.1), (3.2), (3.3) and
(3.4), @ is always an affine function of 1/m. This is actually a characterization of
the above four examples, up to a scale change. More precisely:

THEOREM 3.1. Let F be a natural exponential family concentrated on
(0, + 00), such that (2.1) is fulfilled and such that there exist a and B in R with

a
p(m) = — B forallmin M.

Then Mg = (a, + ) with a > 0. Furthermore:

(a) Eithera=0. Inthiscase a >1,B>0and a + B> 1: () If =0, Fis
a gamma family with parameter p = a/(a — 1). (ii) If 8 > 0 and a = 1, F'is an
inverse-Gaussian family with parameter p = 712, (iii) If 8 > 0 and a > 1,
then, denotingp = a/(a — 1) and ¢ = B(a — 1)2/a, F is the image of the Ressel
family with parameter p by x — cx.
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(b) Or a > 0. In this case 0 < a <1, B> 0 and a = (1 + a)/B. Denoting
p=a/(1 —a)andc=a/p, Fis the image of the Abel family with parameter p
byx — cx + a.

Proor. Carry the explicit expression of ¢ into the differential equation (2.4).
If a would be 0, one would get 1 = Bm for all m in the nonvoid open interval
Mp; an impossibility. Since a # 0, one gets

V(m) = m2(1 - % + gm) on M, c (0, + 00).

The classification of the natural exponential families F on R such that V is the
restriction to My of a polynomial with degree less than or equal to 3 (see [2], [3]
and [4]) shows that M, must be a half-line (a, + o). The above classification
gives also the results stated in the remainder of the theorem. But a direct
discussion of this remaining part can also be done as follows.

(a) If a = 0, using (2.3) one gets

a—1

+ B8>0 forall m> 0.

This implies 8 > 0 (let m - + ), a > 1 (let m - 0) and a + B > 1. The rest of
the discussion comes from Examples 3.1, 3.2 and 3.3.

(b) If a >0, from the classification one has lim, ,V(m)=0 and a =
(1 - a)/B. Since B = lim, _ , ¢(m), one deduces B >0 and «a < 1;
lim,, ,  V(m) > 0 implies 0 < a.

The rest of the discussion comes from Example 3.4. O
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