# THE EXPECTATION OF $X^{-1}$ AS A FUNCTION OF E(X) FOR AN EXPONENTIAL FAMILY ON THE POSITIVE LINE

#### By Gérard Letac and Vanamamalai Seshadri

#### Université Paul Sabatier and McGill University

If the distribution of X belongs to a natural exponential family on the positive real line, this note studies the expectation of the reciprocal of X as a function of the expectation m of X and characterizes the cases where this function is an affine function of  $m^{-1}$  as gamma, inverse-Gaussian, Ressel or Abel families.

1. Natural exponential families. Let us first recall a few features of the natural exponential families on the line  $\mathbb{R}$ . All proofs can be found in [4] (consult also [1] and [2]).

If  $\mu$  is a positive Radon measure on  $\mathbb{R}$ , we consider its Laplace transform L defined on  $\mathbb{R}$  by

$$L(\theta) = \int_{-\infty}^{+\infty} \exp(\theta x) \mu(dx) \le \infty.$$

Hölder's inequality implies easily that the set  $D = \{\theta | L(\theta) < \infty\}$  is an interval and that  $k(\theta) = \log L(\theta)$  is convex on D.

We denote by  $\mathcal{M}$  the set of measures  $\mu$  such that the interior  $\Theta$  of D is nonvoid and such that  $\mu$  is not concentrated on one point. For  $\mu$  in  $\mathcal{M}$ ,  $k(\theta)$  is real analytic on  $\Theta$ , and for  $\theta$  in  $\Theta$ , one considers the probability distribution

$$(1.1) P(\theta)(dx) = \exp\{\theta x - k(\theta)\}\mu(dx).$$

The set  $F = F(\mu) = \{P(\theta); \ \theta \in (\Theta)\}$  is called the *natural exponential family* generated by  $\mu$ . Now observe that

(1.2) 
$$k'(\theta) = \int_{-\infty}^{\infty} x P(\theta)(dx).$$

Hence the image  $M_F$  of  $\Theta$  by  $\theta \mapsto k'(\theta)$  is called the *domain of the means* of F. Since  $\mu$  is in  $\mathcal{M}$ , then k is strictly convex on  $\Theta$ ; the map  $\theta \mapsto k'(\theta)$  is a bijection from  $\Theta$  onto  $M_F$ , which is an open interval, and we denote by

$$\psi \colon M_F \to \Theta$$

its inverse map. Note that  $\psi$  is real analytic on  $M_F$ . We also denote

$$Q(m, F) = P(\psi(m));$$

therefore, the map  $M_F \to F$ , defined by  $m \mapsto Q(m, F)$ , provides another parametrization of F by its domain of the means. Finally, we introduce the

Received November 1987; revised February 1989.

 $AMS\ 1980\ subject\ classifications.$  Primary 62E10; secondary 60E10.

Key words and phrases. Natural exponential families, reciprocal of a random variable, gamma distributions, inverse-Gaussian distributions, Ressel families, Abel families.

variance function of F as a function V defined on  $M_F$  by

$$V(m) = \int_{-\infty}^{\infty} (x-m)^2 Q(m,F)(dx).$$

It is easily proved that

$$(1.3) V(m) = 1/\psi'(m).$$

This function V occupies a central position in the classification of natural exponential families since V characterizes F. More precisely one has the following result.

PROPOSITION 1.1. Let  $F_1$  and  $F_2$  be two natural exponential families on  $\mathbb{R}$  with variance functions  $V_1$  and  $V_2$ , respectively, and assume that there exists a nonvoid open interval I contained in  $M_{F_1} \cap M_{F_2}$  such that  $V_1$  and  $V_2$  coincide on I. Then  $F_1 = F_2$ .

For a proof see, for instance, [2], [3] and [4] give all natural exponential families on  $\mathbb{R}$  such that V is the restriction to  $M_F$  of a polynomial of degree less than or equal to 3.

**2. The expectation of X^{-1}.** We restrict ourselves now to the natural exponential families concentrated on  $(0, +\infty)$ . Here is our main result.

Theorem 2.1. Let  $\mu$  in  $\mathcal{M}$  be such that  $\mu((-\infty,0])=0$  and  $M_F=(a,b)\subset (0,+\infty)$ . Then (i)

$$\varphi(m) = \int_0^\infty x^{-1} Q(m, F) (dx)$$

is finite for all m in  $M_F$  if and only if

$$(2.1) \qquad \qquad \int_0^1 x^{-1} \mu(dx) < \infty.$$

(ii) If (2.1) is true, denoting  $G(m) = k(\psi(m))$ , one has for all m in  $M_F$ ,

(2.2) 
$$\varphi(m) = \exp(-G(m)) \int_a^m \exp(G(x)) \frac{dx}{V(x)}$$

(2.3) 
$$= \frac{1}{m} + \exp(-G(m)) \int_{a}^{m} \exp(G(x)) \frac{dx}{x^{2}},$$

and (iii)  $\varphi$  is a solution of the differential equation

$$(2.4) V(m)\varphi'(m) + m\varphi(m) = 1.$$

COMMENT. Recall that a positive random variable X always satisfies  $1 \le \mathbb{E}(X)\mathbb{E}(X^{-1})$  by applying Schwarz's inequality to the product  $\sqrt{X}\sqrt{X^{-1}}$ . Hence (2.3) gives an explicit expression for the positive difference  $\varphi(m) - 1/m$ .

PROOF OF THEOREM 2.1. (i) Suppose that  $\varphi(m)$  is finite for all m in  $M_F$ . Clearly, since  $\mu$  is concentrated on  $(0, +\infty)$ ,  $\Theta$  contains a half-line  $(-\infty, \theta_0)$ . Hence for  $\theta < 0$  and  $\theta < \theta_0$ ,

$$\int_{0}^{1} x^{-1} \mu(dx) \le \exp\{k(\theta) - \theta\} \int_{0}^{1} x^{-1} \exp\{\theta x - k(\theta)\} \mu(dx)$$

$$\le \exp\{k(\theta) - \theta\} \int_{0}^{\infty} x^{-1} P(\theta)(dx) < \infty.$$

Now suppose that  $\int_0^1 x^{-1} \mu(dx) < \infty$ . If  $\theta$  is in  $\Theta$ ,

$$\int_0^\infty x^{-1} P(\theta)(dx) \le \exp\{|\theta| - k(\theta)\} \int_0^1 x^{-1} \mu(dx)$$
$$+ \int_1^\infty \exp\{\theta x - k(\theta)\} \mu(dx) < \infty.$$

To prove (ii), observe that for t in  $\Theta$  and m in  $M_F$  an application of Fubini's theorem on

(2.5) 
$$\exp(k(t)) = \int_{a}^{\infty} \exp(tx)\mu(dx)$$

gives

(2.6) 
$$\int_{-\infty}^{\psi(m)} \exp(k(t)) dt = \int_{a}^{\infty} x^{-1} \exp\{x\psi(m)\} \mu(dx).$$

Note that since  $G(m) = k(\psi(m))$ , using (1.3) and (1.2) one easily obtains

(2.7) 
$$G'(m) = \frac{k'(\psi(m))}{V(m)} = \frac{m}{V(m)}.$$

The change of variable  $t = \psi(x)$  in the left-hand side of (2.6), and the fact that  $V(x) = 1/\psi'(x)$  gives

$$\int_{-\infty}^{\psi(m)} \exp(k(t)) dt = \int_{a}^{m} \exp\{k(\psi(x))\} \frac{dx}{V(x)}$$
$$= \int_{a}^{m} \exp(G(x)) \frac{dx}{V(x)}.$$

Hence,

$$\varphi(m) = \exp(-G(m)) \int_a^m \exp(G(x)) \frac{dx}{V(x)}.$$

Now to obtain (2.3) we observe that if

$$v(x) = \exp(G(x)), \qquad v'(x) = \frac{x \exp(G(x))}{V(x)}$$

[using (1.3) and (2.7)]. Therefore, integrating the second member of (2.2) by parts with this v'(x) and  $u(x) = x^{-1}$  will give (2.3), provided that we show that

$$\lim_{x \downarrow a} x^{-1} \exp G(x) = 0,$$

which is equivalent to

(2.8) 
$$\lim_{\theta \to -\infty} \frac{1}{k'(\theta)} \exp k(\theta) = 0.$$

To prove (2.8) we introduce  $\nu(dx) = x^{-1}\mu(dx)$ ; condition (2.1) implies that  $\nu$  is in  $\mathcal{M}$ . If

$$A_j = \int_0^\infty x^j \exp(\theta x) \nu(dx) \quad \text{for } j = 0, 1, 2,$$

Schwarz's inequality implies  $A_1^2 \le A_0 A_2$ , and we have  $[1/k'(\theta)] \exp k(\theta) = A_1^2/A_2$ . Since  $A_0 \to 0$  as  $\theta \to -\infty$ , (2.8) is proved.

(iii) Clearly  $\varphi$  is real analytic in  $M_F$ ; differentiating with respect to m in (2.2) gives (2.4).  $\square$ 

The next corollary shows that  $\varphi$  characterizes F.

COROLLARY 2.2. Let  $\mu_1$  and  $\mu_2$  in  $\mathcal{M}$  be such that  $\mu_j(]-\infty,0])=0$  and  $\int_0^1 x^{-1} \mu_j(dx) < \infty, \ j=1,2;$  denote  $F_j=F(\mu_j)$ . Assume that there exists a nonvoid open interval I contained in  $M_{F_1}\cap M_{F_2}$  such that  $\phi_{F_1}$  and  $\phi_{F_2}$  coincide on I. Then  $F_1=F_2$ .

PROOF. (2.4) and (2.3) show that  $1-m\varphi_{F_1}=V_{F_1}(m)\varphi_{F_1}'(m)<0$ . Hence  $\varphi_{F_1}=\varphi_{F_2}$  on I implies  $V_{F_1}=V_{F_2}$  on I, since  $\varphi_{F_1}'\neq 0$  on  $M_{F_1}$  and this implies  $F_1=F_2$  by Proposition 1.1.  $\square$ 

We now make the following remark.

Let F be a natural exponential family on  $(0, +\infty)$  fulfilling condition (2.1). Let c>0, h(x)=cx and h(F) be the image of F by h. Then if  $M_F=(a,b)\subset (0,+\infty)$ ,

$$M_{h(F)} = (ca, cb)$$
 and  $\varphi_{h(F)}(m) = \frac{1}{c} \varphi_F \left(\frac{m}{c}\right)$ .

### 3. Examples and applications.

Example 3.1 (The gamma families). Let p > 0,

$$\mu_p(dx) = x^{p-1} \mathbb{I}_{(0,+\infty)}(x) \frac{dx}{\Gamma(p)}.$$

It is easily seen that  $\Theta(\mu)=(-\infty,0),\ k(\theta)=-p\log(-\theta),\ \psi(m)=-p/m,$   $M_F=(0,+\infty)$  and  $V(m)=m^2/p$ . Clearly  $\mu_p$  fulfills (2.1) if and only if p>1. In this case, a direct computation, or (2.2) or (2.3), gives, for  $F=F(\mu_p)$ ,

(3.1) 
$$\varphi(m) = \frac{p}{p-1} \frac{1}{m} \text{ for } m > 0.$$

Example 3.2 (The inverse-Gaussian families). Let p>0,  $\mu_p(dx)=p(2\pi)^{-1/2}x^{-3/2}\exp(-p^2/2x)\mathbb{1}_{(0,+\infty)}(x)\,dx$  (a stable law with parameter  $\frac{1}{2}$ ). Clearly  $\Theta=(-\infty,0)$ . A not entirely trivial computation gives the known result

$$k(\theta) = -p\sqrt{-2\theta};$$

one deduces from this  $\psi(m)=-p^2/(2m^2)$ ,  $M_F=(0,+\infty)$  and  $V(m)=m^3/p^2$ . A direct computation of  $\varphi$  from the definition is rather tedious, but one can use one form of (2.5) to get

$$\varphi(m) = \exp\left(\frac{p^2}{m}\right) \int_0^\infty \exp\left(-p\left(2s + \frac{p^2}{m^2}\right)^{1/2}\right) ds,$$

or use (2.2) or (2.3). We obtain

(3.2) 
$$\varphi(m) = \frac{1}{m} + \frac{1}{p^2} \quad \text{for } m > 0.$$

Example 3.3 (The Ressel families). Let p > 0,

$$\mu_p(dx) = \frac{px^{p+x-1}}{\Gamma(p+x+1)} \mathbb{1}_{(0,+\infty)}(x) dx.$$

(See [2] for further details about this distribution.) Again we have  $\Theta = (-\infty, 0)$  and  $M_F = (0, +\infty)$ , but the explicit computation of k is rather intractable, since it is obtained as the solution of an implicit equation. However, the main interest of this  $\mu_p$  is the simplicity of the variance function of  $F = F(\mu_p)$ , which is

$$V(m) = \frac{m^2}{p} \left( 1 + \frac{m}{p} \right), \qquad m > 0.$$

Even if we don't know k, we can compute G(m) up to a constant, since  $G'(m) = m/V_F(m)$ , and we can apply (2.2) or (2.3). Therefore, we get

$$G(m) = C + p \log \frac{m}{m+p}.$$

Now from the definition of  $\mu_p$ , one has  $\int_0^1 x^{-1} \mu_p(dx) < \infty$  if and only if p > 1. Therefore, using (2.3) we get, for p > 1,

$$\varphi(m) = \frac{1}{m} + \left(\frac{m+p}{m}\right)^p \int_0^m \frac{x^{p-2}}{(x+p)^p} dx.$$

We make the change of variable y = x/(x + p) and we get

(3.3) 
$$\varphi(m) = \frac{p}{p-1} \frac{1}{m} + \frac{1}{p(p-1)} \quad \text{for } m > 0.$$

Example 3.4 (The Abel families). Let p > 0,

$$\mu_p(dx) = \sum_{n=0}^{\infty} \frac{p(n+p)^{n-1}}{n!} \delta_n,$$

where  $\delta_n$  is the Dirac unit mass on n. Here we have a point mass on 0 and if the distribution of X belongs to  $F(\mu_p)$ , the Abel family with parameter p (see [2] and [3]), clearly  $\mathbb{E}(1/X) = +\infty$ . Note also that from Lagrange's formula, one has the equality

$$\sum_{n=0}^{\infty} p \frac{(n+p)^{n-1}}{n!} h^n e^{-nh} = e^{ph},$$

for |h| small enough, k is therefore not an elementary function. However, it can

be proved that  $M_{F(\mu_p)}=(0,+\infty)$  and that  $V(m)=m(1+m/p)^2$ . Now, instead of considering the Abel family  $F(\mu_p)$ , let us consider the shifted family F of  $F(\mu_p)$  which is the image of  $F(\mu_p)$  by the map  $x \mapsto x + p$ . [Thus, with the previous X, we are lead to compute  $\mathbb{E}(1/(p+X))$ .] It happens that the result is simple. Actually, one has

$$M_F = (p, +\infty),$$
  $V(m) = (m-p)\frac{m^2}{p^2}$  for  $m > p$ .

Hence G'(m) = p(1/(m-p) - 1/m), and there exists C in  $\mathbb{R}$  such that

$$G(m) = C + p \log \frac{m-p}{m}.$$

A computation, similar to Example 3.3, gives

(3.4) 
$$\varphi(m) = \frac{p}{p+1} \frac{1}{m} + \frac{1}{p(p+1)} \quad \text{for } m > p.$$

We now remark that in the above examples, described by (3.1), (3.2), (3.3) and (3.4),  $\varphi$  is always an affine function of 1/m. This is actually a characterization of the above four examples, up to a scale change. More precisely:

Theorem 3.1. Let F be a natural exponential family concentrated on  $(0, +\infty)$ , such that (2.1) is fulfilled and such that there exist  $\alpha$  and  $\beta$  in  $\mathbb{R}$  with

$$\varphi(m) = \frac{\alpha}{m} + \beta$$
 for all  $m$  in  $M_F$ .

Then  $M_F = (a, +\infty)$  with  $a \ge 0$ . Furthermore:

(a) Either a = 0. In this case  $\alpha \ge 1$ ,  $\beta \ge 0$  and  $\alpha + \beta > 1$ : (i) If  $\beta = 0$ , F is a gamma family with parameter  $p = \alpha/(\alpha - 1)$ . (ii) If  $\beta > 0$  and  $\alpha = 1$ , F is an inverse-Gaussian family with parameter  $p = \beta^{-1/2}$ . (iii) If  $\beta > 0$  and  $\alpha > 1$ , then, denoting  $p = \alpha/(\alpha - 1)$  and  $c = \beta(\alpha - 1)^2/\alpha$ , F is the image of the Ressel family with parameter p by  $x \mapsto cx$ .

(b) Or a > 0. In this case  $0 < \alpha < 1$ ,  $\beta > 0$  and  $a = (1 + \alpha)/\beta$ . Denoting  $p = \alpha/(1 - \alpha)$  and c = a/p, F is the image of the Abel family with parameter p by  $x \mapsto cx + a$ .

PROOF. Carry the explicit expression of  $\varphi$  into the differential equation (2.4). If  $\alpha$  would be 0, one would get  $1 = \beta m$  for all m in the nonvoid open interval  $M_F$ ; an impossibility. Since  $\alpha \neq 0$ , one gets

$$V(m) = m^2 \left(1 - \frac{1}{\alpha} + \frac{\beta}{\alpha}m\right) \quad \text{on } M_F \subset (0, +\infty).$$

The classification of the natural exponential families F on  $\mathbb{R}$  such that V is the restriction to  $M_F$  of a polynomial with degree less than or equal to 3 (see [2], [3] and [4]) shows that  $M_F$  must be a half-line  $(a, +\infty)$ . The above classification gives also the results stated in the remainder of the theorem. But a direct discussion of this remaining part can also be done as follows.

(a) If a = 0, using (2.3) one gets

$$\frac{\alpha-1}{m}+\beta>0\quad\text{for all }m>0.$$

This implies  $\beta \ge 0$  (let  $m \to +\infty$ ),  $\alpha \ge 1$  (let  $m \to 0$ ) and  $\alpha + \beta > 1$ . The rest of the discussion comes from Examples 3.1, 3.2 and 3.3.

(b) If a>0, from the classification one has  $\lim_{m\downarrow a}V(m)=0$  and  $a=(1-\alpha)/\beta$ . Since  $\beta=\lim_{m\to\infty}\varphi(m)$ , one deduces  $\beta>0$  and  $\alpha<1$ ;  $\lim_{m\to\infty}V(m)\geq 0$  implies  $0<\alpha$ .

The rest of the discussion comes from Example 3.4.  $\square$ 

## REFERENCES

- [1] BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families in Statistical Theory. Wiley, New York.
- [2] Letac, G. and Mora, M. (1990). Natural real exponential families with cubic variance functions. Ann. Statist. To appear.
- [3] Mora, M. (1986). Classification des fonctions variance cubiques des familles exponentielles sur ℝ. C. R. Acad. Sci. Paris Sér. I Math. 302 587-590.
- [4] MORRIS, C. N. (1982). Natural exponential families with quadratic variance functions. Ann. Statist. 10 65-80.

LABORATOIRE DE STATISTIQUE ET PROBABILITES UNIVERSITE PAUL SABATIER 31062 TOULOUSE CEDEX FRANCE

DEPARTMENT OF MATHEMATICS AND STATISTICS McGILL UNIVERSITY 805 SHERBROOKE STREET WEST MONTREAL, P.Q. CANADA H3A 2K6