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EDGEWORTH EXPANSIONS FOR BOOTSTRAPPING
REGRESSION MODELS

By WiLLIAM NAVIDI

University of Southern California

The asymptotic performance of the bootstrap in linear regression models
is studied. Edgeworth expansions show that asymptotically, the bootstrap is
always at least as good as, and in some cases better than, the classical normal
approximation. The performances of both the bootstrap and the normal
approximation depend on the rate of increase in the elements of the design
matrix.

1. Introduction. The use of the bootstrap to estimate the sampling distri-
butions of parameter estimates in linear regression was first proposed by Efron
(1979), and further developed by Freedman (1981). The process involves approxi-
mating the distribution of unobserved errors with the empirical distribution of
the centered residuals.

We use Edgeworth expansions to examine the accuracy of bootstrap estimates
of the distributions of linear combinations of regression parameter estimates. It
turns out that asymptotically, the bootstrap is better than the normal approxi-
mation when the elements of the design matrix increase without bound. In other
situations, the bootstrap is always at least as good as the normal approximation.

In Section 2 we describe the linear regression model in detail and make a
one-term Edgeworth expansion for linear combinations of the coefficient esti-
mates. In Section 3 we describe the bootstrap procedure, and derive an Edge-
worth expansion for the bootstrap distribution. The accuracy of the bootstrap is
assessed by comparing its Edgeworth expansion with that of the true distribu-
tion. Proofs of the theorems are given in Section 4.

2. The model. The model studied is Y = X8 + ¢, where X is an n X p
matrix, 8 is a p X 1 vector of unknown parameters and ¢ is a n X 1 random
vector whose components are independent and identically distributed with
unknown distribution F. The number p of parameters is fixed. The distribution
function F is nonlattice with mean 0, second moment o2 and a finite eighth
moment. The matrix X is not random. Assume that the regression model is
embedded in an infinite sequence of such models such that the number n of
observations tends to co. We suppress the index for that sequence.

Consider the distribution of a linear combination of B, i.e., a random variable
of the form vn ¢"(f — B), where c is a p X 1 vector and f = (X"X) 'XTY is
the least-squares estimator of 8. Without essential loss of generality, assume that
the problem is scaled so that nc™(XTX) !c = 1, and that the component of ¢
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largest in absolute value is bounded away from both 0 and oco. Let the coordi-
nates of Vn cT(XTX)"'XT be a,, a,,..., a,. Now ync"(8 — B) = 7, a,s,. For
k=12,..., let s, =X af Then s, = £7_, a? = 1 by the normalization.

The vector § of fitted values is given by § = HY with H = X(XTX) !XT,
The diagonal elements A, satisfy 0 < h;; <1, and X7, h;; = tr(H) = p. Let
A pax = Max, _; ., h;;. We assume

max

AssumpTION 1. A___ — 0.

This condition is necessary and sufficient for asymptotic normality of all
linear combinations of the form vn ¢*(f — B) [see Huber (1973)].

We make an Edgeworth expansion of the distribution of yn cT(/§ — B). Recall
that Vn cT(8 — B) = L, a,s;. Define

1

m,_ = - -
max; ;<. @;

n

The error rate in the expansion will turn out to depend on m,.
By Huber (1981), Proposition 2.2, page 159,

1
(2.1) m— <h

max *

n

It follows from Assumption 1 that m, — oo.
It is clear that

(2.2) sp=0(m,*??) and s, = O(sk_l/\/m_n).

It follows from the scaling that the component of Vn (X TX)~! with largest
absolute value is O(1/ Vn ). Therefore the column vector a is a bounded linear
combination of the columns of X, multiplied by 1/ Vn. So, for example, in the
sample mean case, m, = n and s, = n~*72/2 for all k. If the elements of X are
uniformly bounded, then m, = O(n) and s, = O(n~*=9/%) for all k. If the
elements of X increase without bound, then the orders of m, and s, may
depend on c, but they will generally be larger than in the bounded case.

To obtain an Edgeworth expansion for the distribution of Y7, a;;, it is
necessary to ensure that the behavior of the sum ¥I, a;¢; will not be unduly
influenced by its largest terms. To do this, we require that a sufficiently large
number of the a; be close in absolute value to the largest a;. Specifically, for
n>1 and { >0, let n, denote the number of i < n with |ai|\/ﬁ;> ¢ We

assume
AssuMPTION 2. n./(logm,) — oo for some { > 0.
For example, if m,, is equal to a power of n, then log m, = O(log n). Then for

some {, the number of a; greater than {//m, in absolute value must grow
faster than log n.
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THEOREM 2.1. Suppose Assumptions 1 and 2 hold, and that F is a nonlat-
tice distribution with finite third moment p,. Let ®(x) and n(x) denote the
standard normal distribution and density functions, respectively. Let F, denote
the distribution function of L!_, a;e;. Let

G(x) = ®(x/0) + n(x/0)[(s515)/(60%)] (1 — x2/a?).
Then

sup|F,(x) — G(2)| = o(1/ym,).

The theorem shows that the speed of convergence to normality of F, depends
on \/r_n‘n and s;. If the elements of X are uniformly bounded, with both u, and
s3 # 0, then the speed of convergence is O(1/ Vn), which is the speed of con-
vergence of the sample mean.

The value of the convergence rate 1/ \/m‘n depends on the vector c. By (2.1),

the largest possible value of 1/ m,, is /A, . The following proposition states
that this rate is attained for some c.

PROPOSITION 2.1. There exists a vector ¢ such that1/m, = h_,,.

3. The bootstrap. Let F, be as in Theorem 2.1, and let 6% =
(n — p)"'Z2 e} be the usual estimate of the error variance. Let d be the vector
of residuals: d = Y — X8 =¢ — X(X"X) 'XTe. Let e = (d — d), the vector of
residuals centered to have mean 0. Define F to be the empirical distribution of
the centered residuals, the distribution assigning mass 1/n to each of the points
€, €y ...,€,

Now assume we have on hand an observation y, and that the estimate
B =(XTX) 'XTy of B and the residuals e,, ..., e, have been computed. Con-
sider the model Y* = XB + ¢*, where &, ..., ey are independent and identically
distributed with distributed ¥. Let 8* be the least-squares estimate of f in this
model; that is, f* = (X"X) !X TY*. The bootstrap approximation of the distri-
bution F, is the conditional distribution of v c¢™( B* — B) given y. Denote this
distribution by F’n. Our purpose is to investigate the difference |F',L(x) — F(x)|.

Denote the variance of F by 62, and the kth moment by fi x for & > 3. The
dependence of these moments on n is suppressed in the notation. We make an
Edgeworth expansion of the distribution Fn(x). The following proposition en-
sures that the first four moments of F are well behaved.

PROPOSITION 3.1. Suppose F has 2m moments. Then fi, — p, = 0,1/ Vn)
fork=1,...,m.

THEOREM 3.1. Suppose Assumptions 1 and 2 hold, and that F is a nonlat-
tice distribution with finite eighth moment. Let ®(x) and n(x) denote the
standard normal distribution and density, respectively. Let F, denote the distri-
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bution function of ¥}, a;e¥. Let

(3.1) G(x) = ®(x/6) + n(x/6)[(s4it5)/(66°)] (1 — x%/6%).
Then

(3.2) sup|,(x) = G(x)| = o1/ {m,).

We now examine the size of the difference |F,(x) — F(x)|. It follows from
Theorems 2.1 and 3.1, and (2.2) that

(3.3) sup|F,(x) — E,(x)| = 0,(1/¥n) + o(1/ym,),
while
(3.4) sup|F,(x) — ®(x/6)| = Op(l/‘/;l‘) + O(s,) + 0(1/\/m—n).

Comparing (3.3) with (3.4) shows that the bootstrap is always asymptotically
at least as accurate as the normal approximation, and better in situations where
m,/n -0 and s;=0(1/ \/E; ). In these situations the bootstrap error is
o(l/ \/m—n ) while the normal approximation error is O(1/ \/m—n ).

A similar analysis of the standardized case shows that

(3.5) sup|F,(ox) = F(ox)] = o(1/m,),
while
(3.6) sup|F,(ox) — ®(x)| = O(s,) + o(1//m,).

Comparing (3.5) with (3.6) shows again that the bootstrap is asymptotically at
least as accurate as the normal approximation, and better whenever s; =

o1/ |m,).

ExXAMPLE 3.1. Suppose the elements of X are uniformly bounded. Then the
coefficients a; in X, a;e; = Vn e (B — B) are uniformly O(1/ Vn). It follows
that s, is O(1/ Vn) and m,, is O(n). The asymptotics of this situation are very
much like those for the sample mean. The bootstrap and normal approximation
each have an error O(1/ Vn) in the nonstandardized case, while in the standard-
ized case, the bootstrap error is o(1/ vn), and that of the normal approximation

is O(1/ Vn).

ExaMpPLE 3.2. Let X be an n X p matrix whose first n — Vn rows are
uniformly bounded, and whose last Vn rows each contain elements of order n'/“.
For most choices of contrast vector c, the first n — Vn of the a; will be O(1Vn),
and the last Vn will be O(n~"*). Therefore 1/ m, and s; are both O(n~'/*).
The bootstrap outperforms the normal approximation in both the standardized
and nonstandardized cases; its error being o(n~'/*) compared to O(n~'/*) for
the normal approximation.
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ExaMpLE 3.3. This example shows that the order of s; can be less than its
maximum possible value 1/ /m,,. Let X be a matrix whose first n — n'/* rows
are uniformly bounded, and whose last n'/* rows each contain an element of
order n'/%. For most contrast vectors c, the first n — n'/* of the a; will be
O(1/ Vn), and the last n'/* will be O(n~'/%). Thus the order of 1/ /m, will be

O(n~'/*), and the order of s; will be O(1/Vn). The bootstrap and normal
approximation are equally accurate in this situation, with errors o(n~'/*) in
both the standardized and nonstandardized cases.

ExaMPLE 34. Two independent samples of equal size are drawn from two
distributions differing only in location. Consider estimating the difference in
population means with the difference in sample means. This corresponds to the
regression model in which the design matrix is a single column half of whose
entries are 1 and half —1. It follows that 1/ \/E =1/Vn, but s; = 0. Therefore
the first Edgeworth correction term is 0 as well. This example illustrates the fact
that symmetry in the design causes the same increase in efficiency as does
symmetry in the underlying distribution.

4. Proofs.

Proor or THEOREM 2.1. The Fourier transform of G'(x) is v(¢) =
e C/2[1 + [(s4m3)/6)(it)%]. Let ¢(¢) be the characteristic function of F. Let
¢ > 0. Berry’s smoothing lemma [see Feller (1971), page 538] allows us to bound
the difference sup, |F,(x) — G(x)| by an integral involving the Fourier trans-
forms of F, and G. Specifically, let A be a constant large enough so that
¢A > 24sup, |G’(x)|. Then

4
dt + —

o

It must be shown that the value of this integral is o(1/ |m,,). To do this, we
break the region of integration into two parts. First, for any § > 0, the contribu-
tion of the interval §/m, < |t| < AJm,, to the integral is less than

lj«b(a,-t) - v(2)

Jj=1

— 1
sup |Fy(x) - G(x) < [ —

- Aym, |t

1 r ' 1
— t)|dt + —|y(2)) dt.
/ts‘/»»—,.suuwm—nltl j=ﬂll¢(a, )| f«wm—,.s|t|sA,/rn—nltl (e

Clearly the right-hand term approaches O faster than any power of 1/ \/E; .
Since F is nonlattice, |¢(¢)| is bounded away from 1 on compact sets not
containing the origin. Let { be as in Assumption 2 and let v < 1 be such that
|o(t)] <v for {8 < |¢t| < A. For large n, the left-hand integral is less than
o' log(A\/;z—n ), which, by Assumption 2, approaches 0 faster than any power of

1/ \m,.
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Let y(t) = log ¢(¢) + 0%t2/2. The moment conditions on F ensure that the
third derivative of y is continuous at 0. Choose § > 0 so that, for |¢| < §:

@ (o) < o%2/4.
(i) 0" (¢) — ¢ (0)] <.
(iii) [(shs/6)(it)?] < 02¢2/4.

We are now ready to bound the integral over the region |¢| < §/m,. This
integral is equal to

1

/ e /2
t|<8‘/_|t|

The inequality |e®* — 1 — B| < e®*(Ja — B| + B2/2), where A = max(|al,|B)|), is

valid for all complex a and B. Using this inequality, the integrand above is seen
to be less than or equal to
(s 3!‘3)
- (it)°

g:ltl/(ajt) ) 122,

Now ¢’(0) = ¢”(0) =0 and ¢”(0) = i%u, It follows that for |¢| <
8/m,,, |Zh-, ¥(a;t) — (sgiy/6)(it)’| < et’|s;|. Thus the integrand is less than

1 —022 /4 Sy ( 3:“'3)
l—tl-e / [st — (it ):|

Since ¢ is arbitrary, and s; < O(1/ \/m—n ), the integral o(1/ \/m_n ). O

exp[ 5 u(a, t>] - S Gyl

é ( ) 3#3(it)3

1 —02t2/2 A
17 ; 6

where

S3lg

——(it)*

A= max(

PROOF OF PROPOSITION 2.1. Assume, without essential loss of generality,
that XX = nl, where I is the p X p identity matrix. Then H = (1 /n)XX T,
Let X, be the row of X with the largest Euclidean norm. Then A, = A,
(l/n)XLXL (1/n)|X,°. Let ¢ = X/|X;|. Then a = \/—X(XTX) iy —
(1/Vn)Xe = 1/ VnXXX[)/1X,|, so ap = 1/ Vn )X, X[)/|X,| =
(1/Vn)|X,|. Thus a? = (1/n)|X;)? = A, O

ProOF oF THEOREM 3.1. Let ¢(t) be the characteristic function of F. The
proof of Theorem 2.1 will go through, replacing ¢ with ¢, ¢ with /, ¢ with é and
p3 with fis, if we show that § can be chosen independently of n and that, for any
constant A, the product [1}_ |¢(a )| approaches 0 faster than any power of
1/m, for t satistying & < |t| < A By Freedman (1981), Lemma 2, F=F
weakly, so ¢(¢) = ¢(t) uniformly on compact sets. Therefore 17 |q5(a ) =0
faster than any power of 1/m,,.
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We now show that given ¢ > 0 there exists § > 0 such that conditions (i), (ii),
and (iii) in the proof of Theorem 2.1 are satisfied for all n. This is clearly true for
conditions (i) and (iii) by a.s. convergence of the sample moments. It is true for
condition (ii) since the a.s. convergence of fi, shows that for small |#|,

I(i; " (t) _ $/// (O)I — fx3(eilx —
PRroOOF OF PROPOSITION 3.1. The difference i, — p, can be written as

n 1 n
- Z( —""k)— - Z(ef—""k)+ - Z(ej’?—sf).
n =1 n =1
It suffices to show that (l/n)Z‘,’?_l(e’~E -~ s’i') is O,(1/ Vn Vn). Let d = ¢ — e. Then

£ -9 E L0 -4l £ fay]

r=1

x“ﬁ(dx)‘ <e. ]

where the ¢, are constants depending on r and k, but not on n.
For r=1,2,...,k,

LR e f G adr i
n 2 dje; j=1n1/4n3/4—j1‘/; =

By the strong law of large numbers, X7_,(e2*~2"/n%?) = O(1 / vn). It is clear
that E(X7_,d}) = po®. Since z"_ldzf < Er,d}), Iho(d¥/Vn) =
0,1/ Vn vn). Therefore A/n)Xi_, djes k=r =0 ),(1/ \/_) ThlS completes the proof. O
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