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VERY WEAK EXPANSIONS FOR SEQUENTIALLY DESIGNED
EXPERIMENTS: LINEAR MODELS!

By MiCcHAEL WOODROOFE
University of Michigan

In sequentially designed experiments with linear models, each design
variable may depend on previous responses. The use of such sequential
designs does not affect the likelihood function or the functional form of the
maximum likelihood estimator, but it may affect sampling distributions. In
this paper, asymptotic expansions for sampling distributions are obtained.
The expansions are very weak ones in which a confidence curve (a function of
the unknown parameters) is replaced by a confidence functional defined on a
class of prior distributions. The proofs use a version of Stein’s identity.

1. Introduction. Consider an adaptive linear model of the form
(1) yo=x0+e,, k=12...,

where e, e,, ... areii.d. standard normal random {rariables, 0=(0,...,0,)isa
(column) vector of unknown parameters, with values in an open subset @ of R”
and the prime denotes transpose. Here “adaptive” means that x, may be of the
form

(2) xk=xk(w1:"-’wk’ BITRRED) yk—l) ERP:
for k =1,2,..., where w,, w,, ... are independent of e,, e,,... and have a (joint)
distribution which is independent of §. The w,, w,,... may represent auxiliary

randomization and /or covariates. Thus, if x, is thought of as a design variable,
then the model allows the design variables to depend (measurably) on previous
responses, auxiliary randomization and /or covariates. This model is quite broad
and there has been substantial interest in it; see, for example, Wei (1979), Lai
and Wei (1982) and Wu (1985) and their references.

The primary objective of the paper is to find approximations to the sampling
.distributions of maximum likelihood estimators for models of the form (1) and
(2). Attention is restricted to cases in which these estimators are asymptotically
normal, after suitable standardization, but even then, normal approximation
may not have good numerical accuracy, due to the adaptive nature of the design.
Woodroofe and Keener (1987) provide an example in which optional stopping
may have a dramatic effect on sampling distributions. Refined approximations
may be obtained in the form of asymptotic expansions.

The expansions presented here are very weak ones, as in Stein (1985) and
Woodroofe (1986), in which a confidence curve (a function of ) is replaced by a
confidence functional defined on a class of prior distributions; see Section 5 for
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the precise formulation. In order to derive these expansions, it is necessary to
develop asymptotic expansions for posterior distributions which may be inte-
grated with respect to the marginal distribution of the data. This question is of
independent interest; it has been considered by Ghosh, Sinha and Joshi (1982),
Rehalia (1983) and by Bickel, Goetze and van Zwet (1985). Here it is discussed in
Section 4.

Applications to a sequential design proposed by Robbins and Siegmund (1974)
are described in Section 6 and compared to simulations in Section 7. Extensions
to the case of unknown variability are presented in Section 9.

The objectives of this paper are similar to those of Ghosh, Sinha and Joshi
(1982), Bickel, Goetze and van Zwet (1985) and Woodroofe (1986), but the
derivations are quite different. Here a version of Stein’s identity is used in place
of Taylor series approximations. This leads to less restrictive conditions on the
prior [for the model (1) and (2)].

2. Stein’s identity. A real valued, measurable function f defined on R?” is
said to be almost differentiable iff there is a function vf from R? into R” for
which

fa+y) = ix) = [ 'Y vflx+ ty]dt

for a.e. x € R” for each y € R” [see Stein (1981)].
Let @, denote the standard normal distribution in R” and let ¥ denote a
finite signed measure of the form

(3) ¥(dz) = {(2)D,(dz),

where f is an almost differentiable function for which vf is integrable and
Vf=0ae. on {f=0}. If h is a measurable function on R ?, which is integrable
with respect to ®, and ¥, let

®,h= [hd®, and Yh= [hd¥.

Here and below integrals extend over the entire space unless otherwise indicated.
If h is ®,-integrable, then one may define a function

g= (gla"':gp)’:Rp—) Rp

by
(4) g,(2,2) = e [[h(,w) = k()] e/ du,
z
(5) hyaa9) = [ 2)8, 0 (de)
for ze R, ae. yeER’/7Y, j=1,...,p and h, = h. Here g; is regarded as a
function on R ?, which is constant in its last p — j variables for j = 1,..., p. For

example, if h(z) =2z, z€ R?, then g(z)=(1,0,...,0) for z€ R? and if
h(z) = ||z]|% z € RP, then g(2) = z for z € R”.
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PROPOSITION 1. If his ®,-integrable, then h is V-integrable and
v
Yh— @, k- V1 = fg (T) dv.

Proor. If p =1, write ® for ®, and let ¢ denote the standard normal
density. Then (temporarily letting the prime denote derivative)

Vh — ®h - V1 = f:{f;f’(x) dx}[h(y) — ®h|o(y) dy
- 7 {[71h() - onlo(») ) (x) ds

= [ a(x)f(x)0(dx),
where the interchange of orders of integration is justified by the assumed

integrability of f’. For p > 2, define f; by (5) and let 7; denote the projection of
R’ onto R/~" for j =1,..., p. Then for ae. y,,..., ¥,

p

J=1

and

Yk = hyy) = fw(hj = h;_rom) () f,(y)2;(dy)
- fwv]{f_woog,-(y, Z)ﬁ_ifj(y’ 2)e(z2) dz}d)j_l(dy)

d
= Lpgj(yl:"" %)b};f(yl""’ yp)q)p(dy)’

where (9/3y;)f denotes the jth component of Vf for j=1,..., p (and the
formal calculations are easily justified). The proposition now follows by summing
over j=1,...,p. 0O

It is easily seen that the transformation from & to g is linear and that

(6) sup|lg(y)ll < y(27p) sup|h(y)l,
y y
where || - || denotes the Euclidean norm of a vector (and later the trace norm of a

matrix); see Stein [(1987), Chapter 2]. For later reference, observe that

(7) 2,(8) = [B,(2)),-., 0,(g,)] = [¥h(3)2,(dy),

provided that the later integral exists and h is ®,-integrable.
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3. Preliminary lemmas. Let x,, y;, x,,... be as in (1) and (2). Further, let
X,=(xp...,x,), Y, =(»,..., ) and ¢, =(e,...,e,), so that the model
may be written

Y =X.0+¢, n=>1.

Suppose that XX, is positive definite w.p. 1 P, for all § € Q for all sufficiently
large n, say n > n,, where n, is nonrandom and let

J, = (X/X,)'X.Y,, n=n,

It is well known that the likelihood function for the adaptive model (1) and (2) is
the same as if the design variables had been predetermined. So, 0:1 is the
maximum likelihood estimator of 6, whenever it is in @ and the likelihood
function is ’

L,(0) « exp{ —1I1X,0 — X, 0,1}, o6eQ.

Now consider a Bayesian model in which there is a random variable ® with a
density &, (1) holds conditionally given ® = @ for all § € R? and e, e,,...,
w,, W,, ... are independent of ©. Probability and expectation in this model are
denoted by P and E, or by P¢ and E¢ if there is danger of confusion and
conditional expectation given w,, x,,...,w,, x,, is denoted by E”". Here and
below £ is regarded as a function on R” which vanishes off of .

For n > n,, XX, may be written in the form

X,X,=B,B,,
where B, is a nonsingular p X p matrix. There are several ways to do this. One

is to let B, be a square root of X/X,. Another is to first obtain orthogonal

vectors ¢, ..., ¢, in R” from Gram-Schmidt orthogonalization of the columns of

X,. Then C = (¢,,..., c,) may be written in the form C = X,U, where U is an
upper triangular matrix and XX, = B,B, with B, = U~ !. Let
Z,=B,(6 -4,

and

A, = minimum eigenvalue of XX, n = n,.

If ® has prior density £, then the posterior density of Z, is
$a(2) o exp( = Hlzl1*)£[ 6, + B, 2]

for z € R? and n > n,. This is of the form (3), so that Stein’s identity is
applicable.

LEMMA 1. Suppose that ¢ is almost differentiable and V¢ is integrable. If h
is ®,-integrable, then

E"[K(Z,)] = &,k + E"[g(Zn)'B,[‘(Z;)(@)], n > n,.
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Moreover, if
sup|h(¥) <1,
y

then

vé
“g—(@)“},

n

2mp |2
(B [1(Z,)] - @,(k)] < ( : ) E"
w.p.1 for all n > n,. ‘

ProOF. The first assertion follows directly from Proposition 1. If |A| <1,
then ||g|| < (27p)'/? by (6) and, therefore,
vé
—(©
F)e

lg(znyB,:l(Y;)(@) < (2”’)1/2

ATl«
w.p. 1 for all n > n,. The second assertion follows by taking conditional
expectations. O

b

LEMMA 2. Suppose that ¢ is almost differentiable and that v is integrable.
If
(8) limA, =00 w.p.1(F)),ae.0€Q,
n

then the conditional distribution of Z, given wy, y,,...,Ww,, y, converges weakly
®, w.p.1(P)asn — w.

ProoF. Since V¢ is integrable, E™{(V£{/£)(©)}, n>1, is a convergent
martingale and, therefore, lim, E*||(V£/£)(©)|/(A )2 = 0. So, Lemma 2 fol-
lows easily from Lemma 1. O

LEMMA 3. If (8) holds, then 6, - 8 w.p. 1 (P,) for a.e. § € Q.

Proor. If ¢ is any almost differentiable density for which ¢ and v§ are
integrable and § vanishes off of {2, then Z,, n > n, are stochastically bounded
by Lemma 2. It follows that §, — © in probability as n — oo and, therefore,
that © is almost measurable with respect to the sigma-algebra generated by
Wy, Yy W, .. . So, E(BO) - @ w.p. 1 (P) as n — oo, by the martingale conver-
gence theorem, since E|@| = [|0|£() d0 is finite, by assumption. Moreover, by
Lemma 1,

E"(®) - §, = (X,:Xn)“E"[(—Vf)(a)],

which tends to zero w.p. 1 (P) since A, = o0 and E*{(V£/£)(©)} is a conver-
gent martingale. The lemma follows easily, in view of the arbitrariness of £ O

4. Integrable expansions for posterior distributions. Let ¢t=1¢,, a > 1,
be a family of stopping times with respect to w,, y,, Wy, ¥,,... . That is, ¢, is a
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positive integer or co valued random variable for which ¢, < co w.p. 1 (F) for
a.e. € Q and the event {t, = n} is determined by w;,..., y, forall n = 1,2,...
and a > 1. Suppose that

(9) t,>n,, Vax1, t,—> o w.p.1(B)
and
(10) Q.=VaB;' > Q(8) wp.1(R)

as a — oo, for a.e. § € Q where Q(8), 8 € Q, are p X p matrices. Here and below
t is written for ¢, to avoid higher order subscripts. Let £ denote a density on R »
which vanishes off of £ and suppose further that

11 a/\,, a > 1, are uniformly integrable w.r.t. P = P%,
t

The fixed sample size case, t, = a = n, is not excluded.

THEOREM 1. Let ¢ denote an almost differentiable density ( prior) with finite
Fisher information, that is,
2

(12) f’v?g £dl < co.

Suppose that conditions (8), (9), (10) and (11) are satisfied. Let
vé

(13) R(h,0) - (00| T |0), e,

for bounded measurable functions h defined on R ”, where g and h are related by
(4); see also (7). Then

B(H(Z)] - 0,(h) ~ 7=R(1,0)| =0

w.p. 1 and in the first mean [that is, in L'(P)], where E* denotes conditional
expectation given w,, ..., Y,

lim esssupva
a |hl<1

PrOOF. Of course, E{w(f,®)} = E"{w(f,,®))} a.e. on {t =n} for all n =
1,2,... and all bounded measurable functions w on £2, since ¢ is a stopping time.
For |h| <1 and a > 1, let

Ro(h) = Et[g(zt)'Q,,(vf)(@)]

(19 - plazes| e

+E’{g('zt)'Qa[Vf<®) - Et(vf(@))]}.
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Then E'[h(Z)] - ®,h =1/ Va)R (h) for fixed h, by Lemma 1, since ¢ is a
stopping time. So, the theorem asserts that esssup; ., |R (k) — R(h,0)| - 0
w.p. 1 and in the first mean. Convergence w.p. 1 is clear, since (Jx + y — 2| <
Y+ 1z = ol + o = w| + lw = 2],

IR.(h) = R(R,0)| < E'{g(zz)’Qa‘[v?s(@’) - Et(v?s(g)”}l

o |az) - oo Fo)

+|oer(@. - aonE| Feo)|

+ ¢p(g)’Q(®)[E‘(v?§(®)) - v?s(@)”
(15) 1/2
< (2vrp)‘/2()%)>

o s{ o

Asta - sol(2] o Feo

(v
E( £ (9))”

s vé t vé
+(27p)"*1Q(O)] H—g(@) —E (?(6))”

+(27p)"*1Q, — Q(O)]

for all a > 1. In fact, EX[(V£/€)(O)] = (VE/E)(O) wp. 1 (P), as a — oo, by
the martingale convergence theorem and Lemma 3, esssup, || E ‘1&(Z,) -
®,(8)]ll > 0 w.p. 1, by Lemma 1 and ||@, — @(0)|| = 0 w.p. 1, by assumption.
For mean convergence, it suffices to show that the last four lines of (15) are
uniformly integrable. This follows easily, from Schwarz’s inequality, since a/A,,
a > 1, are uniformly integrable, by assumptlon IE"[&(Z,) — (&)1, n = n,,
are bounded and E”||(V£/£)(©)||% n = 1, is a uniformly 1ntegrab1e martingale,
by (12). O

5. Average confidence levels. With the notation of the last section, con-
sider confidence sets of the form
%.:0€6,+ B/'C,

where C,, n > 1, are measurable subsets of R ? or (X,, Y,)-sections of a product
measurable subset. The confidence curve of such a procedure is then

v(6) = B{Z,€C), €9 ax1

and approximations to y, are of interest. In the present context, it is easier to
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approximate averages of v, than vy, itself. If £ is a density on R ? which vanishes
off of Q, then the average confidence levels under ¢ are defined by

T(6) = [1a(8)£(0)d6, a1

If one imagines repeated applications of the confidence procedure, by a
sequence of users say, then it seems reasonable to suppose that the parameter
values will vary among users. If one supposes further that the parameter values
are drawn from a density ¢, then y,(£) represents the long run relative frequency
of coverage in many replications of the experiment. So, having frequentist
confidence y means that y,(¢) > y. Here ¢ is unknown and perhaps unknowable,
since estimating ¢ requires access to others’ data sets and, even then, there is
only indirect information about it. Requiring ¥,(£) > ¥. for all £ is equivalent to
requiring y,(8) > v for all 6, but if some smoothness is assumed of £ and if the
inequality is replaced by an approximation, then the two conditions may be
different; see below. The approach taken here is to regard the confidence
functional 7, as a frequentist measure of confidence.

For a fixed £, let P and E denote probability and expectation in the Bayesian
model of Section 3. Then Y,(¢) = P(Z, € C,}, for all a > 1. So, Theorem 1 is
relevant.

THEOREM 2. Suppose that (8), (9) and (10) hold and that there is a fixed
measurable subset C of R? and a function r on Q for which

(16) [ s+ 1509, () > 0

and
I, = ‘/E[@p(ct) - (I)p(c)] - r(o)
as a = o in Py-probability for a.e. § € Q, where A denotes symmetric difference.
Let = denote the class of all almost differentiable densities ¢ for which §
vanishes off of ©, r,, a > 1, are uniformly integrable with respect to P = Pt and
(11) and (12) hold. Then, for every § € E, as a > oo,
1 1
(6) = 8,0) + = [[H(O)(0) + Q@) 7E(0)] o + o =),
where

u= Lyd)p(dy).

PrOOF. Let C, r, and r be as in the statement of the theorem and let ¢ e k.
Then, for all a > 1,

7(8) — ®,(C) = P(Z,€ C) - 8,(C) = E{P'[Z,€ C,] - 8,(C)}

1
= ﬁE{ra +R,(I)},
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where R, is as in (14) and I, denotes the indicator of C. Let g, and g be the
functions defined in (4) when A = I, and h = I.. Then ®,g, - ®,g in probabil-
ity by (7) and (16). So

vé
E{r,+ R(I;)} - E{r(®) + u'Q(@)?(('D)

as a = o, by (16), the uniform integrability of r,, a > 1 and Theorem 1. O

In the corollaries below, £%(8) denotes the vector whose jth component is

HOES|

{lw|>16;}

forallf € R?” and j=1,..., p.

dw

3
(0,04, 6,)

COROLLARY 1. If Q@ = R? and the entries of Q(8) are almost differentiable,
then as a — o0,

1
Ya(€) = @,(C) + —‘/%——f[r(a) —wQ¥0)1]£(6) db + O(V—a_)’
where
d

and 1 =(1,...,1), for all { € Z for which ||Q*(0)|||£*(9)| is integrable over
RP7

COROLLARY 2. For § € R” and a > 1, let
1
v (0) = 8,(C) + =[r(8) - wQ¥(o)1].
Then
lim [Va [v,(6) ~ v(6)]£(6) d6 = o,
for all £ € = for which ||@*8)|||£*(0)| is integrable over R ™.

ProoFs. Corollary 1 follows from an integration by parts; Corollary 2 is then
clear. O

REMARKS. 1. For the frequentist interpretation of ¥, to be reasonable, it is
necessary for the class Z to be sufficiently large—for example, for its weak
closure to contain all distributions.

2. If ¥, is regarded as a functional on the class =, then the conclusion of
Corollary 2 may be regarded as a form of weak convergence. It is the motivation

for the term “very weak expansion” in the title.
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3. Corollary 2 does not assert that y*(0) — v,(8) = o(1/ Va) for any fixed .
An example where this fails is described by Woodroofe (1986). In this example,
however, y}*(6) provides a good numerical approximation to v,(6) for those fixed
0 for which simulations are available.

If the coverage probabilities depend on 6 in a sufficiently smooth manner,
then it may be possible to deduce that y*(8) — v,(8) = o(1/ Va) for fixed 6, as
in Bickel, Goetze and van Zwet (1985). This is an interesting possibility which
deserves further exploration (and will require further conditions on the stopping
times and/or design). However, the point is not a crucial one, since the very
weak expansions admit their own frequentist interpretation.

4. The terms Q(0)v£(f) and Q% 6)1, which appear in Theorem 2 and
Corollary 1, may be regarded as bias terms, since

VaE(z,) = VaE[EY(Z)] = E[Qﬁf(@)]

- 5|ae) (0] - fa@)ve(e) s,

under the conditions of Theorem 2. :

5. In some cases it is possible to choose C, in such a manner that r(8) =
v'@%0)1 for all 6. For example, this may be accomplished by subtracting a
correction for bias in some cases. Then ¥,(§) = ®(C) + o(1/ Va)forall £ € E, so
that the speed of convergence of ¥,(£) to its limit is increased.

6. While the derivations of y}* and the correction term u'@¥(8)1 use Bayesian
ideas, vy, and v} do not depend on the prior.

7. In fact, the convergence in Lemma 2 is in total variation.

8. It may be amusing to observe that no use of Taylor’s theorem was made
in the proofs of Theorems 1 and 2. An alternative approach is to expand
£, + B, ':z) in a Taylor series about 6,. This leaves a remainder term involving
v£(0,)/¢(8,), which need not be integrable. The use of Stein’s identity avoids
this problem.

9. The normality assumption has been used in a crucial way. For some
nonnormal models, it may be possible to define a measure of distance Z, between
the parameter and the maximum likelihood estimator, so that the likelihood
function is proportional to exp(—||Z,||?/2). Then the posterior density of Z, is of
the form (3), but the function f contains some Jacobian terms.

10. While the hypotheses of Theorems 1 and 2 are quite specific about the
error distribution, they are quite general about the nature of the adaptive design.

6. An example of Robbins and Siegmund. Suppose there are two treat-
ments A and B which produce normally distributed responses with means p and
v and unit variances. Let z = 0 or 1 accordingly as treatment A or B is given.
Then the response to either treatment may be written in the form y = x'6 + e,
where x = (1, 2), 8, =p, 6,=v — p and e is a standard normal random vari-
able. So, the model (1) and (2) allows the treatment given to the nth subject to
depend on the results from the first n — 1.
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In clinical trials, it may be desirable to use a design which reduces the number
of subjects who receive an inferior treatment. Robbins and Siegmund (1974)
proposed the following design for such purposes. Let z; =0 and 2z, = 1. For
n=>2let

2s,—n

Zoy =1 iff 26, ,> ( )(1 +e)a,

where
s i2=3s (n—sn)/n,

¢>0and a > 1 are design parameters and 6§, = (6, 10 n’2) for all n > 2. This
sequential design is to be used in conjunction w1th the stopping time

S, =2z + - +z

t= inf{n > 3:i2- 0;’2| > a}.

Then
, n s,
Xan= [sn sn]’ nx2,
and ,
Ja [
Q.= — lt/‘/z O, ax=1.
1 | —s,/t 1
Now,
1 12+ 2 t 1414+
—s, > — , I A
a 0, ¢ a 0, (2+¢)
and
a
=3 = b

w.p. 1 (B) for all 8 for which 6, > 0, by (the proof of) Theorem 1 of Robbins and
Siegmund (1974) and a dual result holds for 6, < 0. It follows easily that
Q, — Q(0) w.p. 1 (P)) for a.e. 8, where Q(0) = \/|_0§ M and M is one constant
value for 6, > 0 and another for 8, < 0. The lower right-hand entry of M is 1 in
both cases.

In this example, there is natural interest in 8, = » — p, the mean difference in
responses. Let 13 b,( b6, ), where b,, n > 1, are bounded continuous functions
which converge contmuously to a hmlt b a.e. on R? and consider upper confi-
dence bounds of the form %,: 8, < 0, o + ¢,/i,, where c, = ¢ + b./i,, n> 3. This
is of the form considered in Sectlon 5 with C, = {z: z, < c,}, for n > 3. It is
easily seen that

sgn2
210,

u=-p(c)0,1), w01 = v(c)

and

r,=Va[®(c,) — @(c)]"* > o(c)b(6)i6s]
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in Pj-probability for a.e. 8. Let

) v2(0) = 0(c) + —J%qo(c)[@ b(0) + f,’;’f]

for 6 € R? and a > 1. Then Va[y, — Y51 = 0 very weakly, by Corollary 2.
The size of = depends on b,, n > 1, and there is special interest in b(0) =
—sign(6,)/2|6,|, 6, # 0. The next result determines = for this case.

PROPOSITION 2. Suppose that ¢ has finite Fisher information and that 6,¢ is
integrable. Then condition (11) is satisfied and if |b,| < K/ |0,,2| foralln = 3 for
some constant K, thenr,, a > 1, are uniformly integrable.

ProoF. Since the minimal eigenvalue of a 2 X 2 matrix is at least as big as
the determinant divided by the trace, A, > i2/2 > 1 and, therefore,

a 2a o
<< 216, 5| < 216,| + 8|IZ,|I,
¢ 7

which is uniformly integrable by Lemma 4, below.

Neglecting the excess over the boundary, as in Wald (1947), Robbins and
Siegmund show that E,(i,) = a/|0,| for 8, # 0. A variation on this argument, as
in the Appendix to Wald’s book, shows that there is a C > 1 for which

a
Ea(l—z) <C+C/|8), Va,b,+0.

t

So,

supE

a

2
7

a} < fC“[1 + 16, 7*] £(6) db < oo

for 0 < a < 1 and, therefore |if/a|® a > 1, are uniformly integrable for 0 < a <
1. So, if |b,| < K/|0, ,| for all n > 3 for some K, then r,, a > 1, are uniformly
integrable, since then

Va \ i
r| <|—||b| < K—, Va>x>1. O
7 ( - |1b) < K7L

7. Simulations. To assess the accuracy of the approximations presented in
the last section, a Monte Carlo study was conducted. For ¢ = 6, ¢ = 1 and
selected values of 6, 10,000 replications of the Robbins—Siegmund procedure
were generated. From this Monte Carlo estimates of the distribution functions of
Z, , were computed and compared with both the approximation (17) and direct
normal approximation. The results are presented in Table 1.

The most striking aspect of Table 1 is the amount by which direct normal
approximation underestimates the simulations, as much as 0.11 when ¢ = 0 and
0, = 0.5. The refined approximations of (17) correct by too much in all but three
cases, but are much closer to the simulations than direct normal approximation.
They are generally better for ¢ > 0 than for ¢ < 0.
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TABLE 1
Simulated and approximate values of Fy{Z, , < c}

6=05 6=1.0
c ¥* MC Normal MC v* SE
— 2.00 0.0384 0.0337 0.0228 0.0332 0.0338 0.002
-1.75 0.0650 0.0575 0.0401 0.0566 0.0577 0.002
—1.50 0.1042 0.0935 0.0668 - 0.0889 0.0932 0.003
-1.25 0.1579 0.1448 0.1056 0.1444 0.1429 0.0035
-1.00 0.2286 0.2114 0.1587 0.1987 0.2080 0.004
-0.75 0.3135 0.2992 0.2266 0.2881 0.2881 0.0045
—0.50 0.4102 0.3957 0.3085 0.3729 0.3804 0.005
-0.25 0.5129 0.5047 0.4013 0.4682 0.4806 0.005
0.00 0.6152 0.6154 0.5000 0.5738 - 0.5814 0.005
0.25 0.7103 0.7087 0.5987 0.6694 0.6776 0.0045
0.50 0.7932 0.7903 0.6915 0.7554 0.7633 0.004
0.75 0.8603 0.8581 0.7735 0.8296 0.8348 0.0035
1.00 0.9112 0.9057 0.8413 0.8853 0.8907 0.003
1.25 0.9471 0.9423 0.8944 0.9250 0.9316 0.003
1.50 0.9706 0.9663 0.9332 0.9541 0.9596 0.002
1.75 0.9848 0.9822 0.9599 0.9741 0.9776 0.0015
2.00 0.9928 0.9990 0.9772 0.9866 0.9883 0.001

Note: The third and fifth columns are Monte Carlo estimates, based on 10,000 replications; the
second and sixth columns are the very weak approximation, at § = 0.5 and # = 1; the fourth column
is direct normal approximation; and the last column is the standard deviation of the Monte Carlo,
rounded to the nearest multiple of 0.0005.

An alternative form in which to write the approximations is to let

1 sign 6,
* % — —_—
vX*(9) <I)c+‘/a \/@Tb(ﬁ)+2w2' .
This is asymptotically equivalent to y* and has the advantage of being a
distribution function in c. In this form the approximation is substantially poorer
for ¢ < 0, but slightly better for ¢ > 0.

For the sequential probability ratio test with ii.d. normal observations, a
similar but simpler problem, the very weak expansions of Corollary 2 may be
compared with the simulations of Woodroofe and Keener (1987). For this
problem the agreement is slightly better than that of Table 1.

8. A lemma. The following lemma was used in Section 6 and is needed
again in Section 9.

LEMMA 4. Suppose that (8) and (9) are satisfied and let £ be a density for
which (12) holds. Then || Z,|’I{\, > €} a > 1, are uniformly integrable for any
e > 0.

ProOF. By Lemma 2, Z,I{\, > ¢} has a limiting standard normal distribu-
tion as @ = oo, under P. So, it suffices to show that lim, E{||Z,|’I{\, > €}} = p
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and for this it suffices to show that E¥||Z,|*}I{\, > ¢}, a > 1, are uniformly
integrable. By Lemma 1 and Schwarz’s inequality,

oy 1/2

2 [1Zi°] - p = E‘[Z ( )(@)] W( 12)2) | E

So,

9y 1/2

t Vg
?(9)

1
(E4z)2)"* < 2/p + =
t
and the right side is uniformly square integrable on A, > ¢ for any ¢ > 0. O

9. Unknown variability. If the model is changed by replacing (1) by
yk=x,;0+dek, k=1,2,...,

where ¢ > 0 is another unknown parameter, then there is a simple extension of
Theorem 2. Suppose that n, > p and let

1 . n
52 = ( )uY,, x4
n—p

and
Zn = Zn/an’ n=z ng.

Some additional conditions are required of the stopping times ¢ = ¢,, a > 1.
For a fixed § and o, suppose that there are a.e. positive functions § = §, and 7
for which

(18) f‘/s‘(o)g(a)da < o0,
(19) P{f'tf >8(®)} + P{t < Va) =o(%)

and
a
(20) i n(©) in probability.

THEOREM 3. Suppose that condition (9) and (10) are satisfied and that there
is a measurable subset C of R” for which

/ (1 +1121)®,(dy) = 0
(6,G) A(aC)

and
F, = Va [@,(C,) — 8,(C4,)] - or(8)
Py-probability for a.e. 8 € Q. Let § denote a density for which 7,, a > 1 are
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uniformly integrable and (11), (12), (18), (19) and (20) hold. Then

P{Z,eC) =0,C) + (%—)][r(li)i(ﬂ) —uwQ(0)vE(0)] db + 0(71_;)

Proor. It suffices to prove the theorem in the special case that o = 1, by a
simple reparametenzatlon (in which y} =y,/0 and x} =x,/0, k> 1). Let
R = R (I¢;s,) where R, is as in (14). Then

Va[P{Z,e C,} - 8,(C)] = VaE[®,(C5,) - ®,(C)] + E{F, + R,}

and
E{f, + R,) — [[r(8)£(8) — wQ(8)V4(6)] b,

as a — oo, as in the proof of Theorem 2. So it suffices to show that
Va E[®,(Cé,) — ®,(C)] —> 0as n - co.

Let W Va [(I) (Cé,) — ©,(C)] for a > 1. Then, W, has a limiting distribu-
tion w1th mean zero as @ — oo, a mixture of normal dlstnbutlons by Anscombe’s
(1952) theorem, applied conditionally given 6. So, it suffices to show that W,,
a > 1, are uniformly mtegrable There is a constant K for which |W,| <
K\/_lo, — 1] for all @ > 1, since 3P (Co)/aa2 is bounded on compacts (in o)
and |W,| < 2Ya for all a. Moreover, "with e, =(e,---r€,),

ﬁ—1=(nipyw%w—n)—m4w—pn, n 2 no.

Let
a
A={—t—58(®)}, B={t>Va,\ =1}
Then
f |W,|dP < 2/a P(A’ U B’) - 0
A'UB’
as @ = oo by (11) and (19) and Va(1/(t — p))(|1Z,|*> — p)Iz, a > 1, are uni-

formly integrable, by Lemma 4. Let u, = eZ — 1 for all £ =1,2,... . Then, for
any event F,

1
sup ( )(lls,ll2 —t)|dP < pfsupEo{ sup \/—|un|IF}£(0) de.
a>1"FNA t— a>1 n>a/8(0)
Since #,, n > 1, is a reverse martingale given 6, the supremum on the right is

bounded by 4/8(8) for all § € Q and it converges to zero in measure (in 6) as
P(F) - 0 for the same reason. So, the integrand on the left is uniformly
integrable. O
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