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ESTIMATORS AND SPREAD

By CHRIs A. J. KLAASSEN
University of Leiden

Arbitrary, possibly randomized estimators of a one-dimensional parame-
ter are considered. It is shown that suitable averages of their distribution
functions are more spread out than particular distribution functions, which
are defined in terms of the weight functions by which the averages are taken
over the parameter space and in terms of the family of distributions for the
random quantity on which the estimators are based. In this way bounds are
provided for the performance of arbitrary estimators of the parameter. As
consequences of this nonasymptotic spread inequality, which will be proved
under mild regularity conditions, a local asymptotic minimax inequality and
a generalization of the classical results on superefﬁciency‘can be derived, thus
showing the strength of our spread inequality.

1. The spread inequality. We shall consider estimation of a one-dimen-
sional parameter. Let the parameter space ® be a measurable subset of R
containing an open interval. Let X be a random variable taking values in Z and
having density f,(-), 8§ € O, with respect to some o-finite measure p on the
measurable space (£, /). The parameter 6 is estimated by a (randomized)
estimator T' based on X. We are interested in the distribution of T'— 6 under
fo(+)-

Since this distribution may be anything and even degenerate, very little can
be said about it. However, in general this distribution cannot be arbitrarily much
concentrated for several possible values of the parameter simultaneously. There-
fore, we are going to consider

(11) G(») = [B(a(T - 0) <y)w(8)ds, yeR,

where a is a positive constant and where the weight function w is a density on ®
with respect to Lebesgue measure. Under appropriate regularity conditions to be
specified in Theorem 1.1 and implying, that for p almost all x € Z the function
0 — fy(x)w(0) is absolutely continuous with respect to Lebesgue measure on R
with derivative fy(x)w(8) + f,(x)w'(8), we can define the distribution function
H by

(12) H(z) - [P é{’%"(xh %(a)} <z|w(8)ds, zeR.

Note that, if & is a random variable with density w(6) on ©, then (X, #) is a
random variable with density fy(x)w(f) on 2'X © and G can be viewed as the
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860 C. A. J. KLAASSEN

distribution function of a(T — ¥) and H as the distribution function of
1) -2 R+ L),
a kind of normed score function taken at (X, #).
We define the distribution function K by
(14) K\ (u) = fu %—(k, 0O<u<l,
s2[s H7X(t) dt

1

where H™! is the inverse distribution function H~'(¢) = inf{z | H(z) > t} of H.
Denoting the first and second derivative of K by % and &’, respectively, we see,
that the score function of K with respect to a location parameter satisfies

kl .
(1.5) - —kj(K‘l(u)) = H '(u), Lebesgue almostall u € (0,1).

This implies that the distribution function of the score function of K equals H,
the distribution function of the normed score function for the original estimation
problem, and that K is strongly unimodal.

The relations between (X, #) and K and between (T, ¢) and G suggest that
G and K are related too. In fact, G is more spread out than K, that is, any two
quantiles of G are further apart than the corresponding quantiles of K [cf.
Bickel and Lehmann (1979)]. We will denote this by G >, K, a notation in
accordance with Oja (1981). Our result reads as follows.

THEOREM 1.1. Let the weight function w on R be absolutely continuous with
respect to Lebesgue measure with Radon—Nikodym derivative w’ satisfying

(1.6) f|w'(0)| df <
R
and let w concentrate its mass on ©, that is,

(1.7) few(a) do =1.

For p almost all x € &, let the function 6 — f,(x) be the restriction to © of a
function, which is absolutely continuous with respect to Lebesgue measure on R
with Radon-Nikodym derivative f,(x). If fo(x) is p X Lebesgue-measurable, if
(1.8) [ [ ifa()lw(8) du(x) db < oo

RV

holds and if T is a possibly randomized estimator of 0, then the distribution
functions G and K defined by (1.1) and (1.4) are differentiable with derivatives g,
respectively, k satisfying

(1.9) g(G(s)) < k(KY(s)) = j;lH‘l(t) dt, 0<s<l.

This implies G >, K, that is,
110) G Yo)-GHu)2K Yv)-K Yu), O<u<o<l.
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ProoF. Since the function § — f,(x)w(#) is absolutely continuous on R for p.
almost all x € &, we have

timsp [ 1= (.30 + €) = (x)(0)) | d(x) a0

0

(1) s timeup [ [ = [*1f (x)u(n) + f(x)u'(n)l dn b du(x)

- f.,];lf;v(x)w(") + f(x)w'(n) dp(x) dn < oo,

where the finiteness is implied by (1.8) and (1.6). In view of

1-G(y+8)= ng (a(T - (8 + 8/a)) > y)w(8) dé
(1.12) "
= [Pr-s/o(a(T = 0) > y)u(6 - 5/a)db,  yeR,

inequality (1.11) and Vitali’s theorem imply that G is differentiable with deriva-
tive g satisfying

8(y) = lim [ [E(1,w(a(T - 0))1X = z)
X = { fo(2)w(8) = fy_s/a(x)w(0 = 8/a)} du(x) db
- L/;E(yy,w)(a(q‘ ~8))|X =x)

X = {fux)u(8) + f(x)u(0)) di(x) do.

| =

(1.13)

Because {0 € R | f,(x)w(8) = 0, fy(x)w(8) + fy(x)w'(8) + 0} is a Lebesgue null
set for p almost all x € &, we obtain from (1.13)

(1.14) 8(G7Y(s)) = ESL g1y, o)(a(T — 9)).
Together with
(1.15) 1 =5 = Elg-14), e(a(T - 9))

and the monotonicity of H~! this yields

[ "HY(¢t) dt — g(G(s))

(1) = [{H(0) - H(s))

X {160 11(t) = E(Lig-1s),0(a(T — 9)) | S = H™(¢)) } dt

> 0.
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Since the function s — [} H™! is concave on [0, 1] vanishing only at 0 and 1,
it is not difficult to verify that K is a distribution function well defined by (1.4).
Hence (1.16) implies (1.9) and we obtain (1.10) from (1.9) by noting that
the absolutely continuous part of G~Y(-) has Radon-Nikodym derivative
1/8(GY(+)). For further details see Klaassen (1984a). O

REMARK 1.1. Let the loss function [, be defined by
ly(') = 1(—oo,y/a](')'

Note that G(y) = El(T — 9) is the Bayes risk of T for the loss function /, and
the prior distribution with density w.

REMARK 1.2. If T — ¢ is a deterministic strictly increasing function of S,
equality holds in (1.16) and hence in (1.9) and (1.10). Note also, that (1.9) and
(1.10) are insensitive to translations both of G and of K.

ExaMpLE 1.1. With =R let X havea .#°(,1) and & a A4(0, ¢2) distribu-
tion and let @ = 1. Now S = X — (1 + 67 2)9 has a #7(0,1 + ¢~ 2) distribution
and it follows from (1.10) that for every estimator T' the distribution of T' — ¢ is
more spread out than a 47(0,(1 + 6~2)~!) distribution. Furthermore, Remark
1.2 shows that (1 + 672)"1X + ¢, ¢ € R, are optimal estimators in the sense of
Theorem 1.1. Indeed, (1 + 6~ !)"1X — & has a A4°(0,(1 + ¢~2)~!) distribution.
Note that this distribution tends to a standard normal distribution as ¢ - co.

More generally, if = R", X is #'(fv, ), v € R”®, = positive definite, and if
d is A(p, 0?), then the distribution of T — ¢ is more spread out than a
N0, (V2" + 672)71) distribution and T = (V27X + po )0’ +
0672)"! is an optimal estimator. For 02 — oo this estimator becomes T =
v'271X(v'2 ")}, which is equivariant in the sense, that adding nov to the
observation results in adding 7 to the estimate of 4.

The last part of Example 1.1 suggests that any equivariant estimator of 8 is
more spread out than a A47(0,(v’2~ ')~ !) distribution. Indeed, this is the case
and we shall present a generalization of this in Section 2. In that section we will
also give some other examples.

From our spread inequality (1.10) both global and local asymptotic results can
be derived in a relatively simple way. In Section 3 we shall indicate some
generalizations of the classical (global) results on superefficiency and of the local
asymptotic minimax theorem. The spread inequality and some of its conse-
quences have already been published without proof in Klaassen (1984b, 1985).

. 2. The spread of location estimators. In the situation of the preceding
section we choose now £ = R”, u Lebesgue measure, ® = R and f,(:) = f(- — 0v),
where f, a density on R", and v € R” are fixed. We consider estimators T of the
location parameter 6, which are based on X and which are equivariant in the
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sense
(2.1) L(T|X=x+n0)=L(T+7n|X=1x), fralmostall x € R" 6,7 €R.
Note that for such T,

(2.2) L(T-9|9)=L(T|9=0), w-as.,
holds and that hence G from (1.1) reduces to
(2.3) Go(y) = P(aT <y), y€ER.

Let us assume that f is absolutely continuous in each component of its
argument, let us denote the Radon-Nikodym derivative of f with respect to the
ith component by f; and let us assume

(2.4) ; [ Jiw)rdx < oo.

With w the density of the #7(0, 62) distribution (a proof similar to the proof of)
Theorem 1.1 yields the differentiability of G and hence G, with derivative g,
satisfying

(25) 0lGi'(9) = [H (@, 0<s<1,

where H, is the distribution function of S from (1.3). Note that S has the same
distribution as a YX? , — v;f(X,)/f(X,) — 9/0%}, where X, and ¢ are inde-
pendent and where X, has density f.

With

@6 HE)-Pe? £ - ai(0)/i(X) sz], zeR,

we see that the weak convergence H, —,, H as 0 — oo holds, which is equivalent
to H; Y(u) > H Y(u) as ¢ > o for all continuity points u € (0,1) of H~! [cf.
(2.12)]. In view of

(2.7) limsup [H;(¢) de < ["1H'(¢))dt,
0 0

this convergence and (2.5) together yield
(2.8) 8lGi'(s)) < [HY(t)at, 0<s<1.

We have proved

THEOREM 2.1. Let in the situation sketched above T be an equivariant
estimator of 0. If (2.4) holds, then (2.8) is valid for G, defined by (2.3) and H by
(2.6). This implies G, >, K, where K is defined as in (1.4).

This result is a slight generalization of Theorem 1.1 of Klaassen (1984a),
which considers X = (X,,..., X)), X,,..., X, iid. on (R, #). Consequently,
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Theorem 1.1 of the present article can be viewed as a generalization of the main
result of that article.

Let H and K be defined as in (1.2) and (1.4) and denote by % and k&’ the
density of K and its derivative, respectively. If X is a random variable with
density k(- — 8) with respect to Lebesgue measure on (R, %), then Theorem 2.1
shows that every translation equivariant estimator of 6, based on X, has a
distribution which is more spread out than K [cf. (1.4) and (1.5)] and that X is
an optimal estimator of #. Consequeritly, a loose formulation of the assertion of
Theorem 1.1 runs as follows. In the situation of Theorem 1.1, estimation of 0
with weight function w is at least as difficult as equivariant estimation of the
location parameter 0 of one observation from the distribution K(- — ), with K
given by (1.4). In this way the original estimation problem can be compared with
a simpler location estimation problem.

The range of applicability of Theorems 1.1 and 2.1 is broadened considerably
by the following simple remark.

LEMMA 2.1. Let ¥ and , be measurable functions from [0,1] into [0, o]
and let the possibly defective distribution function K be defined by

(2.9) K Yu) = -/1/211/( ] O<ucx<l,

and K, similarly. Let G and G, be distribution functions such that G, —,, G as
e — 0. IfG >, K, holdsforalleandzf

(2.10) limsupy(s) <y¢(s), O0<s<l1,
e—0

holds, then

(2.11) G> K

is valid.

ProoF. Let F, and F be distribution functions and let F, ! —», F~! mean
that lim, _,  F, '(u) = F'(u) for all continuity points u € (0,1) of F~'. We
have
(2.12) F, -, FeF'!-> F!

[see Satz 2.11 of Witting and Nblle (1970) for the implication = and consider
F YU) and F~YU) with U uniform on (0, 1) for the other one].

If v and v with 0 < u < v <1 are continuity points of G™!, then (2.12),
G, -, G, G, =, K, Fatou’s lemma and (2.10) yield

(213) G Yv) - G Y (u) 2 hmmff ds>K (o) — K~ Y(u).

Since K~! is continuous and G ! is left-continuous on (0, 1), this implies (2.11).
O
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As an application of Lemma 2.1 we mention

COROLLARY 2.1. Let X,,..., X, be i.i.d. with density
(2.14) e 01, o (x—8)

on R, 8 € ® =R. If T, is a translation equivariant estimator of the location
parameter 0, then, for every 0 € R, the distribution of n(T, — ) under 0 is
more spread out than the exponential distribution with density e” "1, ,\(x) on
R. Consequently, T, = X, + ¢, ¢ € R, are optimal estimators.

Proor. If X,,..., X, areii.d. with density
(1- S)e(l_e)(x_o)/el(—oo,m(x - 0) .
+(1—e)e @ D1, (x—0), 0<e<l,

then (2.4) is satisfied and Theorem 2.1 yields G, >, K|, where G, is the distribu-
tion of n(T, — 0) under 6 and K, is defined by (1.4) with H replaced by H,, the
distribution under 8 = 0 of

(2.16) % é{—(l — &) /el(_ 0.0 X:) + 110, 00)(Xi) }-

(2.15)

Clearly, H, -, H for €|0 with H corresponding to point mass at 1 and more
importantly,

(2.17)  limsup le;I(t) dt < le‘l(t) dt=1-—s, 0<s<l.
eJ'O S s

Since

u 1
K~Y(u) — K~Y0) = fo f—lmds — —log(1 — u)

holds and since G, -, G as ¢0 with G the distribution of n(7, — ) under
(2.14), a simple application of Lemma 2.1 yields the result. O

If X,..., X, are iid. with a uniform distribution on (0, #) and if one is
interested in scale equivariant estimation of 6 € (0, ), then Corollary 2.1
implies that the distribution of —n times the logarithm of any such estimator is
more spread out than the exponential distribution of Corollary 2.1 and that
cXny» ¢ € R, are optimal estimators in this sense [cf. Rao (1981)].

3. Some asymptotic consequences. In Example 1.1 and Corollary 2.1 we
have seen that equality in (1.10) can be attained by suitable estimators in the
“normal” and “exponential” location estimation problem. In order to judge the
tightness of the spread inequality, one might also study its asymptotic implica-
tions. To that end we shall restrict attention here to the standard estimation
problem of X,..., X, iid. random variables with a distribution with finite
Fisher information I(#), § € ©, an open interval.
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Let T, be an estimator of 6, based on X,,..., X,, and w an absolutely
continuous density on R with derivative w’ satisfying
(8.1) flw’l < 0.

Fix 6, € © and define
(32) G, (y)= jp,,(ﬁ(:rn —0) <y)o Vnw(c~ VR (6 — 6,)) db.

If w has bounded support whenever ® # R, then, for every ¢ > 0, G,, is well
defined provided n is large enough. A local asymptotic minimax inequality may
be obtained from the following consequence of Theorem 1.1.

THEOREM 3.1. Let in the above situation the density f, of X, with respect to
a o-finite measure p be p. X Lebesgue-measurable and absolutely continuous in 6
with derivative f, and 1(0) = [( fofy V/*)’dp. If

(33) lim (ol = fo, 1, %) di =0

holds, then all limit points of G,,, as n - oo and subsequently 6 — oo, are more
spread out than 4°(0,1/1(6,)).

By considering the limit behavior of
(3.4) G.(y) = [B(Vr (T, - 8) < y)w(9) df

for various choices of w the following global asymptotic consequence of Theorem
1.1 may be obtained.

THEOREM 3.2. Assume that in the above i.i.d. situation, I(-) is continuous
on O. If there exist distributions G, with

(3.5) L(Vn(T,-0)16) >, Gy, asn—> 0, €80,
then
(3.6) Gy >, #(0,1/1(6))
holds for Lebesgue almost all 8 € ©.
Note that (3.6) nnphes
(3.7) varg Y > 1/1(9).

Consequently, Theorem 3.2 extends the classical results of Le Cam (1952, 1953)
.and Bahadur (1964) on superefficiency.
These results show that, although for finite n the spread inequality (1.10) is
not sharp for every estimation problem, it still is powerful enough to imply both
local and global (sharp) asymptotic inequalities. We will not present proofs of
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Theorem 3.1 and 3.2 here, but generalizations of these, including proofs, will be
published elsewhere [Klaassen (1988)].
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