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Fitting the additive model using the backfitting algorithm with symmet-
ric smoothers having eigenvalues in [0, 1] amounts to a Bayesian procedure.
This statistical interpretation is interesting in its own right, but also suggests
other algorithms and provides a framework for solving some of the inferential
problems left open by Buja, Hastie and Tibshirani.

The paper by Buja, Hastie and Tibshirani (referred to hereafter as BHT)
makes several important contributions. On a trivial note, the discussion of
“degrees of freedom” hopefully clarifies the ambiguity of the term when applied
to smoothers which are not orthogonal projections. The tantalizing remarks on
concurvity may well be the first salvo in a whole barrage of results on such
notions. However, the main contribution is the development of the backfitting
algorithm. There is an aesthetic elegance in computing estimates for the complex
additive model by concatenation of estimates for simpler unidimensional models.
From the practical perspective, it provides a method whereby users can “wire
together” existing pieces of software to solve a seemingly difficult problem. There
are clearly opportunities for many spinoffs, such as implementations on dis-
tributed processing systems. Most of the theorems for general p (the dimension
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of the independent variable X) treat the case of symmetiic smoothers S; with
eigenvalues in [0, 1]. It was not mentioned that the corresponding additive model
admits a Bayesian interpretation. I have found this interpretation to be fruitful.
We will utilize the notation of BHT with some extensions given below. Given
smoothers S; which are symmetric and have eigenvalues in [0,1] the prior
distribution for f,,...,f, is independent jointly normal with marginals

(1) £~ Np(o’ Kj)’
where the covariance matrix K; is given by
@) K=o 1),

where the distribution is concentrated on the orthogonal complement of the
subspace # ((S;). Assuming that the errors are i.i.d. N(O 6?), it is clear from (19)
in BHT that the posterior means for the f’s are given by the backfitting
algorithm, with the following caveats:

1. It is necessary to restrict the distribution to the orthogonal complement of
M (S;) since if u € A ((S;), then var[u’f;] = 0. Put otherwise, these compo-
nents are completely ehmlnated by the smoother S; as if we have prior
knowledge that they are not present.

2. If .//ll(S) #0andu A (S) with u # 0, then the prior assigns var[u’f;] =
00, that is, we are using the improper Lebesgue pnor for such components.
Thus, the total prior is “partially improper” as in Wahba (1978) or Ansley
and Kohn (1985). Components in .#(S;) are estimated unbiasedly (or equiv-
ariantly).

3. It is not really necessary to know the error variance o2

We have only given the prior for the vectors of sampled functions. Typically,
one will obtain the covariance matrix for such a random vector by sampling a
covariance function for a continuous-time stochastic process. For example, the
prior for cubic smoothing splines is given by a scalar multiple of integrated
Brownian motion. This continuous-time prior then provides a method for inter-
polating or extrapolating the fitted values to estimate the function at all values
of the independent variable. We will follow BHT in only considering the sampled
values.

We now describe an alternative algorithm motivated by the Bayesian model,
under the restriction that the eigenvalues of all smoothers are in (0, 1), that is,
that the priors are proper and nonsingular. Let K,=X?_ K, be the prior
covariance matrix for

P
j=1
Then simple calculations show that the posterior means are given by
f = ( T+K +) y.

Note that this implies one n X n solve and then p matrix multiplications,
which may be computationally simpler than the backfitting algorithm in this
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framework. Of course, this is assuming that one has the covariance matrices K ;
and it is not necessary to compute them with a matrix inversion as implied by (2)
above. If the smoother were given by a kernel estimator, then matrix inversions
would be required to compute the covariance K, but in the usual Bayesian
setting one would begin with the K ; and the smoother would require a solve. It
should be possible to generalize this to eigenvalues in [0,1], as in the case of
smoothing splines.

A semi-Bayesian approach can provide some shelter from at least one of the
difficult inferential problems discussed by BHT, namely checking the adequacy
of the additive model. Assume as before proper nonsingular priors for the
additive components f;. We enlarge the model as follows: Let the conditional

expectation function be given by

fx) = ¥ (x) + be(x),

Jj=1

where g(x) represents the interaction term. We assume that g =
(g(x,),...,&(x,))" is independent of the f;, Gaussian and mean 0. The scalar
multiplier b will be discussed shortly. To avoid confounding various components,
we need some orthogonality properties. This is most easily obtained perhaps by
direct construction. Let A be an “initial” covariance matrix for g and let

1

L=(I-K,(T+K,))A(I- (eI +K,)'K,)

be the “final” covariance. This is the covariance matrix of y — K (oI + K,) 1y,
where y has a N,(0, A) distribution and K +(6%I + K,) 'y is the vector of
fitted values from fitting the Bayesian additive model to the data vector y. One
can then show [Koh (1989)] that the locally most powerful invariant test for H:
b= 0vs. H;: b > 0rejects if the test statistic

1

1 B} B}
=¥/ + K,) 'L(eT+K,) 'y

is too large. See Chen (1986) and Cox, Koh, Wahba and Yandell (1988) for
related LMPI tests. Perhaps a more meaningful approach in the context of
estimation is to construct an estimator for the interaction (Bayesian or other-
wise) and then compute its sum of squares and determine if it is sufficiently
small for the application at hand.

REFERENCES

ANSLEY, C. and KoOHN, R. (1985). Estimation, filtering, and smoothing in state space models with
incompletely specified initial conditions. Ann. Statist. 13 1286-1316.

CHEN, Z. (1986). A testing procedure for selecting interactions in the purely periodic interaction
spline model. Technical Report, Dept. Statistics, Univ. Wisconsin, Madison.

Cox, D., KoH, E.,, WaHBA, G. and YANDELL, B. (1988). Testing the (parametric) null model
hypothesis in (semiparametric) partial and generalized spline models. Ann. Statist. 16
113-119.



LINEAR SMOOTHERS AND ADDITIVE MODELS 525

KoH, E. (1989). A smoothing spline based test of model adequacy in nonparametric regression. Ph.D.
dissertation, Univ. Wisconsin, Madison.

WaHBA, G. (1978). Improper priors, spline smoothing and the problem of guarding against model
errors in regression. J. Roy. Statist. Soc. Ser. B 40 364-372.

DEPARTMENT OF STATISTICS
UNIVERSITY OF ILLINOIS
CHAMPAIGN, ILLINOIS 61820

R. L. EUBANK AND P. SPECKMAN
Texas A & M University and University of Missouri, Columbia

The authors are to be congratulated on this interesting and thought-provok-
ing paper. They have raised a number of important. questions and issues con-
cerning additive model methodology. We will discuss some of these below.
Throughout, our comments will be restricted to the case of symmetric smoothers
having eigenvalues in [0, 1].

1. Exact and approximate concurvity. This paper contains a thorough
treatment of the fundamental issues of existence and uniqueness of solutions for
the normal equations arising from additive model estimation. The authors show
that these equations will have multiple solutions in certain cases. This raises
questions as to how analyses should proceed in the presence of exact concurvity.
Results from linear models would suggest that if f represents any solution to the
normal equations, then one should only examine functionals 1’ of the solution
that are “estimable” in the sense that 1°g = 0 whenever Pg = 0. Such function-
als are invariant under all choices of solutions to the normal equations and will
have unique expectations. According to Theorem 5 of the paper, “estimable”
functionals are provided by np-vectors in the orthogonal complement of the
linear span of vectors g‘ = (g3,...,g;) with g; € My(S;) and g, = 0. In particu-
lar we see that f_ is derived using “estimable” functionals.

Another approach to solving the normal equations for linear models of less
than full rank is to reparameterize to obtain a full rank model. This is essentially
what the authors have accomplished in Section 4.4 by extracting the projection
parts from the smoothers, if linear dependencies are also eliminated from
M(S,) + -+ +My(S,). The {; are therefore obtained using “estimable” func-
tionals and ;perhaps they are what should be studied when there is exact
concurvity.

However, it seems to us that instances where an analysis should actually
proceed in the presence of exact concurvity without some type of remedial action
are rare. For example, in the case of smoothing splines, M,(S;) is the linear span
of the constant vector and x ;. By Theorem 5 the concurvity space consists only
of the constant vector unless the x; are linearly dependent. In this latter case at
least one of the variables should be dropped from the analysis to obtain
meaningful estimates.

The real issue here seems to be approximate concurvity. As before we will
draw an analogy with the linear regression case. In that setting approximate



