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THE PRICE OF BIAS REDUCTION WHEN THERE IS NO
UNBIASED ESTIMATE

By Han1 Doss! AND JAYARAM SETHURAMAN 2
Florida State University

Let ¢ be a parameter for which there is no unbiased estimator. This note
shows that for an arbitrary sequence of estimators T'®), if the biases of T*)
tend to O then their variances must tend to oo.

1. Introduction. Let X = (X,,..., X,) have distribution P,, where the
unknown parameter varies in ©. Suppcae that we need to estimate a real valued
function ¢(8) of the parameter. Let ¢ = ¢(X) be a biased estimator of ¢. There
exist several procedures for reducing the bias of ¢: jackknifing, bootstrapping
[see Efron (1982)] and other procedures based on expansions of E,,((;b) [see Cox
and Hinkley (1974), Section 8.4]. These procedures may not eliminate the bias
completely, and one often hears the following suggestion. Let é© be obtained
from ¢ by one of these bias-reduction procedures. If 6D is still biased, repeat the
bias-reduction procedure and obtain ¢®, ¢®, etc., until a desired amount of
reduction in bias is obtained or the bias is removed completely. Such “higher-
order bias corrections” are described for instance in the review paper of Miller
(1974) in connection with the jackknife. There are examples where no unbiased
estimator of ¢ exists but there exists a sequence of estimators ¢, ¢, ¢, ...,
whose biases converge to 0 (see Section 2).

The purpose of this note is to show (Theorem 1) that when no unbiased
estimator of ¢ exists, then reducing the bias to 0 necessarily forces the variance
of the estimators to tend to co. This theorem therefore gives qualitative support
to the widely held view that bias reduction is by itself not a desirable property,
but becomes desirable only if it can be demonstrated that it is accompanied by a
reduction in mean squared error.

2. Main result and remarks. Let (%2, ¥) be a measurable space and
(P, 0 € ©) be a family of probability measures on (%, .%). Let ¢ be a real
valued function defined on ©. The bias of an estimator T = T(X) is defined by
Br(8) = Ey(T(X)) — ¢(0), assuming that E,(T(X)) exists.

THEOREM 1. Suppose that

Al. By < By forall §,, 6, in O,
A2. [(dP, /dF,)*dP, < oo for all 8,, 6, in ©
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and that {T,)}¥_, is a sequence of estimators for which

(1) Br(8) = 0 forall§in®.
If there does not exist an unbiased estimator of ¢ then
(2) Vary(T,) > © ask — o, forall § € 6.

Proor. Suppose that (2) is not true. Then there exists a 6, in ® and
a subsequence {k*} of {k} such that Var,(7T}.) is bounded. Now, consider
the usual Hilbert space Hy, = LY %, &, B, ) of all functions that are square-

integrable with respect to Fj . Notice that {T}.} is a norm-bounded set in H, .

From the sequential weak-compactness of norm-bounded sets, there exists a T in
H, and a subsequence {k**} of {k*} such that T).. > T weakly in H, along
the subsequence {£**}, i.e.,

/ Tyr [ dPy > f TfdP,, for every function f in H,,.

In particular, setting f = dF,/dF,, we get
Eg(Ty) = Eo(T),

along the subsequence {£**}, for all # in ®. From (1), it now follows that
Ey(T) = ¢(8), that is T is unbiased for ¢, which contradicts one of our assump-
tions. Hence (2) holds and the proof is complete. O

There are many examples of situations to which this theorem applies. One
class can be obtained from the idea of the following example. Consider the family
of Poisson distributions with parameter A with A > 0. It is well known that there
exists no unbiased estimator of 1/A and that all polynomials in A are unbiasedly
estimable. From (a slight modification of) the Stone—Weierstrass theorem, there
exists a sequence of polynomials in A which converge to 1/A for each A. Thus
there exists a sequence of estimators which are unbiased for these polynomials in
A and whose biases in estimating 1/A converge to 0. A simple calculation shows
that [(dP, /dP, )’ dP,\ = exp(A, — 2\, + A2/A,). Thus Theorem 1 applies to
this case and the variances of these estimators must tend to oo.

It may appear that Theorem 1 does not apply to estimates based on the
jackknife, since the “delete-one” jackknife can be formed only a finite number of
times. However, a situation with an infinite sequence of estimators based on the
jackknife arises in the following example, based on an idea of Gaver and Hoel
(1970). Suppose that the data consists of a Poisson process { N(¢); ¢ € [0, 1]} with
rate A. In connection with the biased maximum likelihood estimator ¢ = e *N®
of e™*, Gaver and Hoel suggest splitting the interval [0, 1] into 7 nonoverlapping
intervals each of length 1/n, and letting N, be the number of events in the ith
interval. These are independent and identically distributed and one can therefore
form the delete-one jackknife as usual. This yields, for each n, an estimate ¢(n
and they show that as n —» o, 4)(") converges to an estimate 4)‘1) which depends
on the Poisson process only through the sufficient statistic N(1). This procedure
can be repeated indefinitely in principle, giving a sequence of estimators {¢*}%_,
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