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CONSISTENCY IN THE LOCATION MODEL: THE
UNDOMINATED CASE!

By ALBERT Y. Lo
Rutgers University

Consistency in the undominated location model is investigated from a
Bayesian point of view and a proof on the consistency of the Bayes procedures
with respect to the invariant prior is provided. The consistency of Bayes
procedures with respect to other prior measures is established as a corollary.

1. Introduction. Let X;, ---, X,, --- be a sequence of random variables
with distribution P, where 6 is a location parameter in the following sense: for
each n, the joint cumulative distribution function of X;, ..., X, satisfies
Fo(xy, -+, x,) = Fo(x; — 0, -+, x, — 0) where F;, is known and @ is real. Let R
be the real line and 4 its Borel o-field. Denote

x=(x1”“’xn)’x+t=(xl+t,""xn+t)

and define Q(A) = [ P,(A) ds for all A € #". Let #, be the o-field generated by
the ancillary statistics X, — X;, ---, X, — X; and % be the Py-completion of
n=2 Fn. Note that #, is P,-complete for all § and is also @-complete. For
brevity, denote the regular conditional distribution of X, given %, computed
with respect to Py by Po(- | y2, - - ¥n).
Let P™(ds | x) be a function defined on &4 X R" by

PMA | x,, --~,x,,)=Po(-A+x1|x2—x1, ceey Xy = X).

Then P"™(ds | x) is in fact the posterior distribution of the location parameter
s given x with respect to the Lebesgue prior and satisfies the following conditions:

(1.1) (i) P"(-|x) is a probability on 4 for each x € R",
(1.2) (i) P™B]|-) is #"-measurable for each B € %,

(1.3) (iii) [+ g(s, Xx)P™(ds | Xx)Q(dX) = [+ g(s, X)P,(dx) ds for all non-
negative and %"*'-measureable functions g and

(14) (@(v) P B+ t|x +t)=P*B|x) forall BE 4, all t and all x.

Condition (1.3) can be established by the usual monotone class arguments
beginning with g of the form.g(s, x) = I4(s)Ip(x1)81 (%2 — %1, -+, X — x1).
We call {P"(ds|x), n'= 1} the sequence of Pitman distributions. Note that
b, = [ s P™(ds | x), if it exists, is the classical Pitman estimate and the invariance
and unbiasedness of §,, is well-known (Pitman, 1939, and Blackwell and Girschick,
1954).
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In Section 2, we prove that P"(B | x) converges to 1 or 0 according as § € B
for B open or 8 & B for B closed. The proof is based on a forward martingale
argument in the spirit of Doob (1949). That a posterior distribution with respect
to smooth prior measure behaves similarly and the corresponding Bayes estimate
is consistent are obtained as a corollary. The consistency of the Pitman estimate
is also established under no absolute moment conditions.

Note that previous work pioneered by Le Cam (1953) and refined by subse-
quent workers, notably Schwartz (1965), Berk (1966) as well as the work of
Farrell (1964) and Strasser (1981) does not apply here since they assume the
existence of a ¢-finite measure which dominates P, for all 6.

2. Consistency in the location model. Denote that a function g is mea-
surable with respect to a o-field & by g € % We also denote a property which
holds almost everywhere with respect to a measure u by a.s. [1]. The key condition
in establishing consistency of P" is that X; € .. Our first proposition shows
that this is a consequence of one of the following laws of large numbers:

(A) For any bounded and measurable h, (1/n) 3T h(X;) — C in P,-probability
where C is a finite constant (possibly depending on h).

This assumption is satisfied in the usual iid case or if the X’s are stationary
and ergodic (Doob, 1953).

(B) (1/n) 31 X; — C in P,-probability where C is a finite constant.
PROPOSITION 1. Assume (A) or (B). Then X, € %..

PROOF. Let g, = (1/(n — 1)) &, e**~X) Note that g, € F,. Now rewrite
gn as e ¥%1(1/(n — 1)) X1k, e*%. By (A), g, converges to e “*1C, in Po-probability.
Since %, is Po-complete we conclude e %1 € Z... Now differentiate with respect
to t and put t = 0 to conclude X, € Z... If (B) is assumed, let

= (1/(n - 1)) L= (X; — X1)

and argue similarly. 0

THEOREM 1. Assume X, € Z.. For each 6, P"(B | x) converges to 1 or 0 a.s.
[P;] according as 8 € B for B open or 8 & B for B closed.

PrOOF. The proof is based on a characteristic function argument. First we
let ¢,,(t) = [ €**P™(ds | x). The definition of P" implies e "1, (t) = Eo(e™**1| F,)
a.s. [Po]. It follows from the forward martingale convergence theorem of Doob
(1953) that e™**1¢,(t) converges to Eo(e™**| %) as. [Po]. Since X; € %,
e g, (t) — e ™1 a.s. [P,]. Thus for each fixed ¢, ¢.(t) — 1 a.s. [Po]. Finally,
an application of Fubini’s theorem gives Po{¢,(t) — 1, almost all t} = 1, implying
Py{P™(ds | X) = 80} = 1. This implies P,{P"(ds | X) —-8,} = 1 for all 0 by (1.4),
completing the proof. [

The following corollary depicts the consistency of Bayes procedures for smooth
priors in the undominated location family situation. Let = be a prior o-finite
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measure and 7"(ds | x) be the regular conditional distribution that satisfies the
following condition:

(2.1) L .1 808 X)7"(ds | x)Q.(dx) = j; ., &(s, X)Py(dx)m (ds)

where g is any nonnegative function on (R™', #"*') and Q. is defined by
Q.(A) = [ P,(A)7(ds), for all A € #". The ="(ds | x) is also called the posterior
distribution of s given x with respect to the prior = (ds).

Assume that = is absolutely continuous with respect to the Lebesque measure.
Then there is a Q,-version of 7"(ds | x) which is given by

Je7’(s)P"(ds | x)
J = (s)P™(ds|x)’

(2.2) 7" (B|x) = forall B € %.

COROLLARY. Let n"(ds | x) be defined by (2.2) and assume X; € F.

(i) For any 0, ='(s) is bounded, continuous and positive at § implies ="(B | X)
converges to 1 or 0 a.s. [P] — [P,] according as 6 € B for B open or 8 & B for B
closed. ‘

(ii) If in addition to the conditions in (i) s =’ (s) is bounded, then [ s «"(ds| X)
converges to 0 a.s. [P,] for all 6.

PRrROOF. First note that

f etnn(ds | x) = L f”’,'(s()s If('sdf | f) by (2.2).

Next, note that by Theorem 1, P"(ds | x) converges weakly to a point mass at 6
a.s. [P,]. Therefore, by standard weak convergence arguments [ e”r"(ds|x) —
e as. [Py]. Finally an application of Fubini’s theorem as in Theorem 1 proves
(i). The proof of (ii) is similar and is omitted. 0

REMARK. The conditions on = given in the corollary are imposed because
they are convenient to apply. They are far from necessary. Take for example the
genuine Bayes situation, i.e. 7(R) = 1. One expects that if Bayes consistency
holds for one parameter value (this is guaranteed by Doob, 1949), by invariance
it must hold for all parameter values lying in the support of =. However, the
author does not know a proof of this phenomenon.

A conclusion of the above corollary is that if a Bayesian statistician is willing
to use smooth priors, he can be assured of cons1stent estimates. The situation
for the Pitman estimate is not as simple since 0 = [ sP™(ds| x) need not exist.
Nevertheless, we will show that if X; € %, and 6, exists a.s. [Po] for some n then
the Pitman estimate is consistent.

THEORAEM 2. Assume X, € F and Eo(| X1 || Fn,) < ® a.s. [Po] for some no.
Then Py{6, — 0} = 1 for all 6.
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PROOF. According to Proposition II-2-7 and Corollary II-2-13 of Neveu
(pages 23 and 31) we have:

(2.3) Eo(XT| #) = Eo(XT| F=) as. [Po]
and SUPn=n, Eo (X1 | ) < o as. [Po]

and similarly for X7. Hence Eo(X:| &,.) exists for all n = n,. Now use the
definition of P" to check

én = f sP™(ds|x) = X; — Eo(Xi| F)

for all n = no. Apply (2.3) and X; € Z to conclude 6, — 0 a.s. [Po]. Now apply
(1.4) to conclude the proof. O .

.

ExAMPLE. Let Xj, -.., X, be a sample from P,, where P, is defined by
Py{X; =k} =C(1 + k*'fork=0,%1, ---- and C is a normalizing constant.
Then, Eo| X, | = © but Eo(| X, || £.) < = as. [Po] for n = 2.

Acknowledgment. Sincere thanks are due to David Blackwell for suggest-
ing the Bayesian approach to this problem and a referee for several very helpful
suggestions and for pointing out an error in an earlier version.
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