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DISTRIBUTION-FREE POINTWISE CONSISTENCY OF KERNEL
REGRESSION ESTIMATE

BY WLODZIMIERZ GREBLICKI, ADAM KRZYZAK AND MIROSEAW PAWLAK

Technical University of Wroclaw

An estimate Y%; Y:K((x ~ X;)/h)/X7-1 K((x — X;)/h), calculated from a
sequence (X, Y1), - -+, (X,, Y,) of independent pairs of random variables
distributed as a pair (X, Y), converges to the regression E{Y|X = x} as n
tends to infinity in probability for almost all (¢) x € R?, provided that E| Y|
< o, h — 0 and nh? — » as n — «, The result is true for all distributions p
of X. If, moreover, | Y| < v < « and nh?/log n — © as n — , a complete
convergence holds. The class of applicable kernels includes those having
unbounded support.

1. Introduction. We estimate m(x) = E{Y|X = x} from a sequence
Xy, Y1), -+, (X,, Y,) of independent observations of a pair (X, Y) of random
variables. X and Y take their values in R and R, respectively. Throughout the
paper we do not impose any restrictions on the probability distribution u of X.
Hence, all the results presented here are distribution-free in the sense that they
are true for all u. The estimate is of the following form:

mn(x) = ¥im YiK((x — Xi)/h)/¥j-1 K((x — X;)/h),

where h depends on n and K is a Borel kernel. In the above definition and in the

paper 0/0 is treated as 0.
Assuming that
1) h(n)—»0 as n— o,
(2) nhin) - o as n— o,
and
(3) aH(||x|) = K(x) = cH(|| x |}),

¢1, ¢ being positive, Devroye [1] has shown that E|m,(x) — m(x)|?, p = 1,
converges to zero as n tends to infinity for almost all (x) x € R whenever
E|Y|? <. His a function defined over the nonnegative half real line. In [1] it
equals 1 for || x | < r, r positive, and 0 otherwise. Let us observe that the class of
kernels satisfying the above requirement is practically confined to the window
kernel i.e. the kernel which equals 1 for | x | = 1 and 0 otherwise.

We study the weak and complete convergence on m,(x) to m(x) for almost all
(1) x € R? and we get as a simple consequence some results concerning the
convergence of [ | m,(x) — m(x) | u(dx) to zero. We show that it is possible to
apply kernels with unbounded support and even not integrable ones.
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We assume that
4) clijx=n(x) = Ki(x),

¢ and r positive. Moreover, the kernel satisfies (3). H is a bounded decreasing
Borel function and

(5) t’H(t) >0 as t— o,

As far as the convergence in probability is concerned, we impose on the
sequence {h(n)} conditions (1) and (2), while the complete convergence is achieved
under an additional restriction

(6) Y1 exp(—anh®(n)) < o,
for all positive a. Condition (6) is satisfied if
(7) nhén)/logn—>o as n— oo,

In the paper the norms are either all /; or all /.

2. Preliminaries and lemmas. The crucial point of this paper is the
asymptotic behaviour of the following expression:

Un(x) = f K<x;y>f(y)n(dy) / f K<x;y>#(dy)

as h tends to zero, where f is a u integrable function. In Wheeden and Zygmund
[8] we find U,(x) — f(x) as h — 0 for almost all (u) x € R?, provided that K is
the window kernel. In the next lemma we extend the class of applicable kernels.

LEMMA 1. Let a nonnegative Borel kernel K satisfy (3) and (4). Let a bounded
Borel function H be decreasing in the interval [0, «) and satisfy (5). Let f be u
integrable. Then

Un(x) — f(x)

as h — 0 for almost all () x € R°.

In the proof of Lemma 1 as well as in the sequel, we shall need the following
result due to Devroye [1]:

LEMMA 2. For almost all (n) x € R®,
an(x) = h*/u(Sh)

has a finite limit as h tends to zero.

In Lemma 2 and throughout the paper S, is a sphere of the radius r centered
at x, x € R°.
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ProoF oF LEMMA 1. Clearly,
| Un(x) — f(x) |

¢ [n <"’° . ">|f<x> ) u(d) / [ ( y"> (@).

H(t) = J; I,H(¢)>s;(s) dS.

Let us observe

Thus,

®) i {2 uia) = [ waon a
0

and

o [ a5 110 - o = [

where A, = {y: H(| x — y Il /h) > t}.
Let 6 = ¢h?, ¢ > 0. Obviously,

J; [fA [ f(x) = f(y) Iu(dy)] dt/J; u(Ap) dt
= SuPtz.s[f
A

It is clear that the radii of sets A, ,, t = 0, are not greater than the radius of the
set A; . The radius of A;  is in turn h times greater than that of the set A; ;. We
shall now estimate the radius of A;;. It does not exceed H™'(6), H™" being the
inverse of H. Thus the radius of A; is majorized by hH'(8). Now, by virtue of
(5) and by the definition of 6, hH'(6) = hH '(¢h®) converges to zero as h tends
to zero. Since A, is either a cube or a ball, then by Wheeden and Zygmund [8,
page 189], the quantity in (10) converges to zero as h tends to zero for almost all

| f(x) = f(y) In(dy)] dt

t,h

t,h

(10)
| f(x) = A(y) | nldy) / ﬂ(At,h):I~

th

(n) x € R°.
On the other hand,
(11) J; U; [ f(x) — f(y) In(dy)] dt < (cs + | f(x) ])o,
where ¢; = [ | f(x) | u(dx). Using (4), we get
lx =yl S c(rh)?
(12) f H( h >u(dy) cu(Srm) = @)’

where a,,(x) is as in Lemma 2. From (11), (12), and by the definition of 8, we
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have in turn

fo [ f | f(x) —f(y)ln(dy)] dt / f w(Aen) dts{cii’;l—df—-(’”—']am(xx

Finally, using Lemma 2, the above quantity can be made arbitrarily small for
almost all (x) x € R® when ¢ is small enough. The proof has been completed.

L,

3. Consistency. We are now in a position to show:

THEOREM 1. Let E| Y| < ». Let K and H satisfy the conditions of Lemma 1.
Let (1) and (2) hold. Then

my(x) > m(x) as n-— o in probability

for almost all (u) x € R°.

PROOF. Let us denote

A, = E{YK((x — X)/h)}/EK((x — X)/h),

B, =n"' Yk (Vin = EVyy),
where

Vin = YiK((x — Xi)/h)/EK((x — X)/h).
Let, moreover,
By, = n7' Y (Zin — EZyy),
where
Zin = K((x — X))/h)/EK((x — X)/h).

Now, the estimate can be rewritten in the following form:

(13) mu(x) = (An + Bi1,)/(1 + Bsn).

Since, by Lemma 1 and (1), A, — m(x) as n — o for almost all (z) x € R, it
suffices to verify that both B;, and B,, converge to zero in probability as n tends
to infinity for almost all (x) x € R*.

Let us take B, into account. For N> 0, let Y’ = YIj|yj<v,and Y =Y - Y.
Let, moreover, gn(x) = E{| Y” || X = x}. Let B{, and B7, be the expressions
obtained from B;, by replacing Y; with Y/ and Y/, respectively. Now, it suffices
to verify that both Bi, and B7, converge to zero in probability as n tends to
infinity for almost all (1) x € R®. From Chebyshev’s inequality and (4), we have

P{|Bi,| >t} = (nt*)"'kNgn(x)/EK((x — X)/h)
< kNgn,n(x)au(x)/t%cr’nh?,
where k = sup.K(x) and gna(x) = E{| Y’ | K((x — X)/h)}/EK((x — X)/h). By
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virtue of Lemma 1 and (1), gnn(x) — E{| Y’ | | X = x} as n — oo for almost all
(1) x € Ry. By this, Lemmas 1 and 2, and from (2), for each fixed N, the above
expression converges to zero as n tends to infinity for almost all (1) x € R%. Then
we apply Markov’s inequality and get

P{|B%,| > t} = 2t"E{gn(X)K((x — X)/R)}/EK((x — X)/h).

By virtue of Lemma 1, the last expression converges to gn(x) as n tends to
infinity for almost all () x € R®. Since E | Y| < , Egn(X) converges to zero as
N tends to infinity. Since, moreover, gny is monotone in N, by the Lebesgue
monotone convergence theorem gn(x) converges to zero as N tends to infinity for
almost all (x) x € R® Thus, let us first choose N large enough so that gn(x) is

small, and then let n grow large.
As the convergence of B,, can be verified in the same way, the proof has been

completed.
In the next theorem we show a complete convergence.

THEOREM 2. Let | Y| <+ <. Let K and H satisfy the conditions of Lemma
1. Let (1) and (6) hold. Then

ma(x) — m(x) as n— o completely

for almost all (u) x € R°.

Devroye’s result [1] says that the assertion of Theorem 2 holds, provided that
H is the window kernel and (7) is satisfied.

PRrOOF OF THEOREM 2. Clearly, it suffices to show that B;, and By, in (13)
converge to zero completely as n tends to infinity for almost all (x) x € R
Taking into account

| Vin| < ykam(x)/creh?,

and the fact the variance of V;, is bounded by v2ka.(x)/cr¢h?, the application of
Bernstein’s inequality, see e.g. Hoeffding [5], yields

P{| By, | > t} < 2 exp(—crét’nh?/2vka,(x)(y + t)).
This, Lemma. 1 and (6) yield convergence of B,.

Since the convergence of By, can be verified by using similar arguments, the
proof has been completed.

4. Conclusion. The class of applicable kernels includes those having un-
bounded support and the following ones, in particular: e™'*!, e™*, 1/(1 + | x|'*9),
6> 0, and

_J1/e for |x|<e
K(x) = ‘{1/| | In |x| otherwise.

The last kernel is even not integrable.
By virtue of the Lebesgue dominated convergence theorem on product spaces,



DISTRIBUTION-FREE POINTWISE CONSISTENCY 1575

see Glick [3], we have:

COROLLARY. Let|Y| =<y <. Then, with the conditions of Theorem 1 or 2,

(17) f | ma(x) — m(x) | u(dx) >0 as n— o
in the mean or almost surely, respectively.

The convergence in the mean of the integrated absolute error in (17) has been
studied by Spiegelman and Sacks [6] as well as by Devroye and Wagner [2].
These authors, however, assumed that E| Y| < o, but considered only kernels

with bounded support.
Finally, we would like to mention that distribution-free results concerning

regression estimation were first obtained by Stone [7]. For a review paper we
refer to Gyorfi [4].
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