DISTRIBUTION-FREE POINTWISE CONSISTENCY OF KERNEL REGRESSION ESTIMATE

By Włodzimierz Greblicki, Adam Krzyżak and Mirosław Pawlak

Technical University of Wrocław

An estimate $\sum_{i=1}^n Y_i K((x-X_i)/h)/\sum_{j=1}^n K((x-X_j)/h)$, calculated from a sequence $(X_1, Y_1), \cdots, (X_n, Y_n)$ of independent pairs of random variables distributed as a pair (X, Y), converges to the regression $E\{Y \mid X=x\}$ as n tends to infinity in probability for almost all (μ) $x \in R^d$, provided that $E \mid Y \mid < \infty, h \to 0$ and $nh^d \to \infty$ as $n \to \infty$. The result is true for all distributions μ of X. If, moreover, $|Y| \le \gamma < \infty$ and $nh^d/\log n \to \infty$ as $n \to \infty$, a complete convergence holds. The class of applicable kernels includes those having unbounded support.

1. Introduction. We estimate $m(x) = E\{Y \mid X = x\}$ from a sequence $(X_1, Y_1), \dots, (X_n, Y_n)$ of independent observations of a pair (X, Y) of random variables. X and Y take their values in R^d and R, respectively. Throughout the paper we do not impose any restrictions on the probability distribution μ of X. Hence, all the results presented here are distribution-free in the sense that they are true for all μ . The estimate is of the following form:

$$m_n(x) = \sum_{i=1}^n Y_i K((x - X_i)/h) / \sum_{i=1}^n K((x - X_i)/h),$$

where h depends on n and K is a Borel kernel. In the above definition and in the paper 0/0 is treated as 0.

Assuming that

(1)
$$h(n) \rightarrow 0$$
 as $n \rightarrow \infty$,

(2)
$$nh^d(n) \to \infty \text{ as } n \to \infty,$$

and

(3)
$$c_1 H(||x||) \le K(x) \le c_2 H(||x||),$$

 c_1 , c_2 being positive, Devroye [1] has shown that $E \mid m_n(x) - m(x) \mid^p$, $p \ge 1$, converges to zero as n tends to infinity for almost all (μ) $x \in R^d$, whenever $E \mid Y \mid^p < \infty$. H is a function defined over the nonnegative half real line. In [1] it equals 1 for $||x|| \le r$, r positive, and 0 otherwise. Let us observe that the class of kernels satisfying the above requirement is practically confined to the window kernel i.e. the kernel which equals 1 for $||x|| \le 1$ and 0 otherwise.

We study the weak and complete convergence on $m_n(x)$ to m(x) for almost all (μ) $x \in \mathbb{R}^d$, and we get as a simple consequence some results concerning the convergence of $\int |m_n(x) - m(x)| \mu(dx)$ to zero. We show that it is possible to apply kernels with unbounded support and even not integrable ones.

Received February 1983; revised April 1984.

 $AMS\ 1980\ subject\ classifications.$ Primary 62G05.

Key words and phrases. Nonlinear regression, kernel estimate, universal consistency.

We assume that

$$cI_{\{\|x\|\leq r\}}(x)\leq K(x),$$

c and r positive. Moreover, the kernel satisfies (3). H is a bounded decreasing Borel function and

(5)
$$t^d H(t) \to 0 \quad \text{as} \quad t \to \infty.$$

As far as the convergence in probability is concerned, we impose on the sequence $\{h(n)\}$ conditions (1) and (2), while the complete convergence is achieved under an additional restriction

(6)
$$\sum_{n=1}^{\infty} \exp(-\alpha n h^d(n)) < \infty,$$

for all positive α . Condition (6) is satisfied if

(7)
$$nh^d(n)/\log n \to \infty \text{ as } n \to \infty.$$

In the paper the norms are either all l_2 or all l_{∞} .

2. Preliminaries and lemmas. The crucial point of this paper is the asymptotic behaviour of the following expression:

$$U_h(x) = \int K\left(\frac{x-y}{h}\right) f(y) \mu(dy) / \int K\left(\frac{x-y}{h}\right) \mu(dy)$$

as h tends to zero, where f is a μ integrable function. In Wheeden and Zygmund [8] we find $U_h(x) \to f(x)$ as $h \to 0$ for almost all (μ) $x \in \mathbb{R}^d$, provided that K is the window kernel. In the next lemma we extend the class of applicable kernels.

LEMMA 1. Let a nonnegative Borel kernel K satisfy (3) and (4). Let a bounded Borel function H be decreasing in the interval $[0, \infty)$ and satisfy (5). Let f be μ integrable. Then

$$U_h(x) \to f(x)$$

as $h \to 0$ for almost all (μ) $x \in \mathbb{R}^d$.

In the proof of Lemma 1 as well as in the sequel, we shall need the following result due to Devroye [1]:

LEMMA 2. For almost all (μ) $x \in \mathbb{R}^d$,

$$a_h(x) = h^d/\mu(S_h)$$

has a finite limit as h tends to zero.

In Lemma 2 and throughout the paper S_r is a sphere of the radius r centered at $x, x \in \mathbb{R}^d$.

PROOF OF LEMMA 1. Clearly,

$$| U_h(x) - f(x) |$$

$$\leq \frac{c_2}{c_1} \int H\left(\frac{\|x - y\|}{h}\right) | f(x) - f(y) | \mu(dy) / \int H\left(\frac{\|x - y\|}{h}\right) \mu(dy).$$

Let us observe

$$H(t) = \int_0^\infty I_{\{H(t)>s\}}(s) \ ds.$$

Thus.

(8)
$$\int H\left(\frac{\|x-y\|}{h}\right)\mu(dy) = \int_0^\infty \mu(A_{t,h}) dt$$

and

(9)
$$\int H\left(\frac{\|x-y\|}{h}\right) |f(x)-f(y)| \mu(dy) = \int_0^{\infty} \left[\int_{A_{l,h}} |f(x)-f(y)| \mu(dy)\right] dt,$$

where $A_{t,h} = \{ y : H(\|x - y\|/h) > t \}.$ Let $\delta = \varepsilon h^d$, $\varepsilon > 0$. Obviously,

(10)
$$\int_{\delta}^{\infty} \left[\int_{A_{t,h}} |f(x) - f(y)| \mu(dy) \right] dt / \int_{0}^{\infty} \mu(A_{t,h}) dt \\ \leq \sup_{t \geq \delta} \left[\int_{A_{t,h}} |f(x) - f(y)| \mu(dy) / \mu(A_{t,h}) \right].$$

It is clear that the radii of sets $A_{t,h}$, $t \ge \delta$, are not greater than the radius of the set $A_{\delta,h}$. The radius of $A_{\delta,h}$ is in turn h times greater than that of the set $A_{\delta,1}$. We shall now estimate the radius of $A_{\delta,1}$. It does not exceed $H^{-1}(\delta)$, H^{-1} being the inverse of H. Thus the radius of $A_{\delta,h}$ is majorized by $hH^{-1}(\delta)$. Now, by virtue of (5) and by the definition of δ , $hH^{-1}(\delta) = hH^{-1}(\epsilon h^d)$ converges to zero as h tends to zero. Since $A_{t,h}$ is either a cube or a ball, then by Wheeden and Zygmund [8, page 189], the quantity in (10) converges to zero as h tends to zero for almost all (μ) $x \in \mathbb{R}^d$.

On the other hand,

(11)
$$\int_0^{\delta} \left[\int_{A_{th}} |f(x) - f(y)| \mu(dy) \right] dt \le (c_3 + |f(x)|) \delta,$$

where $c_3 = \int |f(x)| \mu(dx)$. Using (4), we get

(12)
$$\int H\left(\frac{\|x-y\|}{h}\right)\mu(dy) \geq c\mu(S_{rh}) \geq \frac{c(rh)^d}{a_{rh}(x)},$$

where $a_{rh}(x)$ is as in Lemma 2. From (11), (12), and by the definition of δ , we

have in turn

$$\int_0^{\delta} \left[\int_{A_{t,h}} |f(x) - f(y)| \mu(dy) \right] dt \bigg/ \int_0^{\infty} \mu(A_{t,h}) dt \le \varepsilon \left[\frac{c_3 + |f(x)|}{cr^d} \right] a_{rh}(x).$$

Finally, using Lemma 2, the above quantity can be made arbitrarily small for almost all (μ) $x \in \mathbb{R}^d$ when ε is small enough. The proof has been completed.

3. Consistency. We are now in a position to show:

THEOREM 1. Let $E \mid Y \mid < \infty$. Let K and H satisfy the conditions of Lemma 1. Let (1) and (2) hold. Then

$$m_n(x) \to m(x)$$
 as $n \to \infty$ in probability

for almost all (μ) $x \in \mathbb{R}^d$.

PROOF. Let us denote

$$A_n = E\{YK((x - X)/h)\}/EK((x - X)/h),$$

$$B_{1n} = n^{-1} \sum_{i=1}^{n} (V_{in} - EV_{in}),$$

where

$$V_{in} = Y_i K((x - X_i)/h)/EK((x - X)/h).$$

Let, moreover,

$$B_{2n} = n^{-1} \sum_{i=1}^{n} (Z_{in} - EZ_{in}),$$

where

$$Z_{in} = K((x - X_i)/h)/EK((x - X)/h).$$

Now, the estimate can be rewritten in the following form:

(13)
$$m_n(x) = (A_n + B_{1n})/(1 + B_{2n}).$$

Since, by Lemma 1 and (1), $A_n \to m(x)$ as $n \to \infty$ for almost all (μ) $x \in \mathbb{R}^d$, it suffices to verify that both B_{1n} and B_{2n} converge to zero in probability as n tends to infinity for almost all (μ) $x \in \mathbb{R}^d$.

Let us take B_{1n} into account. For N > 0, let $Y' = YI_{\{|Y| \le N\}}$, and Y'' = Y - Y'. Let, moreover, $g_N(x) = E\{|Y''| | | X = x\}$. Let B'_{1n} and B''_{1n} be the expressions obtained from B_{1n} by replacing Y_i with Y'_i and Y''_i , respectively. Now, it suffices to verify that both B'_{1n} and B''_{1n} converge to zero in probability as n tends to infinity for almost all (μ) $x \in \mathbb{R}^d$. From Chebyshev's inequality and (4), we have

$$P\{|B'_{1n}| > t\} \le (nt^2)^{-1}kNg_{N,h}(x)/EK((x-X)/h)$$

$$\le kNg_{N,h}(x)a_{rh}(x)/t^2cr^dnh^d,$$

where $k = \sup_{x} K(x)$ and $g_{N,h}(x) = E\{|Y'| K((x - X)/h)\}/EK((x - X)/h)$. By

virtue of Lemma 1 and (1), $g_{N,h}(x) \to E\{\mid Y'\mid \mid X=x\}$ as $n\to\infty$ for almost all (μ) $x\in R_d$. By this, Lemmas 1 and 2, and from (2), for each fixed N, the above expression converges to zero as n tends to infinity for almost all (μ) $x\in R^d$. Then we apply Markov's inequality and get

$$P\{|B_{1n}''| > t\} \le 2t^{-1}E\{g_N(X)K((x-X)/h)\}/EK((x-X)/h).$$

By virtue of Lemma 1, the last expression converges to $g_N(x)$ as n tends to infinity for almost all (μ) $x \in R^d$. Since $E \mid Y \mid < \infty$, $Eg_N(X)$ converges to zero as N tends to infinity. Since, moreover, g_N is monotone in N, by the Lebesgue monotone convergence theorem $g_N(x)$ converges to zero as N tends to infinity for almost all (μ) $x \in R^d$. Thus, let us first choose N large enough so that $g_N(x)$ is small, and then let n grow large.

As the convergence of B_{2n} can be verified in the same way, the proof has been completed.

In the next theorem we show a complete convergence.

THEOREM 2. Let $|Y| \le \gamma < \infty$. Let K and H satisfy the conditions of Lemma 1. Let (1) and (6) hold. Then

$$m_n(x) \to m(x)$$
 as $n \to \infty$ completely

for almost all (μ) $x \in \mathbb{R}^d$.

Devroye's result [1] says that the assertion of Theorem 2 holds, provided that H is the window kernel and (7) is satisfied.

PROOF OF THEOREM 2. Clearly, it suffices to show that B_{1n} and B_{2n} in (13) converge to zero completely as n tends to infinity for almost all (μ) $x \in \mathbb{R}^d$. Taking into account

$$|V_{in}| \leq \gamma k a_{rh}(x)/cr^d h^d$$

and the fact the variance of V_{in} is bounded by $\gamma^2 k a_{rh}(x)/cr^d h^d$, the application of Bernstein's inequality, see e.g. Hoeffding [5], yields

$$P\{|B_{1n}| > t\} \le 2 \exp(-cr^d t^2 n h^d / 2\gamma k a_{rh}(x)(\gamma + t)).$$

This, Lemma 1 and (6) yield convergence of B_{1n} .

Since the convergence of B_{2n} can be verified by using similar arguments, the proof has been completed.

4. Conclusion. The class of applicable kernels includes those having unbounded support and the following ones, in particular: $e^{-|x|}$, e^{-x^2} , $1/(1+|x|^{1+\delta})$, $\delta > 0$, and

$$K(x) = \begin{cases} 1/e & \text{for } |x| \le e \\ 1/|x| & \text{ln } |x| & \text{otherwise.} \end{cases}$$

The last kernel is even not integrable.

By virtue of the Lebesgue dominated convergence theorem on product spaces,

see Glick [3], we have:

COROLLARY. Let $|Y| \le \gamma < \infty$. Then, with the conditions of Theorem 1 or 2,

(17)
$$\int |m_n(x) - m(x)| \mu(dx) \to 0 \quad as \quad n \to \infty$$

in the mean or almost surely, respectively.

The convergence in the mean of the integrated absolute error in (17) has been studied by Spiegelman and Sacks [6] as well as by Devroye and Wagner [2]. These authors, however, assumed that $E \mid Y \mid < \infty$, but considered only kernels with bounded support.

Finally, we would like to mention that distribution-free results concerning regression estimation were first obtained by Stone [7]. For a review paper we refer to Györfi [4].

Acknowledgment. The authors wish to express their thanks to the referee for his suggestions concerning some improvements.

REFERENCES

- [1] DEVROYE, L. (1981). On the almost everywhere convergence of nonparametric regression function estimates. *Ann. Statist.* **9** 1310-1319.
- [2] DEVROYE, L. and WAGNER, T. J. (1980). Distribution-free consistency results in nonparametric discrimination and regression function estimation. Ann. Statist. 8 231-239.
- [3] GLICK, N. (1974). Consistency conditions for probability estimators and integrals for density estimators. *Utilitas Math.* 5 61-74.
- [4] GYÖRFI, L. (1981). Recent results on nonparametric regression estimate and multiple classification. Problems Control Inform. Theory 10 43-52.
- [5] HOEFFDING, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30.
- [6] SPIEGELMAN, C. and SACKS, J. (1980). Consistent window estimation in nonparametric regression. Ann. Statist. 8 240-246.
- [7] STONE, C. J. (1977). Consistent nonparametric regression. Ann. Statist. 5 595-645.
- [8] WHEEDEN, R. L. and ZYGMUND, A. (1977). Measure and Integral. Dekker, New York.

INSTITUTE OF ENGINEERING CYBERNETICS TECHNICAL UNIVERSITY OF WROCŁAW 50-370 WROCŁAW, POLAND