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TURNING PROBABILITIES INTO EXPECTATIONS

BY MICHAEL GOLDSTEIN

University of Hull

Suppose that you specify your prior probability that an unknown quantity
0 lies in each member of a disjoint partition of the values of 6. What does this
imply about your prior mean and variance for 6, and your posterior mean and
variance, given sample information? We provide a partial answer by modifying
a suggestion of Manski for incorporating the cost of specification of prior
probabilities into the analysis of decision problems. This modification leads
to a simple explicit solution in the problem of estimating the mean of a
distribution, with quadratic loss, in the class of linear functions of the sample,
and this solution is related to the problem of turning_ probabilities into
expectations.

1. Introduction. Suppose that # is an unknown quantity and that you
specify your prior beliefs concerning 6 by stating your prior probability P; that 6
lies in I;, for { = 1, .-- n, where the I; form a disjoint partition of the set of
possible values of 6. You are specifying these quantities as a starting point for
updating your beliefs when you observe a quantity S for which E(S | 6) = 6. What
do the values P; imply about your prior and posterior expectation and variance
for 6? In particular, is it worth the additional effort required to specify further
probabilities over a refinement of the existing partition of 6 values?

Our starting point will be a general consideration of the problem of subjective
choice of probability domains. In Section 2, we consider a suggestion of Manski
(1981) for incorporating the cost of specification of prior probabilities into the
analysis of decision problems. We point out various problems with this approach
and suggest possible modifications. In Section 3, we apply the suggested modifi-
cations to estimate a single random quantity based on a sample estimate. This
yields a simple solution which provides a partial answer to the questions raised
above concerning how you should turn probabilities into expectations. Finally,
in Section 4, we consider the problem of whether to specify further prior
probabilities.

2. Subjective choice of probability domains. Manski (1981) considers
the following problem. Suppose 6 is an unknown quantity. You have specified a
disjoint partition R;, - - - , Ry, for § and the probabilities P; = Pr(§ € R;). There
is a specified utility function U(d, 8) corresponding to each decision d. There is
a cost involved in further prior specifications. Should you stop now and choose
a decision (and if so, which decision)? Or should you continue to make further
prior specifications (and if so which)? Manski suggests that for each rule d, and
each set R;, you should evaluate the quantities U(d, R;) = supser,U(d, 0) and
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U(d, R)) = infyeg,U(d, 0). Then defining V(d), V(d) by
V() =% U, R)P;, V(d) =3 UWd, R)P;,

find the rules do, d, maximizing V(d), V(d) respectively. The maximal value of

refining the partition is less than V(d;) — V(d,). Thus if the cost of further prior

specification is greater than this quantity, you should immediately stop and

choose rule do. Otherwise you should make further prior specifications. If you

observe data y, with likelihood, given 6, f(y|6), you make similar calculations,

based instead on the quantities supser,U(d, 0)f(y|0), infyerU(d, 8)f(y|89).
There are several difficulties with the above procedures:

1. The procedure may be computationally difficult to apply.

2. You have no guidance as to what further specifications you should make and
the gain you might reasonably expect.

3. In the case where you observe data y, you must specify your prior beliefs about
6 after having observed y.

4. You are not artificially assigning a full prior distribution for 6. You may wish
to apply these methods when, in similar fashion, there is no fully-specified
family of likelihood functions for y given 6. This suggests a quasinonparametric
framework. However, the maximization and minimization of U(d, 0)f(y| 6)
over any set R; are now relatively uninformative. (For a strict nonparametric
framework, the respective values would be infinity and zero, over any set R).

5. You may not wish to choose the rule d, when you stop, as avoiding the worst
possible case is not the only property you would like your rule to possess. (As
in (4), the maximization may concentrate on pathological cases).

We can partially overcome these difficulties by making two practical modifi-
cations to the above procedure.

(A) If we shall observe data s, then, before observing s, we are choosing between
decision functions §(s). Given the limited prior specification, we may not be
overly concerned with hypothetical optimality. Instead, it may be more reasonable
to restrict attention to a limited class of decision functions A, which is rich
enough to contain reasonably good rules for each possible prior distribution
consistent with the prior constraints, while only containing rules whose properties
can be easily investigated given the restricted prior specification.

(B) For any specified decision function §, the quantities which must be
computed to carry out the suggested analysis are

S(8) = suppecE(U(8(S), 0)), 1(3) = infpecE(U(8(S), 6))

where G is the set of all prior distributions consistent with any constraints that
you might impose. There are several criteria we might propose for the choice of
an element of A based on these quantities. You might choose the rule § which
maximizes I(6) over all § € A. This is essentially the restriction of the minimax
rule, suggested by Manski, to the class A. However, an obvious modification is
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to seek a rule 6 € A for which S(8) and I(5) are both large, to take advantage of
favourable cases without incurring too large a penalty under unfavourable cases.
The simplest way to attempt this is to choose the rule which maximizes M,(5)
over 6 € A, where for any « € (0, 1),

M,(6) = aS(6) + (1 — a)I(5).

(This is similar in intention to the Hurwicz-« criterion. See, for example Fish-
burn, 1966.) It will be shown, in the example in Section 3, that a particular
choice, a = %, leads to an extremely simple solution. Thus, use of M;,,(6) (which
we shall term the “midrisk”) as well as providing an intuitively plausible decision
criterion, is also an important simplifying assumption. We now consider within
the above framework the problem described in Section 1.

3. Choice of linear -Bayes rule with minimum midrisk. You wish to
estimate the unknown quantity 6 with quadratic loss. Suppose that 6 is known
to lie in the bounded interval [6,, 0.). Suppose that the only prior values you
have chosen to specify are your prior probabilities over a finite partition of this
interval. Thus you have specified values 0, < 0, < 0, < ... <0, < 0,41, where
0.+1 = 0.. You have also specified prior probabilities Py, P;, --., P,, where
P; = P(6; <= 0 < 0;1,). You are about to sample data S, from a distribution F of
unknown form, and you intend to calculate a statistic X, based on S, which is
unbiased for 6. The variance of X, for given F, is o%(F'). We will suppose that you
can specify lower and upper bounds V;, V, for your prior expectation of ¢*(F)
i.e. so that V; < Eo?(F) < V,. You decide to restrict attention to the class E of
estimators of § which are of the form aX + b. Thus, in terms of the criterion
proposed in Section 2, you must choose values a*, b* to minimize, over all a, b,
the midrisk

M(aX + b) = Ya(suppecE((aX + b — 0)*| P) + infpecE ((aX + b — 6)*| P))

where G is the set of all prior distributions on F which satisfy the constraints
Pl:<0<6;y) =P;,i=0,1, ..., n; E¢*F) € [V,, V,]; we will impose one
further constraint on G, a form of “weak” independence between 6 and ¢, namely
that suppegE (6%(F)| 6, P) = V, and infpecE (6%(F) | 6, P) = V,, for each .

We will now find the values a*, b*. We first define the prior distribution
P* € G which satisfies the following constraints.

()  P§=P*0 = 06) = Py/2
Pt =P*0=0)= (P, + P)/2,i=1,---,n
Phi = P*0 = 0,41) = Pp/2
(i) E(cX(F)|P*) =V, = (V. + Vo)/2.

Denote the expected value and variance of 6 with respect to P* by §* and
V*(0) respectively, so that

0* = T 0,PF, V*(6) = T 03P — (84>
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What we shall show is that the optimal rule a*X + b* is “almost” the actual
linear Bayes rule with respect to the prior distribution P*. The modifications we
must make are as follows. Let r": be the integer (between 0 and n) for which
0,» < 8* < 0,-,,. Let P = P,.. Let 6* be the value of §; which minimizes | * — 6; |
overi=0,---,n+1.

Now define 8**, 8, ** by

f** = §* + (P/(2 — P))(7* - 6*)
0= (0, + 0,441)/2
= §** if min{f, 6*) < 6** < max{9, 6%}
=0  otherwise.
Finally define V**(8) by
V() = V*@) — (P/(2 — P))(@* — 6*)%,  if B§** = §**

V*0) + (8 — 8% — P(8 — 6%)%/2, if §**=40.
We have the following results.
THEOREM 1. The values a*, ¢* which minimize the expression
M@X+ (1 —a))
are
V**(9)
* — 7 I *
CTVEO V) ©

The minimum value of M(aX + (1 — a)c) is

V*0)Vn,
(V**(0) + Vi)

=

ProOF. Consider a particular estimator aX + (1 — a)c. For any prior
distribution P for F, the expected loss of aX + (1 — a)c, given 0, is

L) = E(@(X = 0) + (1 - a)(c = 0)*|0)
(1) =a’V(0) + (1 — a)’(c — 0)*

where V() = E(c?| P, 0).
Foreachr=0,1, 2, ---, n, we define S,, I, to be the supremum and infinum
of L(#) over 6, < 0 < 0,4, and P € G. We have from (1) that

=a’Vo, + (1 — a)*(c — 6,)? if ¢= 0,4
(2) S,4=a’Vo+ (1 —a)’max((c —0,)% (c = 0,41)%) if 6..>c=6,
= a’V, + (1 — a)’*(c — 0,41)? if ¢c<@,
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and
=a’V,+ (1 — a)%c— 6,41)° if ¢=0,,

(3) Ir = a2V1 if 0,+1 >c= 0,- .
=a’Vi+ (1 -a)*c—0,)* if c<4,.

The supremum and infinum of the quantity E((aX + (1 — a)c — 6)?| P) over
all P € G are S(aX + (1 — a)c) = X7 S, P,, I(aX + (1 — a)c) = ¥ I,P,. Thus
the midrisk of aX + (1 — a)c, which we denote M (a, ¢) is

M(a, c) = ()I(aX + (1 — a)c) + S(@X + (1 — a)c)).

Suppose that 6, < ¢ < 0,,, and let 8} = 0, if ¢ — 0 < 0,41 — ¢, otherwise let
07 = 0,+;. From (2) and (3),
M(a, ¢) = M(aX + (1 — a)c)

=0’V + (1 = a)*V*(@) + (1 — a)*((c — 8*)? — P,(c — 6})2/2).

As 8* lies in the interval [0,+, 6,+,,), the value of ¢ minimizing M(a, ¢) must
also lie in this interval; as for any value of ¢ outside [6,+, 6,-4,), the expression
(c—0%%—P.(c— 0*)2/2 in relation (4) will be positive. By a similar argument,
the value of ¢ minimizing M(a, ¢) must be nearer to the value #* than to any

other element of the set {6, 61, 62, -+, 0,41}. Thus, c* is the value between
min{d, §*} and max{8, 6*} which minimizes the function.

h(c) = (c — §%)? — P(c — 6*)%/2.

The value ¢* minimizing h(c) in this interval is ¢* = §**. Further, if §** = §**
then

(4)

h(**) = —(P/(2 = P))(8* - 6*?,
with a similar expression if 8* * = , so that we have, trom (4), that
M(a, c*) = a?V,, + (1 — a)?V**(9).
Thus the optimal choice a*, and the value of M(a*, c*) follow immediatel;lrj

Recall that for any prior distribution P, the linear Bayes rule for 6, i.e. the
rule aX + (1 — a)c which minimizes

R(a,c, P) = E((aX + (1 —a)c — 0)?| P),
is given (Goldstein, 1975) by

var(f | P)
ar(0| P) + E(c*(F)|P)"’

¢c=E@|P),a=
v

Thus, by Theorem 1, if you minimize midrisk, you will act as if you had
specified the prior mean for 6 as §**, and your prior variance for 6 as V**(9).
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This provides a possible solution to the problem posed in the introduction,
namely how should you use a prior probability specification on a disjoint partition
of 6 values to specify a prior expectation and a prior variance, since if you choose
the value §** and V**(0) then linear Bayes methods will carry the additional
justification of possessing the minimum midrisk property. Except for very coarse
partitions, 8**, V**(9) will be nearly equal to §*, V*(9).

Thus, in practice it will often be adequate to use

a= (V*0)/(V*@©) + V,,)) ¢é=0*
From relation (4),
V¥*0)V,,

W) + vy = M9

M(a*, ¢c*) = R(a*, c*, P*) =
- V*0)V,,
T(VX0) + Vi)
where the difference between the left- and right-hand expressions will be small

unless most of the probability is concentrated in [6,+, 6,++1). Thus, for most
purposes, it is adequate to use * and V*(#) as your prior mean and variance.

= R(a, ¢, P¥)

4. Refining the partition. We now briefly consider whether you should
further refine the partition, if so in what way, and how much can you reasonably
expect to gain by doing so. Suppose you refine the partition sequentially, consid-

" ering at each stage whether you will stop or make a single further refinement.
The effect of the prior specification upon the midrisk depends mainly on the
value V*(0). Thus, we shall consider the change in V*(6). With notation as in
Section 3, suppose for simplicity you decide that if you refine the partition, you
shall do so by specifying the probabilities P;; = P(f; < 0 < 0¥), P, = P(0¥ =0 <
0:+1), for some value i, where 0¥ = (0; + 0;+1)/2. Denote the value of V*(0) after
refining the partition at value 6}, by V¥(9), and denote d; = 0;+, — 0;. We have
the following result.

THEOREM 2.
V*(0) — V¥0) = YiedX(Piy — Pu)? + Wesd?P;
+ d;(0F — 0%)(P:;, — Piy)/2.
PROOF. Write V*(9) as
V*(0) = 3= (67 — 6%)°P; + % X} d2P;.
Denote by 8 the value of 8* after the partition is refined at 6. Thus
VHO) = Tjwi (0F — 01)°P; + (6 + di/4 — 01)°Pae
+ (0F — di/4 — 01)°Pa + Y4 Jjwi dIP; + Y(di/4)°P;.

Expanding the above formula, and using the relations P; = P;; + P;; and
0* — 0 = (d;/4)(Piy— P;1), gives the required result.
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Thus, you should choose to split a wide interval, with large prior probability.
Further, you should choose an interval for which you feel that it is plausible that
the probability is concentrated in one half of the interval. The effect is largest if
the interval is far from the current mean 8* (this decreases V*(0) if P;; — P;; has
the same sign as §F — 8%, i.e. if your beliefs are concentrated towards the centre
of the distribution).
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