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BAHADUR OPTIMALITY OF SEQUENTIAL EXPERIMENTS FOR
EXPONENTIAL FAMILIES'

BY STAVROS KOUROUKLIS

The Pennsylvania State University

A theorem of Bahadur on the asymptotic optimality of the likelihood
ratio statistic has been extended to sequential analysis by Berk and Brown
(1978) in the context of testing one-sided hypotheses about the mean of a
normal distribution with known variance. In this work, Bahadur’s theorem is
extended to sequential analysis for general hypotheses about the parameters
of an exponential family of distributions. Specifically, it is shown that, under
certain conditions, modifications of the likelihood ratio statistic analogous to
those exhibited by Berk and Brown (1978) in the above normal context are
optimal for any family of stopping times approaching «. These results indicate
that Bahadur efficiency has a limited impact in sequential analysis.

1. Introduction. The notion of Bahadur efficiency and the optimality
(under certain conditions) of the likelihood ratio statistic (l.r.s.) in the sense of
Bahadur in a nonsequential context have long been known. Lately, Berk and
Brown (1978) extended this notion to sequential analysis, and showed that, in
contrast to the nonsequential case, the L.r.s. for testing onesided hypotheses about
the mean of a normal distribution with known variance is not always optimal,
i.e., there is a family of stopping times for which the l.r.s. is nonoptimal. However,
they obtained in the above normal context modifications of the l.r.s. which are
optimal for any family of stopping times approaching . In the same work the
authors exhibited a class of stopping times for which the sample mean is optimal,
but showed by an example that the sample mean is not optimal for an arbitrary
family of stopping times.

In this paper we generalize work of Berk and Brown (1978) to exponential
families of distributions. For these models we show that, under certain regularity
conditions, modifications of the Lr.s. analogous to those considered by Berk and
Brown (1978) in the normal case are optimal for any family of stopping times
approaching . See Theorem 3.2.

The results of Berk and Brown (1978) as well as ours prove that there are
infinitely many sequential tests (yielded either by the same statistic and different
stopping times or different statistics and the same stopping time or different
statistics and different stopping times) which perform equally well (in fact are
optimal) in the sense of Bahadur, and hence one cannot conclude which of them
is “better”. Thus, the notion of Bahadur efficiency has a limited impact in
sequential testing. The phenomenon, however, of many tests being Bahadur
optimal has also been encountered in nonsequential analysis (see e.g. Chandra
and Ghosh, 1978); there, the introduction of the notion of Bahadur deficiency by
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Kallenberg (1981) has provided further information about the performance of
such tests. Perhaps, what is next to be sought is some sort of extension of this
notion to sequential analysis.

In one dimension our result (Theorem 3.2) is obtained by using a lemma of
Kallenberg (1978) (see Lemma 1.1 in Kourouklis, 1984), while in higher dimen-
sions by using a large deviation result of Kourouklis (1984). Theorem 3.2 can
handle any univariate or multivariate normal testing problem. In one dimension
it applies to any testing problem.

Section 2 contains a synopsis of Berk’s and Brown’s theory on the extension
of Bahadur efficiency to sequential analysis. Section 3 contains our assumptions
and result.

2. Sequential Bahadur efficiency. Let X;, X, - - - be a data sequence of
i.id. abstract random variables with family of distributions & = {P,: w € Q}. To
simplify notation, throughout, P, will denote both the joint distribution of the
data sequence and the marginal distribution of (X, - - -, X,,) for anyn = 1. When
unclear, it will be explicitly stated which of these two meanings P, stands for.
We consider sequential tests of Hyp: w € Q vs. H;: @ € Q;, where Q,, Q, are
disjoint nonempty proper subsets of Q. Usually, Q; = Q ~ Q,, although we do not
require such an assumption here.

Let {T, = T.(Xi, ---, X,): n = 1} be a sequence of real-valued test statistics
for testing Hy vs. H,, where T, is measurable with respect to 4 (X, - - -, X,), the
o-field generated by X, ---, X,. Let also {N,} be a family of stopping times
indexed by a real parameter a. We assume P,(N, < ») = 1, and for asymptotic
considerations we require that for all w € @, the limit in probability, P, — lim,N,
= oo, Throughout, limits on a are taken as a — . This requirement on the
stopping times simply reflects the nonsequential requirement that (for asymptotic
theory) the sample size should approach «. The stopped value of the sequence
{T,} for the stopping time N, is denoted by T(a). Assuming that large values are
significant, the attained level of T(a) is defined to be

L(a) = H(T(a)), where H(x) = sup{P.(T(a) = x): w € Q}.
The Kullback-Leibler information number for w, d € Q is defined by

(2.1) K(w, 9) = f log(j?") dP,

L

if P, << P;; otherwise K(w, d) = «. Here, P,,, P, are meant to be distributions of
X;. We also let

(2.2) K(w, Q) = inf{K(w, 9): d € Qo}.

Extending a theorem of Raghavachari (1970) to sequential analysis, Berk and
Brown (1978) showed that K(w, Qo) provides an upper bound for limits in
probability of —log L(a)/N,. Accordingly, the family {T(a)} is called optimal at
w € Q whenever this upper bound is attained.

DEFINITION. Let L(a) be the attained level of 7T(a), the stopped value of {T',}
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for the stopping time N,. The family {T'(a)} is called optimal at w € Q if
P, — lim,[—log L(a)/N,] = K(w, Q).

With this definition of optimality and in the context of testing w =< 0 vs.
w > 0 when the data sequence is normal N(w, 1), Berk and Brown (1978) showed
that modifications of the lr.s. (which, here, is strictly increasing function of
S,/n'?) of the form S,/n'? — c,, where S, = X; + - - - + X,, and {c,} is a sequence
of constants satisfying certain conditions, stopped by any family of stopping
times are optimal at all w > 0.

3. Assumptions and result. Let & = {P,: w € Q} denote a k-dimensional
natural exponential family of distributions with densities (at x)
dP,/dv = exp{w’x —c(w)}, xER* weEQ,

with respect to a o-finite measure » on % (R¥). Here ’ denotes transpose.  is the
natural parameter space, i.e.,

Q= {w € R*: expic(w)} = f exp{w’x} dv(x) < 00} .

i

Throughout this paper we assume that Q is an open subset of R*. For d € Q
consider the log likelihood ratio function

Ps(x) = supf(w — 3)’x — c(w) + c(3): w EQ}, x € R,

Let now X;, X, - -- be a sequence of i.i.d. random vectors in R* with family of
distributions & Set X, = Y%, Xi/n, n = 1. The likelihood ratio statistic for
testing Hy: w € Qo vs. H;: w € Q; is defined to be

_ supfexp[nw’X, — nc(w)]: w € Q}
" supfexp[nw’ X, — nc(w)]: € R}’
We take, by convention, /0 = 1. Note that for Qo = {9}, 4, = exp{n®;(X,)}.

The following well-known lemma plays an important role in the sequel; its proof
is omitted.

n=1.

LEMMA 3.1. For each w € Q, log 4,/n — K(w, Q) w.p.1 [P,] as n — . We
now require that for k = 2 Assumptions 3.1-3.3 of Kourouklis (1984) hold with
w € Qo, and let m, B be as in Assumptions 3.2 and 3.3 respectively.

We set ky = Bk(k — 1). We also make the following assumption (again for
k=2).

ASSUMPTION 3.4. Either the distribution of #, or the distribution of ¥;(X,)
under P, do not depend on 9, for all d € Q, and all n = m.

For k = 1 we require no assumption whatsoever and set m = 1, ky = 0. Next,
for k=1 welet n; = max(m — 1, ky). For k= 2,0 € 95, >0,0<7<1,n>n;,
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by Assumption 3.4 and Theorem 3.2 of Kourouklis (1984) we have
Ps((n — ko)log 4u/n > ¢) < Po((n — ko)Pu(Xs) > &) < c(r, w)n**Vexp{—re},

where ¢(7, w) is a constant.
Fork=1,0€ Qy,¢>0,0<7 <1, n>n,;, by Lemma 1.1 in Kourouklis (1984)

we have
P;5((n — ko)log Z,/n > &) < Ps((n — ko)¥Ps(X,) > ¢) < 2 exp{—re].
Hence, setting ¢(7) = 2 or ¢(r, w) accorﬂing as k=1or k=2 we have
3.1) Py((n — ko)log Z,/n > ¢) < c(r)n**Vexp{—re},
foralld € Q,e>0,0<7<1l,n>n;, k=1
We are now in position to state our result.
THEOREM 3.2. Suppose that the above assumptions hold. Let
T.=ay)og 4, —cn, If n>m
=0, otherwise,

where 0 < a, < a(n — ko)/n for n > n,, a, — «a, and for some 6 > 0 and 0 < 7
<1, a(l + k(k — 1) + 8)log n/7¢ < ¢, = o(n). Then for any family {N,} of stopping
times for which P, — lim,N, = o, the family {T(a)} of the stopped values of the
sequence {T,} is optimal at w, for all w € Q@ ~ Q.
PROOF. Letd € Qy, x>0, 7o = 7 < 1. Using (3.1) we obtain
Py(T(a) = x)
= E:=1 PB(Tn = x) = Z$=nl+l PB(Tn 2 x) = 2;=n1+1 Pa(anIOg /n — Cn = x)

< Yn=nm+1 Ps((n — ko)log 4./n = ci/a + x/a)
< exp{—7x/a}c(r) Yponr1 n** Vexp{—rc./a}

< exp{—7x/a}c(r) Ym-n+1 1/n'*? = ci(r, 8)exp{—7x/al}.
Hence,
3.2) sup{Ps(T(a) = x): d € Qo} = ci(7, 8)exp{—7x/a}, all x>0.

Let now w € Q@ ~ Q,. We may assume that K(w, Q) > 0, since otherwise the
theorem is trivially true by Theorem 2.1 of Berk and Brown (1978). Since
P, — lim,N, = «, Lemma 3.1 entails P, — lim,[T(a)/N,] = aK(w, Q). Letting
L(a) denote the attained level of T'(a), it follows from (3.2) that

—log L(a) = 7T(a)/a — log ¢i(7,6) on (T(a) > 0),
and hence
P, — lim inf,[—log L(a)/N,] = 7K(w, Q) w.p.1[P,] since P,T(a)>0)—1.
Letting 7 — 1 we obtain P, — lim inf,[—log L(a)/N.] = K(w, Q) w.p.1 [P,]. In
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view of Theorem 2.1 of Berk and Brown (1978), we conclude
P, — lim,[—log L(a)/N.] = K(w, Q),
i.e., {T(a)} is optimal at w. O

REMARK 1. For one-dimensional exponential families, Theorem 3.2 covers
any testing problem about the natural parameter w.

REMARK 2. Suppose that Assumptions 3.1-3.3 of Kourouklis (1984) are
satisfied (with w not necessarily in Q, as we require above) and Assumption 3.4
holds with the distribution of ¥¢,(X,) under P, independent of 9 for all d € Q
(rather than all d € Q). Then, it follows from the method of the above proof that
Theorem 3.2 can handle any testing problem about the natural parameter w. This
situation occurs in the case of normal data. That Assumptions 3.1-3.3 hold is
shown in Kourouklis (1984), while that ¥,(X,) has distribution under P, inde-
pendent of 4 for all d € Q follows from invariance of the problem. Hence, Theorem
3.2 applies to any univariate or multivariate normal testing problem.

REMARK 3. Two nonnormal examples for which the regularity conditions of
Theorem 3.2 are satisfied are testing that the shape parameter of a gamma
distribution has a specified value and testing equality of the parameters of two
independent negative exponential distributions. Proofs are given in Kourouklis
(1981).

REMARK 4. In the case of multinomial distribution, which does not satisfy
Assumption 3.1 of Kourouklis (1984), one can still obtain a result analogous
to that of Theorem 3.2 (for any testing problem) by using the bound for
P,(#,(X.,) > ¢) given in Remark 1 of Kourouklis (1984) and proceeding as in the
proof of Theorem 3.2. Here n, =0, ky =0, 0 < a, < a, a, — « and for some 6 > 0
a(k + d6)log n < ¢, = o(n).

REMARK 5. When the data vectors consist of independent components, one
need not have to verify Assumptions 3.1-3.4 but simply use the bound for
Py(?s(X,) > ¢) given in Remark 2 of Kourouklis (1984) and proceed as in the
proof of Theorem 3.2. Here n; =0, k=0, 0 <a, < «, a, — «, and for some § >
0and 0 < 79 <1, a(l + &)log n/7o < ¢, = o(n). Note that in this case there is no
restriction on the testing problems that can be handled.

REMARK 6. When Q is finite one may choose 0 < ¢, = o(n), allow a, and ¢,
to depend on the data, and need not have ¢, — . In this case too, n; = 0,

ko = 0.
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