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ROBUST REGRESSION BASED ON INFINITESIMAL
NEIGHBOURHOODS!

By P. J. BICKEL
University of California, Berkeley

We study robust estimation in the general normal regression model with
random carriers permitting small departures from the model. The framework
is that of Bickel (1981). We obtain solutions of Huber (1982), Krasker-
Hampel (1980) and Krasker-Welsch (1982) as special cases as well as some
new procedures. Our calculations indicate that the optimality properties of
these estimates are more limited than suggested by Krasker and Welsch.

1. Introduction. Our aim in this paper is to compare and contrast robust
regression estimates proposed by Huber (1973, 1982), Hampel (1978), Krasker
(1978) and Krasker and Welsch (1982) as well as to derive and motivate other
estimates using infinitesimal neighbourhood models as in Rieder (1978), Bickel
(1981) for instance. Some of the results are stated in the discussion to Huber
(1982) while others were presented at the 1979 Regression Special Topics Meeting
in Boulder. '

We consider a “stochastic” regression model. We observe (x;, y;),i=1, ---,n
independent with common distribution P where the x; are 1 X p, y; scalar. We
think of these observations as being obtained by contamination or some other
stochastic perturbation from ideal but unobservable (x¥, y*) which follow an
ordinary Gaussian regression,

yi=aMT+u¥, i=1..-,n

where the u} are independent _# (0, ¢%). Our aim is to estimate § using the
(x;, ;). For this formulation to make sense we must either:

(a) Specify P so that 6 is identifiable. For instance let
x=xF and y, = x0T + u;

where the u; are independent of x; with common distribution symmetric about 0.
This is the usual generalization of the linear model discussed e. g. in Huber
(1973). For less drastic alternatives see Sacks and Ylvisaker (1978). This has the
disadvantage of implicitly assuming that contamination conforms to the linear
structure of the original model.

(b) Suppose that P is so close to the distribution P, of (x¥, y¥) that biases
necessarily imposed by the lack of identifiability of 6 are of the same order of
magnitude as the standard deviations of good estimates. That is we assume P is
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1350 P. J. BICKEL

in “an order 1/vn neighbourhood” about P,. By suitably choosing the metric
defining the neighbourhood we can make precise our ideas about what departures
we want to guard against as well as gauge the best that we can do against such
departures in terms of classical decision theoretic measures such as M.S.E. For
a general discussion of this point of view see Bickel (1981), hereafter [B]. This is
the approach we take in this paper.

We apply this point of view to several types of neighbourhoods below and
derive the optimal solutions. For regression through the origin we recapture the
by now classical estimate of Hampel as well as Huber’s (1982) MIA:A solution.
For the general regression model we derive various natural extensions of the
MIA:A procedure as well as the Hampel-Krasker and Krasker-Welsch proce-
dures. Finally, we derive some negative results suggesting that the (1982) Krasker-
Welsch conjecture is false. .

Specifically, let u; = y; — 67, i = 1, ..., n. Suppose o> = 1. Write F =
(G, H(- | -)), Fy = (Go, ®) where G, respectively Gy, is the marginal distribution
of x;, H(- | x) is the conditional distribution of u; given x; = x and & is the
standard normal distribution (of u¥). Since P and F determine each other we can
describe neighbourhoods through conditions on F, H(- | -). Such neighbourhoods,
which will depend on n, will be denoted by # (t) (with subscripts) where tn~'/2
is the size of the neighbourhood, ¢t = 0.

Error-free x neighbourhoods: G = Gy (or x = x*).

Contamination: We suppose we can represent
H(-|x) = (1 —e(x))®(-) + e(x)M(- | x)

where M (- | x) is an arbitrary probability distribution. The contamination neigh-
bourhoods Z(t), Z(t) are completely specified by:

Fio(t): sup; e(x) < tn™2,  Fio(t): f e(x)Go(dx) < tn™'2,

That is, for both neighbourhoods the type of contamination of y for each x can
be arbitrary. But under %, the conditional probability of contamination for each
x is at most tn~Y2 while under %, only the marginal (or “average”) probability
of contamination is restricted. These are the types of departures considered by
Huber (1982), Section 5.

Closely related are the metric neighbourhoods,

Fao(t): sup, d(H(- | x), ®) < tn™"2,  Flt): f d(H(- | x), ®)Go(dx) =< tn™'?
where d is a metric on the space of probability distributions on R. Of particular
interest are the variational and Kolmogorov metrics given respectively by

v(P, Q) = sup{| P(A) — Q(A) |: A Borel},
k(P, @) = sup,| P(—x, x] — Q(—, x]|.

Recall that contamination neighbourhoods are contained in the corresponding
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variational neighbourhoods which are contained in the corresponding Kolmogo-
rov neighbourhoods. The variational neighbourhoods can be interpreted as con-
tamination neighbourhoods where ¢ can be a function not only of x but also of
u* and H is the conditional distribution of u; given x;, and u}. The complements
of Kolmogorov neighbourhoods are identifiable in the sense of [B] at least if G,
has finite support.

Errors in variables models: We drop the requirement that G = G, and proceed

naturally, defining
Fat): F=Q1—¢e)Fo+eM

where M is an arbitrary probability distribution on R*!, ¢ = tn~'/2,
Za(t): d(F, Fo) < tn™'/?

where d is a metric on the probability distributions on R”*'. Here v extends
naturally and is of particular interest.

We consider estimates T, of § which are regression equivariant and asymptot-
ically linear and consistent under the normal model. That is, for all X,.x,, ¥, bixp,
T, which is 1 X p satisfies:

(1.1) T.(X,y+Xb")=T,(X,y) + b (equivariance)

and there exists y: R”*! — RP square integrable under F, such that

(1.2) f Y(x, v)®(dv)Go(dx) = 0
(1.3) f Y7 (x, v)xv®(dv)Go(dx) = I, the p X p identity,
andif u = (ug, -+, u,), X=(x, .-+, xD7,

(14) Tu(X, u) =n"' 3% ¢(x, w) + 0,(n"?) (linearity and consistency)

under Fo. Let ¥ = {{: ¢ square integrable function from R”*! to R” satisfying
(1.2) and (1.3)}.

All the usual consistent asymptotically normal estimates have this structure.
In particular, under regularity conditions, the general (M) estimate T, solving

(1.5) Y y(x, yi — xTh) =0

with ¢y € ¥ satisfies (1.1) and (1.4). For members F of % leading to models
contiguous to that given by Fy, (1.1)-(1.4) imply that n**(T, — ) is asymptoti-
cally normal with mean

(1.6) b, G, H) = n'? f V(x, u)H(du | x)G(dx)
and variance-covariance matrix,
(1.7) Vi) = f YT(x, w(x, u)®(du)Go(dx).

Note that b depends on n through G, H but for “regular” G, H stabilizes as

n— o,
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In the univariate case, p = 1, we argue in [B] that we can characterize estimates
which asymptotically minimize maximum (asymptotic) mean square error over
% by minimizing V(¢) + sup{b®(y, G, H): F € ¥} over V. More generally, the
maximum risk of T, as above, is for any reasonable symmetric loss function
determined by V(y) and sup{| b(y, G, H)|: F € F}.

In Section 2 we study the univariate case as follows.

(1) We evaluate
(1.8) b(y) = lim sup,sup{| b(y, G, H)|: F € &}

for the & we have introduced. Subscripts on b indicate which & we are
considering.

(2) We solve the variational problem of minimizing V(y) subject to b(y) < m.
This is just Hampel’s variational problem or a variation thereof.

The family of extremal {{,,:m = 0} correspond formally via (1.5) to (M)
estimates which are candidates for solutions to asymptotic min max problems.
Checking that the (M) estimate or 1-step approximation to it actually is asymp-
totically minmax requires a uniformity argument such as that of Theorem 5,
page 25 of [B] for the putative solution. These arguments are straightforward,
requiring standard appeals to Huber (1967) or Bickel (1975) or Maronna and
Yohai (1978). We therefore focus exclusively on the variational problems. No
new procedures are obtained in this section. However, Theorem 2.1 formally
gives some optimality properties of the Hampel and MIA:A estimates.

In Section 3 we consider the general multiple regression model and introduce
WLS procedures and equivariance under change of basis in the independent
variable space.

We derive various procedures on the basis of the optimality criteria we have
advanced:

1) the Hampel-Krasker (nonequivariant) estimates;

2) the natural nonequivariant extension of Huber’s MIA:A estimates (Theorem
3.1);

3) nonequivariant procedures which are also not WLS but are optimal for
estimating one parameter at a time under %;

4) an equivariant estimate which minimizes the maximum M.S.E. of prediction
under % (Theorem 3.2);

5) the natural equivariant extension of Huber’s MIA:A estimates which mini-
mizes the maximum M.S.E. of prediction under %,.

Finally we show that the optimality of the Hampel-Krasker and of the
equivariant estimate minimizing the maximum M.S.E. of prediction depends on
the quadratic form used in the loss function. This casts some doubt on a
conjecture of Krasker and Welsch (1982). The doubt is confirmed by a recent
counterexample of D. Ruppert.
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2. Regression through the origin (p = 1). As we indicated, if b(y) is
given by (1.8), we want, for each % to solve the variational problem:

V) f V(x, u)®(du)Go(dx) = min!

subject to (1.2), (1.3) and
b(y) =m.

For each % we actually have a one-parameter family of variational problems
as m varies and in principle each family could generate its own family of solutions.
Fortunately there are only two families of solutions which we describe below.

It will be shown in Theorem 3.1 that for ¥ which are of interest to us, only
¥ which are Huber functions for each fixed x need be considered. That is, we can
write ¢ in the form:

¥(x, u) = (a(x)/c(x))h(u, c(x)), c(x) >0
(2.1)
= a(x)sgn u, cx) =0

for given functions a; ¢ = 0 satisfying (1.3) and h(u, ¢) = max(—c, min(c, u)).
For such y condition (1.2) is always satisfied and (1.3) becomes

(2.2) f a(x)xB(c(x))Go(dx) = 1
where
(2.3) B(c) = (2%(c) — 1)/c with B(0) = 2¢(0).

The two basic solution families of  which we denote {{}, {x} will be defined
by corresponding {as, ¢k}, {Gr, ¢} as follows:
For0 <k < o let

(24)  celx) = k/|x|, ar(x) =sgnx / f (2®(ck(x)) — 1)x*Go(dx).

We add two limiting cases

(2.5) VUolx, u) = xu / f 22Go(dx)

(2.6) Yo(x, u) = sgn(xu)/2¢(0) f | %] Go(dx).

These are just the influence functions of the Hampel-Krasker-Welsch family
of estimates. The extremal cases (2.5), (2.6) correspond to least squares,
T,.=7Y x;y/Y x? and T, = median (y;/x;) respectively.

For 0 < t < 24(0) let 0 < g(t) < % be the unique solution of

(2.7 2(¢(q) —qP®(—q)) =1t.
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Let [2ke(0)]™" be the (Gy) ess sup of | x|. For k < k < o define

Cr(x) = q(1/k| x])

ar(x) = x / f x%(28(Cx(x)) — DI(] x| = [2k¢(0)]7")Go(dx)
if |x| = [2k¢(0)]7

= 0 otherwise.

(2.8)

The limiting cases are:

(2.9) Yul, U) = Yaulx, u)
Inl, w) = FEELYE ) (okg ()]
(2.10) ¥
=0 otherwise

if v = Golx: | x| = [2ke (0)]7}} > 0.

THEOREM 2.1. Solutions to (V) are provided by
(1) Famlly {‘Pk}: chy %vOy %ko’ %1’ %19 %(l
(i) Family (¥} Foo, o, Fio

where we have substituted d = v, k as appropriate in our notation. For given m, t
the optimal k depends on m/t only and

(iii) The solutions for Fuvs, Faxo, Fo1, i1 coincide.
(iv) The solutions for %, o coincide.
(v) The solutions for % are solutions for %, with m/t replaced by m/2t.
The key to Theorem 2.1 is evaluation of b(y) for the different neighbourhoods.

The proof of a typical subset of the following assertions is given in the appendix.
If b is defined by (1.6), (1.8) then

(2.11) bo(¥) =t f ess sup, | ¥ (x, u) | Go(dx)
(2.12) bo(¥) =t f [ess sup, ¥ (x, u) — ess inf, Y (x, u)]Gy(dx)

(2.13) bo(¥) =t f ¥ (x, -) Il Go(dx)

where “ess” refers to Lebesgue measure and | - | is the variational norm of
Y(x, -) viewed as a distribution function.
On the other hand,

(2.14) bai(¥) = t ess sup.. | ¥(x, u)|
(2.15) b (¥) = tless sup, ¥ (x, u) — ess inf, Y (x, u)]
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(2.16) bi(y) = ¢ ess sup. || ¥ (x, -) .
The “average” models behave like “errors in variables”.
(2.17) ba-o(¥) = b.a(¥).
If ¢ is antisymmetric in u
(2.18) ba(¥) =2bi(y), i=0,1.
If, in addition, ¢ is monotone in u, then
(2.19) bi(¥) = bu(¥), i=0,1.

ProOF OF THEOREM. From (2.11)-(2.19) it is clear the solutions of (V)
depend on m, t through m/t only and we can take t = 1. We claim it is enough
to show (i) for Z, (ii) for Z. Since all members of both familes {y,} and (s}
are antisymmetric and monotone in u, we can apply (2.18), (2.19) and the
inclusion relations between the neighbourhoods to derive (iii)—(iv). From (iii)-
(iv), (i) and (ii) follow for all neighbourhoods and (v) is immediate.

Problem (V) for %, is just Hampel’s variational problem. Existence of a
solution follows from standard weak compactness arguments. For these and the
derivation of the family of solutions by a standard Lagrange multiplier argument,
see, for example, [B].

Problem (V) for , is a little less standard. Huber (1982) essentially derives
the solution indirectly from his finite minimax robust testing theory.

We will give another proof which relies on a “conditional on x” Lagrange
multiplier argument for the p-variate case. See the proof of Theorem 3.1 and
note (2) following it. [

Discussion.

(1) Unknown G,. In practice G, is unknown. Strictly speaking it is not
required for the calculation of any particular estimate of the families {4}, {¥x}).
However, in order to pick out a member on optimality grounds, say, minimizing
maximum M.S.E., and to estimate maximum M.S.E., G; is required. Estimating
G, by the empirical distribution of the x; gives the same asymptotic results.

(2) Unknown scale. In practice the scale ¢* of the u} is unknown. As we
indicate in [B] under mild conditions, the estimate T, solving

(2°2O) Z?=1 ‘//(xiy (yt - xiTn)/s) =0

where s is a consistent estimate of ¢ (over ) and ¢ is antisymmetric in u for
fixed x will have influence function oy (x, u/s). It follows that the optimal ¢
functions derived under the assumption ¢ known can be modified as in (2.20) to
yield estimates optimal whatever be o. There are serious questions of computation
and existence of solutions when scale is estimated simultaneously. See Maronna
(1976) and Krasker and Welsch (1982).

(3) The agreement between the errors in variables and average ¢ or v models
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is interesting though, in retrospect, not surprising. As Huber (1982) reveals for
the average ¢ model, Nature can be thought of as using most of her allocated ¢ of
contamination to create very skew conditional given x distributions of u for the
largest x and this can certainly also be done for errors in variables.

(4) The qualitative behaviour for %, (and %) is surprising as noted by Huber
(1982). Small x’s which are relatively uninformative are cut out by the y estimates
and on the other hand the y are not bounded. (However if G, is estimated as it
must be by the empirical d.f. of the x;, sup;. | ¥x(x;, u)| < % for each n.) In this
case since Nature is required to spread her contamination evenly, it pays to take
chances and use c large at the large values of x which are informative if they are
not contaminated and it does not pay to take any chances at the small and
uninformative values of x. /

(5) Interestingly enough, the same behaviour is exhibited by the Hellinger
metric neighbourhoods %, where h%(P, Q) = [ (VdP/du — vdQ/du)*? du. Here it

may be shown
1/2
bua(¥) = 2t f ( f Vi, u)cb(du)) Gold)

and the resulting optimal ¢ are of the form

Vi(x, u) = a(x)u

where
a(x) =0, |x| <k

=;,¢(x—ksgnx), |x|>k’

where u is determined by (1.3).
These solutions do not agree with the unique solution y.(x, u) (essentially
least squares), appropriate for F0, %1-

3. The general case. For p > 1 we face the usual problem of choosing
adequate scalar summaries (measures of loss) of the vector b(y, F) and the matrix
V(¢) on which to optimize.

Again y’s which are Huber functions for each x play a special role,

(3.1) Y(x, u) = (a(x)/c(x))h(u, c(x))

where a is now a vector, ¢ = 0. For such v, (1.2) is satisfied, (1.3) becomes

(3.2) f xTa(x)B(c(x))Go(dx) = I

and

(3.3) V) = f aTa(x)A(c(x))Go(dx)
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where

(3.4) Ae) = 220 = 12_ 20000 | 99(—c), A(0) = 1.

Also natural are ¥ corresponding to weighted least squares estimates (WLS)
definable in the multivariate case by

T, = Y% wyix (S wixlx)™
with
wi = w(xi, yi — xT7)

scalars defined up to a proportionality constant. Note that y corresponds to a
WLS estimate < the direction of y is that of a linear transformation of x, i.e.,

(3.5) v(x, u) = w(x, wuxR
with .
R'= f xTxw(x, w)ud(du)Go(dx).

We classify solutions to the p-variate problem according as they do or do not
possess equivariance under changes of basis in the X-space. An estimate T, is
equivariant under change of basis if and only if

T.(XB, y) = T.(X, y)[B"]".
(a) Nonequivariant solutions.

(i) The Hampel-Krasker solution. Perhaps the most natural choice of objec-
tive function is the total M.S.E. of the components, tr V(y) + bb7(y, F). If we

let | - | denote the Euclidean norm, this leads to the following p-variate version
of (V),
V) f | ¥ |%(x, w)@(dw)Go(dx) = min!

for ¢ € ¥ and sup#| b| (¥, F) < m. Holmes (1982) has shown that for Z, %,
sups#| b | (Y, F) =t ess sup,. | ¥(x, u) |

so that (V) is just the problem of Krasker, Hampel (1978) whose solution is of
the form, for A\g < A < oo, .

Y(x, u, ) = 2@Qh(u, N/ | xQ|)
where @ is symmetric positive definite and by (3.2)

-1 A
Q7' = f xTx<2d>(| xQ|> l)Go(dx).
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Here
A = ess sup,. | ¥(x, u, \)|

and
0 < Mo = inf{sup,.|¥(x, u)|: ¢ € ¥}.

The solution to (V) has A = mt. Krasker and Hampel (see also [B]) show that
whenever there exists ¢ with ess sup,, | ¥(x, u)| = X > Ao, then ¥(-, -, A) exists

and is unique.
Note that ¢ (-, -, A) is of the form (3.1) and also WLS with

a(x) =N(xQ/1xQ1), c(x)=N/|xQ|, w(x,u) < h(u, c(x))/u.
NOTES.

(1) Calculations along the lines of Maronna (1976) show that A — @, is
decreasing (in the order on positive definite symmetric matrices).

(2) It may be shown that A, = p/2¢(0) I 1 x|Go(dx).

(ii) A generalization of Huber’s approach. For % it seems difficult to evaluate
sup#| b| (¥, F) exactly. However, it is easy to show that (see appendix)

sup{|b|(¥, F): FE€ F} <t f sup, | ¢(x, u) | Go(dx).

As in the 1-dimensional case [ sup,|y(x, u)| Go(dx) can be interpreted as an
average sensitivity. The solution of the resulting problem,

(V") f | ¥(x, u) |*®(du)Go(dx) = min!
subject to (1.2), (1.3) and
f sup, | ¢ (x, u) | Go(dx) < A
for A = m/t, yields what should be a reasonable approximation to (V).

THEOREM 3.1. For every A\ > \, there exists a unique pair (s(\), Q(\)) such
that

',;(‘: A) =P(') Q(A)’ S(A))

is an influence function and

(3.6) f sup, | ¥(x, u, A)| Go(dx) = A
and ¥ (-, \) solves (V’).
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The solutions to (V’) are describable as follows: Define, for s > 0, @ symmetric
positive definite, g as in (2.7),

o(x, @, s) = xQh(u, q([s | xQ[]™), |x2Q| > [25¢(0)]*

=0 otherwise.
Let

A= inf{ f sup, | ¥ (x, u)| Go(dx): ¥ E\If}.

¥(-, ) can be written in the form (3.1) with corresponding functions defined
for s = s()), @ = Q(A) by

éx, N) = q(|sxQ|™)
a(x, A) = xQc(x, )  for |xQ| > [2s¢(0)]™
=0 otherwise.
Preliminary calculations along the lines of Maronna (1976) and Maronna-

Yohai (1981) indicate that at least if G, does not place mass on hyperplanes,
then @ is uniquely determined by s through (3.2), i.e.

(3.7) Q= L .o x"x(28(q(] sxQ ™)) — 1)Go(dx)

where S(s, @) = {x:|sxQ|> 2¢(0)} and then s is determined by A through (3.6)

(3.8 f | xQ| q(| sx@|")Go(dx) = X.
S(s,Q)

Moreover if we write @, for the solution of (3.7), s — @, is nondecreasing
and hence A — s(\) is also. So we can reparametrize ¢(~, A) by s for
s >inf{s(\): A > \4}. If, for p = 1, we take k = sQ,, then we obtain the family /.
of Theorem 2.1. Since k is an increasing function of A we obtain the conclusions
of Theorem 2.1.

PRrOOF. In the appendix we show by standard optimization theory arguments
that a solution to (V') exists and is also the solution to a Lagrangian problem

f { [¥1%(x, u) — 2 f uy (x, u)Qx" + %I ¥ (x, u)}<1>(du)Go(dx) = min!

for Quxp, s > 0.
If ¥y is the solution we can minimize

J 1o we@a -2 [ wwi wesmean
subject to sup, | ¥ (x, u) | < sup,¥o(x, ©) and conclude that y, is of the form (3.1)
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with the corresponding vector ao(x) and co(x) minimizing

f {la|?(x)A(c(x)) — 2xQa”(x)B(c(x)) + s7*| a|(x)}Go(dx).
Minimizing pointwise we obtain as necessary conditions for ay, ¢,
(3.9 aA(co) = xQB(co) + s7H(ao/| a0 |) =0, a;#0
| a0 |* = xQagdco
= xQalc, if co > 0.
From (3.10), ap # 0 = ¢y > 0. Then by (3.9)
ao = | a0 | (xQ/| xQ|) = coxQ
by (3.10). Again by (3.9)
coA(co) — B(co) + (1/s|xQ|) =0

which implies |xQ| = [2s¢(0)]}, ¢co = q([s|xQ|]™"). Conversely, if |x| >
[25¢(0)] ™, d(x, M), é(x, N) yield

|a]?A — 2xQa”B(c) + s™|a]| <0

and hence 0 # ao = @ by our previous reasoning. Since Y must satisfy (1.2), @
must satisfy (3.9) and be positive definite symmetric. The theorem is proved. 0

(3.10)

(iii) One at a time optimality. Another nonequivariant solution of interest is
obtained by minimizing the maximum M.S.E. of each component of § separately.
That is, we seek y* = (¥, - - - , ¥3) € ¥ which simultaneously minimizes

f Y13, )@(dw)Go(d)

fory = (Y1, ---,¥,) € ¥ and
sup{| b;(¥, F)|: FE F}=m,

where b(y, F) = (bi(¥, F), ---, by(¥)). For neighbourhoods of the “average”
or errors in variables types, the solutions y* indexed by the vector m =
(my, -, mp), are not of the WLS form. They are given by

(811) Y Xx, u; m) = uxalh(u, mi/|xaf]), j=1,...,p

J

where (1.2) and (1.3) hold. Existence of y¥*(-, mo) and their form as
solutions of a Lagrange problem are guaranteed. for m, an interior point of
{m:tsup,.|yij(x,u)| =mj;,j=1, ..., p}. The limiting case corresponding to the
median is, for x = (x4, - - - , %),

(3.12) ¥i(x, u) = cisgnf(x; — Trwj brixi)ul

9\12 -1
¢ = [(;) f | % = Dkwj brjxe | GO(dx)}

where
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where B = | b; || is determined by

(3.13) f SgN(X; — Yrwj brjxe)x:Go(dx) = 0, i # j.

If (i1, « ooy Xipy 30), 8 =1, ..., pare the observaAtions, AIA,' cee ép are the estimates,
and & = y; — Y%_, x;0; are the residuals, then 6y, - - -, 0, are characterized by the
property that

mediani él/ (xij - Zkyéj bijik) =0

forj=1, ..., p.In view of (3.13) the by can be interpreted as the coefficients of
a least absolute residuals fit of Y.; byxx to x;, i.e.,

(3.14) f | % — Xrwj brixx | Go(dx) = min f | % — Tkwj baxs | Go(dx).

This characterization guarantees the existence of this influence function at least
if G, is absolutely continuous. Of course, there may be difficulties for a sample
where we replace G, by the empirical d.f. of the X;.

At first glance this solution appears to render the Hampel-Krasker solution
inadmissible. This is, however, not the case. y* here minimizes (for suitable m;),

R(Y) = Xia f Yi(x, u)®(du)Go(dx) + Y21 max5bi(y, F)

while the Hampel-Krasker solution minimizes

SW) =Xk f Yi(x, u)®(du)Go(dx) + maxs Y2.1b¥(y, F).
Of course, S < R but the optimal solutions are not related.

(b) Equivariant solutions. When translated to influence functions this equi-
variance becomes

(3.15) (%, u, Go) = Y(xB, u, GoB~Y)B”

where ¥/(x, u, G) is the influence curve if X; ~ G.

(i) Equivariant best MSE of prediction. Suppose that X, is error free so that
G = G, and that [ | x |?Go(dx) < . The most natural way of obtaining invariant
¥ with local optimality properties is to use as objective function the expected
mean square error of prediction

f {xV¥)xG(dx) + xb"(¥)b(¥)x"}Go(dx).

We can rewrite this as

f Y27 (x, w)®(du)Go(dx) + bly, F)Zb"(Y, F)
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where

(3.16) = f xTxGo(dx).
As in the noninvariant case we can deal easily with . since
(3.17)  sup{b(y, F)Zb"(Y, F): F € Fo} = ess sup.uy (x, W)Y (x, u).

Minimizing the maximum of our objective function over %, is easy once we
have solved

(V1) f ¥Z¢7(x, u)®(du)Go(dx) = min!
for y € ¥ such that )
ess sup, . ¥2¢ 7 (x, u) < \.
Let
Ao = inf ess{sup..¢Z¢7(x, u): ¥ € ¥}
d%(x, 2) = 12«7, ‘
For A > Ap let

(3'18) ‘l/l(x9 u, A) = th(u9 A/d(ny E))
where @ is positive definite symmetric,

A -
(3.19) . f xTx(2‘I>(m) - I)Go(dx) =Q

THEOREM 3.2. If A > Ay, ¥1(-, -, ) uniquely solves (V).

PrOOF. Again by standard arguments we can establish existence of a mini-
mizing ¥, which solves an equivalent Lagrangian problem

f W2y T(x, u) — 2 f uxQZyT(x, u)}®(du)Go(dx) = min!

subject to | W2y | < A. A direct minimization of Y=y — 2uxQ=¢7 under the
side condition yields (3.18) and (3.2) implies (3.19). O

Note that the uniqueness of y; and (3.19) imply the equivariance property
(3.15).

(ii) An equivariant Huber solution. As in the nonequivariant case we can
bound the maximum expected squared bias of the predictor

sup{ f xb7b(yY, F)x7Gy(dx): F € %0}
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above by
t f {sup.y (x, W) ZY 7 (x, u)}Go(dx).

The resulting variational problem

f V3¢ T(x, u)®(du)Go(dx) = min!

subject to

(3.20) f sup.y¥ (x, w)ZY 7 (x, u)Go(dx) < \

has solutions of the form

ar(x, s)

51(x, 3) h(u9 El(xy S))

(3.21) vz, u,8) =

where
El(x, A) = Q(I/Sd(ny E))r dl(xy S) = xQél(xr S)
if ,
d(xQ, Z) = [25¢(0)]
= (0 otherwise.
and @, s are determined by the requirement that y; is an influence function
satisfying equality in (3.20).
" Reparametrizations are possible for the procedures of this section as for the
Hampel-Krasker and Huber solutions.

(iii) The Krasker- Welsch (1982) solution. Based on sensitivity considerations,
Krasker and Welsch proposed estimates given by

(3.22) Yrw(x, u, A) = xQh(x, \/d(xQ, V™), A> Vb
where
A
f xTx(2<I><W) - l)Go(dx) =Q!
and
(3.23) V, = f VY (x, u, \)®(du)Gy(dx).

Equivalently if A™! = QV '@, (3.23) becomes

A= f xTx[2®(N/d(x, A7) — 1 — 2Ad 7' (x, A™))p(Ad 7 (x, A™1))]Go(dx)

and @ may be obtained directly from (3.22). Existence of the K-W solution for
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A> «/13 is guaranteed by results of Maronna (1976). The K-W solution is also
equivariant. It evidently has the property (by arguing as for Theorem 3.2) of
uniquely minimizing [ ¢ V™ (yxw)¢ 7 subject to sup ¢ V" (yxw)¢¥ " < A% Krasker
and Welsch conjecture a strong optimality property (see below).

(iv) More general optimality properties. Whatever be p, least squares esti-
mates do not minimize only trace V(y) but the matrix itself or equivalently
[ ¢ MyT for all M positive definite, symmetric. It is fairly easy to see (see also
Stahel, 1981) that once we bound the vector influence curve as we have in this
section, no such conclusion is possible. Thus y My 7(x, u) — 2uy (x, u)@MxT is
minimized subject to |¢| = Aby ¢ = uxQ if |u| = \/|xQ]|, but, unless M = I,
by a boundary value other than A(xQ/|x@Q|) if |u| > \/| xQ |.

Krasker and Welsch seek to remedy this failing by restricting ¢ to the WLS
form, i.e., forcing the direction of ¥ to coincide with a linear transformation of x.
They conjecture that their solution minimizes V(y) among all WLS estimates
with sup ¢y V-1(¢)¢ T < 5. Our methods do not readily give a counterexample to
their conjecture but we show below that neither the Hampel-Krasker estimate
nor the equivariant estimate of section (i) possess the analogous optimality
property, thus casting some doubt on the conjecture. (David Ruppert has recently
discovered a counterexample to the conjecture.) Suppose G, is spherically sym-
metric, its support is bounded, has a nonempty interior, and does not contain 0.
Then, by symmetry, the Hampel-Krasker, section (i) and Krasker-Welsch solu-
tions are of the same form. For suitable A,

¢o(x, u) = rxh(u’ A/rlxl)

r= [ f | x |2<2<1><—r—|>;—|> - 1>Go(dx)]m—l.

If Y, were a universally optimal solution for the Hampel-Krasker or MSE of
prediction problems among WLS estimates, it would solve, for all S,

where

(Vs) f vSYT(x, u)®(du)Go(dx) = min!
subject to | ¢ | = A\, ¢ € ¥ and y WLS as in (3.5).
By conditioning as in the proof of Theorem 3.1 and restricting to
A h(y, c(x)
c(x) u|xR| "’
we see that Ry = rl, co(x) = \/r| x| minimizes
d*(xR, S)
o[ & X%, ©)
f A ( | xR |’ )A(c(x))Go(dx)
among all ¢ > 0, R symmetric positive definite such that

xTxR
f )\(I R I)B(c(x))Go(dx) =TI

w(x, u) =
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If we let ¢ range over the Banach space of continuous functions vanishing at
oo with supremum norm, it can be shown that if p > 3 the map

xR

e R) - f 2 B(e(x))Gol(dx)
| xR |

has a nonsingular differential at ¢ = ¢y, R = R, where r is given in the definition

of . Therefore by Luenberger (1969, page 243) there exists a Lagrange multiplier

matrix WsS such that Ry, ¢, minimize

tr(WsSRxTx)

&GR, S) A(c(x))Go(dx) — 2 f T I:R| B(c(x))Goldx)

|xR|?

among all R symmetric positive definite, ¢ = 0, ¢’s vanishing at . But minimi-
zation over c leads as in Theorem 3.1 to

(3.25) ¢ = tr(RSRxTx) /tr(WsSRxTx) | xR |.

If we set ¢ = ¢y, R = Ry, we deduce that Ws = Ro/\. If we now substitute (3.25)
back into (3.24), find the differential of the resulting map from the set of
symmetric matrices to the real line and set it equal to 0 at R = R,, we obtain the
equation

(3.24)

(3.26) f a(co(x))((SRy + RoS) — 28(x, S)Ro)xTxGo(dx) = 0
where

alc) = 2(c®(—¢) — ¢(c)),  B(x, S) = d*(xRo, S)/| xR, |*.
Simplifying, we get

T
(3.27) Sfa( A )xTxGo(dx) =fa(_l_>zc_sf_2.xTxGo(dx)
rlx| EAVARED

for all positive definite symmetric S. Passing to the limit, the relationship must
hold for nonnegative definite S as well. Put

10 --- 0
s=1{o 0
0 e 0

to obtain a contradiction since by symmetry of Go, [ a(\/r|x| )xTxGo(dx) is a
multiple of I and G, has a nonempty interior.

NOTES.

(1) For p > 1 as in the univariate case we would typically need to estimate G,
and ¢ in order to implement adequate scale equivariant estimates. No new
theoretical issues arise from optimality considerations. However the computa-
tional solution and existence of problems which arise with simultaneous estima-
tion of scale become more serious.
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(2) Our discussion in this section is essentially limited to the contamination
neighbourhood since the maximum bias (as measured by different norms) in the
p-variate case can only be easily calculated for these. However, these solutions
are also adequate for variational and Kolmogorov neighbourhoods provided ¢ is
taken as double its value for contamination. Thus, for %q,, %,

(3.28) sup | b(¥, F)| = 2t sup..| ¥(x, u)|

while for %,

(3.29) sup | b(y, F)| = 2t f sup, | ¥(x, u) | Go(dx)

and for Y., Fix

(3.30) sup.%, | b(¥, F)| =<t sup:| [ ¢(x, -) ||

where || ¥/(x, -) | = (I ¥a(x, ), -+, 1 (=, ) ||) and || Yi(x, -) | is the variational

norm of y;(x, -).

(3) The invariant estimates based on minimizing MSE of prediction are
appealing and seem reasonable for the error free x models. They are seriously
compromised for errors in variables, however, since the matrix [ xTxGy(dx) is not
robustly estimated by replacing G, by the empirical distribution. A fairly artificial
way out is to down weight extreme values of x. That is, let u, satisfy conditions
of Maronna (1976), and 2(G,) be the robust covariance determined by that u,.

(3.31) f ux(d(x, Z7))xTxGo(dx) = =.

Then we can easily see that the estimate which minimizes the downweighted
MSE of prediction

sup s { f us(d(x, ZH)fxV(y)x" + be(\L)b(d/)xT}Go(dx)}

is given by (3.19) with Z given by (3.31) for both % and ;. The estimate is
clearly equivariant. This is essentially equivalent to a proposal of Maronna,
Bustos, and Yohai (1979).

APPENDIX

PROOF OF (2.11)-(2.19). For the errors in variables models these claims are
proved in [B]. For the other neighbourhoods the arguments are similar. As an
example here is the proof of (2.11).

Since G = G,, by (1.2),

(A1) by, G, H) =t f f ¥ (x, u)M (du | x)Go(dx).

Since M is arbitrary (2.11) follows. As a second example we prove (2.17) for %,.
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Write

by, G, H) = f f ¥(x, u)[H(du | x) — ®(du)]Go(dx)
(A2)

— [ viw o at 2 - M DGt

where a(x) is the common total mass of the positive and negative parts of the
measure H(- | x) — ®&(-) and M*, M~ are the probability measures obtained by
normalizing these positive and negative parts. F € Z,; means [ a(x)Go(dx) <
tn~'2 Since M*, M~ are arbitrary, (2.17) follows. O

PROOF OF (3.7). By definition

21 1/2
161, F) =t{ ( f f ¥, u)M(du|x)Go<dx))}
2) 1/2
=t f {25"=1 ( f ¥i(x, M (dulx))} Go(dx)

by Jensen’s inequality applied to the random vector

<f WXy, WM(du| Xy), ---, f ¢p(X1, u)M(dulxl))-

(A.3)

Existence of solutions in Theorem 3.1.

Sketch of argument. Consider y as elements of Ly(Fy; R?), square integrable
p-variate functions. Define the following maps from L, to R or R”

ao: Y — f | ¥ |%(x, u)®(du)Go(dx)
a;:y— f sup, | ¢ (x, u) | Go(dx)

a Y — f ux T (x, u)®(du)Go(dx)

as: \0 i Supx,u I ',/(xy u) |°
Then ay, a, are convez, a, is linear. Let
AIM = inf{)\:\l/ (S ‘II, al(\b) = A, 03(1/) = M}.

It is easy to see that N\yp | Ay if M — . Suppose A > A;y. Then by problem 7,
page 236 of Luenberger (1969) there exist Qu, Sy such that

inflao(¥): a1(¥) < X\, ax(¥) = I, as(¥) < M}

A.
(44 = inflao(¥) — 2 tr Qlax(¥) — I] + (2/s)[ao(¥) — A]}.
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Moreover since {{: a3(y) < M} is weakly compact and a, is lower semicontinuous,
the infima in (A.4) are assumed by, say, ¢ € V. By arguing as in the proof of
the theorem

dl}tl(xa u) = p(xa u, Sm, QM) lf lp(x9 ua SM, QM)l = M'

It readily follows by considering sy and Qu/tr(Q) that we can extract a
subsequence {M,} such that y}; converges pointwise to a limit y* as M, — .
Since by the optimality of ¥}, the sequence ao(¢};,) is uniformly bounded, we
can conclude that ax(¥3) — a.(¢*), i.e. ¢* € ¥ and a:1(y#) — a:(¢*). By lower
semicontinuity of ao, ¢* is the solution to (V’). Applying (A.5) with M = « we
obtain (s(X\), (X)) such that p(x, u, @(\), s(A\)) = y*. Unicity of (q, s) follows
from the strict convexity of ao. 0
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