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ASYMPTOTIC NORMALITY OF THE KERNEL QUANTILE
ESTIMATOR

BY MICHAEL FALK

Universitat Gesamthochschule-Siegen

Multidimensional asymptotic normality of the kernel quantile estimator
is established under fairly general conditions on the underlying distribution
function and on the kernel.

Sharpening these assumptions, one can utilize the proof to achieve also a
bound for the rate of convergence which entails the comparison of the kernel
estimator with the empirical quantile on the basis of their covering probabil-
ities.

1. Introduction and main result. Let P be a probability measure on the
real line with distribution function (= df) F. If F' is smooth near the g-quantile
F~(q), q € (0, 1), then one might hope that averaging over order statistics close
to the sample g-quantile F;'(q) leads to estimators of better performance.

Consequently, it was shown in Falk (1984) that under suitable conditions on
F, a, > 0 and k: R — R, a kernel type estimator of the form

(1.1) Gn(Fn) = az’ fo FoH(x)k((q — x)/an) dx

of the g-quantile beats the sample g-quantile on the level of deficiency if (and
only if) the number

(1.2) Y(k) := 2 f xk(x)K(x) dx

is positive; K(x) := [*, k(y) dy.

The kernel quantile estimator for a particular choice of kernels was considered
by Harrell and Davis (1982) who also made some empirical studies (see also
Kaigh and Lachenbruch, 1982).

Since the above mentioned comparison between §,(F,) and F;(q) is based
on their mean square errors, we had to compute in Falk (1984) moments of these
two estimators, and the crucial point for the derivation of these results was the
tail behaviour of F.

On the other hand it is well-known that asymptotic normality of the sample
g-quantile is achieved under only local assumptions on the underlying df which
stimulates the analogous investigation of the kernel estimator.

Therefore, we establish in Theorem 1.3 of the present article multidimensional
asymptotic normality of the kernel estimator under fairly general assumptions
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on F and k&, i.e. the conditions on F fit completely with the standard assumptions
to prove asymptotic normality of the joint distribution of empirical quantiles (see
Theorem B on page 80 of Serfling, 1980).

Imposing further conditions on F and k and following the lines of the proof of
Theorem 1.3, one can easily derive a bound for the rate at which the distribution
of §,(F,) tends to its limit (see Proposition 1.5 below). Furthermore, in Section
2 of the present article these results will prove useful for the comparison of
covering probabilities of the kernel estimator and of the sample g-quantile.

Our main result is the following one. By P"” we denote the n-fold independent
product of P, by P" * g the measure induced by P" and a measurable function g,
and by —,, weak convergence.

1.3 THEOREM. Let0<gq, < --- < q, < 1. Suppose that F~! has a bounded
derivative near q; which is continuous at q;, 1 < i < r. Then, if k; has bounded
support, [ ki(x) dx =1 and 0 < o —>neno,1=i < r, we have

P" x (nl/z(éin(Fn) - éin(F))f-l) —w N(O,E)

where §;n(F,) = ai' [3 Frl(x)ki((¢; — x)/ain) dx, 1 < i < r, and N 3) denotes
the r-dimensional normal distribution with mean O and symmetric covariance
matrix T = (0;;)}j=1 with o;; = (F7)(¢:) (F™)'(g;)q:(1 — gq;), i <.

1.4 REMARKS. Notice that the limiting normal distribution for the kernel
estimators is the same as for the joint distribution of empirical quantiles.
Furthermore, assume that F~! has a bounded (m + 1)th derivative near q,
m = 0. Then, if k has bounded support, [ k(x) dx =1 and [ x'k(x) dx =0, i =1,
.+, m, Taylor’s formula implies | §,(F) — F~*(q)| = O(a?*'). Hence, under
additional assumptions on «;, (which depend on the smoothness of F~!) and on
k we may replace §;,(F) in the preceding result by F ~(q).

PROOF OF THEOREM 1.3. Denote by @ the uniform distribution on (0, 1).
Since @ * F~! = P, we have for n large

P" + (n"2(§in(Fp) = Gin(F))ica

i=1

= P" « <n1/2<f ki(x) (Fr'(qi — @inx) — F7Hqi — ainx)) dx) )

=Q"+ <n1/2<f ki(x) (F M F7 (¢ — ainx)) — F71(qi — ainx)) dx) )

i=1

where the support of k; is contained in [—c¢, c¢]. Now, a suitable Bahadur approx-
imation argument (see Kiefer, 1970) together with the continuity of (F™)’ at g;
imply that under Q" the function

r

n'/? <J: ki(x){F M FMqi — ainx)) — FHq; — ainx)) dx)

i=1
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is asymptotically equivalent to

n1/2<£ ki(x)(qi — @inx — Fn(qi = inx)) (F71)(gi — atinX) dx)

i=1

i=1

= n1/2 2]!;1 <£ kz(x)<qt = QipX — 1(O,q—a,~,,x](7rj))(F_l)l(qi - ainx) dx)

where 7;(x) = x; denotes the jth projection and 1, the indicator function of a set
A. Hence, the assertion is immediate from elementary computations and classical

central limit theory.
Imposing further conditions on F, the following result can easily be derived
along the lines of the preceding proof. Hence we present it without proof.

1.5 PROPOSITION. Suppose that F~ has a bounded second derivative near
q € (0, 1) and (F™')’(q) > 0. Then, if k has bounded support, [ k(x) dx =1 and
0 < @, —nen 0 we have

super | PM{nY*(§n(F,) — §.(F)) < to,} — ®(¢)| = O(log(n)n™"*)
where
1 J’ c ' 2
oh = J; 1 j: k(x)[g — anx — 1og-au](F ) (@ — anx) dx}> dy

—nen (F7)%(q)q(1 — q)
and ® denotes the standard normal df.

Notice that bounds for the rate of convergence of ¢, (F,) can also be established
by utilizing the differential approach to L-statistics due to Boos (1979) (see also
Sections 6 and 8.2.4 in Serfling, 1980). However, this leads to rather restrictive
differentiability assumptions on the kernel k.

2. Comparison of covering probabilities. In Falk (1984) we evaluated
the relative deficiency of the sample g-quantile with respect to the kernel
estimator based on their mean square errors and in order to keep these values
finite we had to assume that the df F satisfies lim;,.t’(1 — F(t) + F(—t)) =0
for some & > 0. Since this is a necessary and sufficient growth condition (see
Theorem 2.2 of Bickel, 1967) we cannot dispense with it and hence, the tails of
the underlying df decide whether at all this measure of performance is finite.

To compare F;'(q) and §,(F,) under only local assumptions on F, we inves-
tigate in this section their covering probabilities of intervals symmetric to F~*(q)
and to this end, Proposition 1.5 will prove useful.

Therefore, define for any ¢t > 0 the interval

(2.1) I.(n) .= [FXq) — ton™'2, F7X(q) + ton™"?]
where ¢2 := (F™!)%(q)q(1 — ¢) and the number i;(n) by
(2.2) i(n) = min{m € N: P™{F;'(q) € I.(n)} = P"{§.(F,) € I:(n)}}.
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The number i,(n)-n denotes the least number of observations which are
additionally needed such that the distribution of the sample g-quantile is as
concentrated around the true g-quantile as that of the kernel estimator based on
n observations.

A similar comparison between the empirical quantile and a linear combination
of finitely many order statistics was carried out by Reiss (1980), Section 3.

The following result shows that the sequence i;(n) — n, n € N, quickly tends
to infinity if (k) is positive.

2.3 THEOREM. Assume that F~! has a bounded (m + 1)th derivative near q,
m = 2, and (F™')’(q) > 0. Let k have finite support and satisfy [ k(x) dx = 1,

[ xk(x)dx=0,i=1, ---, m. Then, if nan/log*(n) —nen © and na2™! —,ex 0
we have for any t > 0
limpenar (P™§n(F,) € I.(n)} — PMF;'(q) € I.(n)})
24
@4 = tP(t)y(k)/(q(1 — q))

where ¢(x) = (27) Y%exp(—x%/2). Moreover,
(2.5) lim infyew(i:(n) — n)/(nay) = ¢(k)/(q(1 — q)).

This result again suggests the number (k) as a measure of asymptotic
performance within the class of kernels and its sign decides whether one does
better with the kernel estimator or with the empirical quantile. Thus, Theorem
2.3 fits completely with the results derived in Falk (1983) and (1984), where

asymptotically optimal kernels are given also (see also Mammitzsch, 1984, for
details).

PROOF. First notice that under the assumptions of Theorem 2.3
(2.6) on = (F)*@lg(l — q) — ay(k)} + o(an)
where ¢2 is defined in Proposition 1.5. Furthermore, Proposition 1.5 implies
P"{§,(F,) € L(n)}
= ®(toa,' + d,) — ®(—too,' + dn) + O(log(n)n™*)

where d,, := ni/ %(F~Yq) — Ga(F))/o,. Furthermore, Taylor’s formula yields with
tn = too;!
©8) ®(t, + d,) — (t) — (2(=t, + dn) — B(—1))
' = 20(t)(t, — t) + O(d2 + (t, — t)?).
Now, (2.6) implies

ta — t = tan(F1) % (q)¥(k) + o(an)}/{2(F ) (q)q(1 — q) + 0o(1)}

and thus, lim,ew (¢, — t)/a, = t¥(k)/(2q(1 — q)). Moreover, Remark 1.4 implies
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d, = 0O(n*?a™') and hence, d2/a, = O(na?™*'). Altogether we have
lim,ena,{®(t + d,) — ®(—t, + d,) — ®(t) + ®(—t)}
= tP(t)Y(k)/(q(1 — q)).

Now the Berry-Esseen Theorem for sample g-quantiles (see Theorem 2.7 in
Reiss, 1976) together with (2.7) and (2.9) imply (2.4).
Furthermore, Theorem 2.7 in Reiss (1976) yields for t >0, m € N

(2.9)

t(m/n)V/?

(2.10) P™F;Yq) € I;(n)} = f . @(x) dx + O(m™)

—t(m/n)V/
which implies lim inf,ewi.(n)/n = 1. Moreover, by definition of i;(n)

a; (P*NF il (q) € L(n)} — P™§.(F,) € I.(n)}) = 0

and hence,

t(ip(n)/n)*? ¢
a;‘-{It(i oy P(x) dx — f_t P(x) dx}' = tP(t)y(k)/(q(1 = q)) + o(1)
yielding lim infren(i: ()% — n'%)/(n"2a,) = ¥(k)/(2¢(1 — q)).

Since

lim infhew (i:(n)"? — n*?)/(na,,)
= lim infrewn(is(n) — n)/{nan((it(n)/n)l/z + 1)}
< lim inf,en (i (n) — n)/(2nay,),

the assertion of Theorem 2.3 is complete.
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