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A HEAVY CENSORING LIMIT THEOREM FOR THE PRODUCT
LIMIT ESTIMATOR

By JoN A. WELLNER
University of Washington

A key identity for the product-limit estimator due to Aalen and Johansen
(1978) and Gill (1980) is shown to be a consequence of the exponential formula
of Doleans-Dade (1970). The basic counting processes in the censored data
problem are shown to converge jointly to Poisson processes under “heavy-
censoring”: G, —q 6o, but n(1 —G,) — a where G, is the censoring distribution.
The Poisson limit theorem for counting processes implies Poisson type limit
theorems under heavy censoring for the cumulative hazard function estimator
and product limit estimator. The latter, in combination with the key identity
of Aalen-Johansen and Gill and martingale properties of the limit processes,
yields a new approximate variance formula for the product limit estimator
which is compared numerically with recent finite sample calculations for the
case of proportional hazard censoring due to Chen, Hollander, and Langberg

(1982).

1. Introduction. Let (X;, Y;), i = 1, ..., n be independent identically
distributed pairs of positive random variables with distribution functions (df’s)
F(t) = P(X;<t)and G(t) = P(Y; < t). Suppose that X; and Y; are independent
for each i. The X’s represent “survival times” and the Y’s represent “censoring
times”, but only (Z;, 6;),i=1, .-+, n with

(1.1) Z;=min{X;, Yi}, &= {(1) §l i 11?

are observed. This is the “random-censorship” model.
For 0 = t < o define the counting processes
NR(t) = Yk Liz=g6;, Ni(t) = X 1iz,24(1 — 8),
N,(t) = Ni(¢) + Na(2),
and, with f_(¢) = f(¢t =) = limy.f(s), set
(1.3) Rn(t) = n — Nu(t =) = T 1iz20,

the number “at risk” at time ¢ In terms of these counting processes, the
cumulative hazard function estimator A, of A = [(,.) dF/(1 — F-) and Kaplan-
Meier product-limit estimator S, of S = 1 — F are defined by

(1.2)

A 1
(1.4) A(t) = f — dN% 0=<t<o,
0 Ry
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(with 0/0 = 0) and
(15) §n(t) = Hsst (1 - AAn(S)) = Hi:Z“)st (1 _5(i)/(n - l+ 1))

where 0 = Zy < Zp =< --- < Z( = T, denote the ordered Z’s and 6, - - -, d(n)
are the corresponding §’s; see e.g. Gill (1980), (1983). Note that this version of
the product-limit estimator is strictly positive on [Z,), ®) if the largest obser-
vation is censored, (,) = 0, and hence differs slightly from the version F,(t) =
§,,(t)1[0,z(n,)(t) which always equals 0 on [Z,), ) whether 6.,) = 0 or 1; see e.g.
Chen, Hollander, and Langberg (1982) and other references given there. We
present small sample numerical evidence in favor of S,(¢) in Section 4.

Our purposes here are three-fold: First, in Section 2 we use the “exponential
formula” of Doleans-Dade (1970) to give another proof of the fundamental
identity (for 0 <t < 7p = inf{t: F(t) = 1})

Sat) _ . _ f Sn- i
(1.6) ) 1 on S d(A, — A)
given in Theorem 3.1 of Aalen and Johansen (1978), (3.2.12) in Gill (1980), and
Lemma 2.4 in Gill (1983). While the proof of (1.6) given in Section 2 uses only
deterministic special cases of the exponential formula, all of which can be proved
via integration by parts (as in Chapter 18 of Liptser and Shiryayev, 1978; Gill,
1980; and Appendix 4 of Bremaud, 1981), we have included the present approach
to these results in hopes that the general exponential formula will become more
widely known among statisticians.

Second, in Section 3 we present “heavy-censoring” limit theorems for
(N¥%, R,), A, and S, under the assumption that G = G,, —4 §, = point mass at
0, but n(1 — G,(t)) — a(t) for 0 < t < . Under these assumptions on G, the
processes (N4 IR,) converge jointly to a pair of dependent Poisson processes
(N* R) where WN* is a Poisson process with (increasing) mean function
A = [§ a dF and R is a Poisson process with (decreasing) mean function B =
a(l — F). The basic limit theorem for (N%, R,) combined wiiah (1.4) gnd (1.5)
then yields simple limit processes under heavy censoring for A, and S, repre-
sented in terms of the joint Poisson limit process (N* R) of (N%, R,).

Third, martingale arguments and the key identity (1.6) give approximate
asymptotic variance formulas under heavy censoring for both A,(t) and S,(t)
which we present in Section 4. The statistical implications of these formulas are
discussed briefly, and comparisons made with the finite sample calculations of
Chen, Hollander, and Langberg (1982). The tables in Section 4, ca}culated under
the assumption that (1 — G) = (1 — F)? 0 < 8 < «, suggest that S, has smaller
bias and variance than F, = $, 1j02,, for a substantial range of ¢’s.

2. An exponential formula. In this section we derive both (1.6) and
proposition A.4.1 in Appendix 4 of Gill (1980) as special cases of the theory of
the “exponential of a semimartingale” due to Doleans-Dade (1970). None of the
identities in this section are new, and, as already noted above, the cases of
particular interest here can all be derived via more elementary integration by
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parts methods thereby avoiding stochastic integration theory. The present ap-
proach to these results simply serves to illustrate the power of the general
exponential formula, and are included here in hopes that these connections will
become more widely known. For further related results see Jacod (1979) pages
190 ff, Meyer (1976) pages 304 ff, Yoeurp (1976), and Yor (1976). For a recent
exposition of martingale theory, see Shiryayev (1981).

A process X is a semimartingale if it can be written as X = M + V where M
is a local martingale and V is a process of locally bounded variation: % |d V (¢)|
< oo with probability one for any 0 < t < oo,

THEOREM 1. (Doleans-Dade, 1970). Let X be a semimartingale with X (0) =
0. Then there exists a unique semimartingale, Z, called the exponential of X,
satisfying

(2.1) zZ(t) =1+ f Z_dX, for 0=t<o,
0,t]

1t is given by the “exponential formula”
(2.2)  z(t) = exp(X(¢) — %(X) (1) [Ts=: (1 + AX(s))exp(—AX(s))

where X° denotes the continuous martiﬁgale part of X and AX(s) = X(s) —
X(s —).

A very special case of Theorem 1 is the following correspondence between a
df and its cumulative hazard function which is apparently due to Jacod (1975);
see pages 255-256 of Lipster and Shiryayev (1978) for a somewhat more general
result in this same vein.

COROLLARY 1. (Jacod, 1975). If F is a df on R* with F(0) = 0 and the
cumulative hazard function A is defined by

dF
(23) A(t) = »I(:),t] 1—F’
then
(2.4) 1 — F(t) = exp(—Ac(t)) [s=: (1 — AA(s))

with Ac(t) = A(¢) — Tt AA(s).

ProoF. This follows immediately from Theorem 1 applied to the (deter-
ministic) semimartingale X = —A upon noting that (2.3) implies F(t) =
Jog(l—F-)dAor1—F(t)=1— [(,(1 —F-)dA. (In this case X°=0.) 0

Now we use Theorem 1 and Corollary 1 to establish an identity of Gill (1980).
Let A and B be right-continuous nondecreasing functions on [0, ©) with A(0) =
B(0) = 0 and AA =1, AB <1 on [0, ©). Thus B is a cumulative hazard
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function and so is A if A(s) = A(t) for all s = ¢t when AA(t) = 1; and the right
side of (2.4) defines a df when A -is replaced by either A or B in any case. Let
rp = inf{t: B(t) = }.

COROLLARY 2. (Gill, 1980). The unique locally bounded solution Z of

() = 1 — Z(s ) _
(2.5) zZ(t) =1 J:O’t] 1= AB(s) d(A(s) — B(s))
on [0, 7g) is given by

_exp(=A(t)) ITs=: (1 — AA(s))

(2.6) “) = xp(CBAD) o=t (1 — AB(5)
_1-Fa(®)
2.7 - 1 — Fg(t)

where F4 and Fg are the df’s corresponding to A and B.

PrOOF. Let

1
= - - <t<r7p
(a) X(t) L,q N d(A—-B), 0=<st<r7p
Then X is a (deterministic) semimartingale since it has locally bounded variation,
and (2.5) can be written in the form (2.1) with this choice of X. Thus (2.2) of
Theorem 1 gives the solution of (2.5): We calculate

1— AA
(b) 1+AX—1—1_AB(AA—AB)—1_AB
and
1
© X(t) = X(t) — Yo=e AX(s) = — J:O‘t] 1 — AB d(A. — B.)

= —(A.(t) — B(t))

by continuity of A, and B.. Note that X° in (2.2) is identically 0 here. Hence
by (2.2)

(d) Z(t) = exp(Xc(t)) [T.=: (1 + AX(s))
which equals the right side of (2.6) by (b) and (c). Now (2.7) holds by (two
applications of) Corollary 1.0

COROLLARY 3. (Aalen and Johansen; Gill). The identity (1.6) holds for
O<t=<7,=inf{t: F(t) =1}

§n(t) _ _ f én- n _
2.8) . —S(t) =1 o S d(A, — A).
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ProoF. This follows immediately from Corollary 2 with A = A,, (for each
fixed w), and B = A, and using (1.5) and (2.4). Note that 1 — AA =
(1= F)/(1 — F-). Alternatively, (2.8) follows from Theorem 1 applied directly to
the martingale

1 A 1 1
B A T S I O
(@) () ot 1 — AA ( ) o0eaT,) 1 — AA R, i

where MY is the counting process martingale defined by

(b) Mﬁ=Nﬁ—f R, dA;
0
see Gill (1980) or (1983). 0

3. Heavy censoring limit theo::ems. We now turn to limit theorems for
the counting processes (N%, R,) and A, and S, under “heavy censoring”, G, —4
80 = lj,«. Throughout this section we assume that both F and G = G, are
continuous, and we write Y,, ---, Y,, for the independent Y’s with df G, to
emphasize the dependence of their distribution on n. The following assumption
specifies the rate of increasing censorship:

ASSUMPTION C. For0<t<o

(3.1) n(l — Gu(t)) — a(t)

and

(3.2) f n(l - G,) dF — adF <o
(0,¢t] (0,¢]

as n — o where a is continuous on (0, «).

Extreme value theory provides a variety of G,’s satisfying assumption C; see e.g.
Lemma 2.2.2 page 62 or Theorem 2.3.1 page 69 of De Haan (1975).
Let

(3.3) Fa(t) = gf{NE(s), Ni(s): 0<s =t} for 0<t<oo

In the following, —, will mean weak convergence in the Skorokhod /; topology
(or product topology in the case of (3.4)). For the processes of interest here, this
may be interpreted as pointwise convergence at all continuity points of the limit
process; see Kallenberg (1976) or Brown (1981) for further details.

THEOREM 2. If F is continuous and assumption C holds, then
(3.4) (N¢, R,) —»¢ (N4 R) as n— o

where N* is a nonhomogeneous Poisson process with mean function A = [, a dF;
and R =4 N o B with N a standard Poisson process and B(t) = a(t)(1 — F(t)).
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Moreover,
3.5) MZ=N',{—f P}ndA——)dN“—f RdA = M*
0 0

where M*" is a mean zero square integrable Z(t)-martingale with predictable
variation process

(3.6) (RYy = f R dA.
©,°]
Here Z(t) is the limiting filtration corresponding to Z,(t):
3.7 F(t) = o{N*(s); R(s+): 0 < s = t}.

PROOF. For ¢ > 0 define the point process £, on [0, ©) X [¢, ) by
(a) En(D) = zz"'=l ]-D(Xi’ Yni) fOl' Borel sets D C [0’ 00) X [8; OO)
Then £,(D) = Binomial(n, (F X G,) (D)) with

n(F x G,)(D) = -n f dF d(1 - G,)
(b) v
ﬁ—LdFdaEp,(D) as n— ®

by (3.1) and Helly-Bray for any Borel set D C [0, ) X [¢, ). Hence, by Theorem
4.7 of Kallenberg (1976), it follows that £, —4 £ where £ is a Poisson point process
on [0, ©) X [e, ©) with intensity measure u.

Let L = {(x, y): x < y}. Since

(c) N7(t) — Nae) = £a((e, t] X [e, @) N L)
and
Ra(e) = Ra(t) = £n(le, ©) X [¢, £) N L) + Ni(t —) — Ni(e)
= Ea([e, @) X [¢, £) N LE) + £n([e, ) X [e, ) N L).

the mapping from £, to (N%, R,) as point processes on [¢, ®) is continuous, and
hence the joint convergence of (N%, R,) on [¢, «) follows from that of £,. That
the limit processes have the given mean functions follows from assumption C
since

(d)

(e) ENYt) = J: | n(l — G,) dF — adF=A(t) as n—
0,t

2]
and
(f) ER.(¢) = (1 = F())n(1 — Gu(t)) — (1 — F(¢))a(t) = B(t) as n— .
Note that A { while B |. Letting ¢ — 0 yields (N7, R,) —4 (N R) on (0, »).
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Since the limiting Poisson process £ on L is independent of £ on L, it follows
from (d) that increments of IR may be written as the sum of the same increment
of (the left continuous version of) N“ and a term independent of N*,

Now Ry on the left side in (3.5) is a continuous function of (N¥%, R,), and
hence the convergence in (3.5) holds. (Note that

ENYe) = Ef R, dA = f n(l — G,) dF —» a dF
(0,¢] (0,¢] (0,¢]

which can be made arbitrarily small by choice of ¢ since [, @ dF < » by
assumption C.) That M* on the right side of (3.5) is a martingale follows from
the fact that M is an #,(t)-martingale and uniform integrability arguments
along the lines of Brown (1981). 0

The present proof of Theorem 2 was suggested by Tim Brown. Our original
proof established only marginal convergence of the processes Ny and R, by
verifying convergence of the compensators of these counting processes, and then
applying Theorem 1 of Kabanov, Lipster, and Shiryayev (1980).

The following alternative approach to the Poisson behavior of N}, N¢, was
suggested to me by Bernard Silverman. Fix ¢ > 0 and let A = nP(Z = ¢) =
(1 — F(e)) (1 — Gn(e)). Let (ZF, 6¥),i1=1, 2, --- be iid as (Z, 8) conditional on
the event [Z = ¢], and let

v, = Binomial(n, A/n), v = Poisson(})

be independent of the (Z¥*, 6¥)’s. In view of Hodges and LeCam (1960) and
LeCam (1963), » and v, can be constructed in such a way that

A2 3\
3.8) P, #v) <— /\ 71—

related results are given by Vervaat (1969) and Brown (1984). Then for ¢t = ¢ set
*Ro(t) = X2 1izrzg, *R(E) = Ykt Lize=y
*Nu(t) = i, iz, *Nt) =TI, lizz=q0!

*Na(t) = 202, Lizraa(1 = 8%), *N°(t) = Tia Ligr=a(1 — 67).

It is easily checked that *N“ *N°® are independent Poisson processes on [e, ®)
with decreasing mean functions n [(;«(1 — G,) dF and n [|,(1 — F) dG,
respectively, and that *N » and *N7, are equal in distribution for ¢t = ¢ to their
unstarred counterparts N% Né= =Yk 1iz=6and Ny, = ¥y 1iz-.1(1 — 8;). Further-
more in view of (3.8) it follows immediately from the definitions of the starred
processes that

P(*N%(t) = *N*(¢) and *N°(¢) = *N°for all t = ¢) = 1 — (A\%/n A 3\/n).
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This gives a very explicit construction of Poisson processes close to the original

counting processes on the interval [e, ).
Now we use Theorem 2 to obtain corresponding limit theorems for the
cumulative hazard function estimator A, and the product limit estimator S,,.

THEOREM 3. Under the assumptions of Theorem 2 we have

A 1 v 2
(3.9) A, >y, J(;’.] = dN" = A.

Moreover, (recall that T, = Z,), the largest Z),

. 1 1
(3.10) (A, — A)Tn = f — dMY —y f B0 Gt = M
©,AT, Ry o] R

where H is a mean-zero Z(t) local-martingale with predictable variation process

(3.11) (H) = f lim>o ;)
01 R
THEOREM 4. Under the assumptions of Theorem 2
(3.12) Sp=Iles- 1 — AL (5)) »a [[o=- 1 — AA(s)) =S
where A is given by (3.9). Moreover, the limit process S satisfies
S S N
3.13 —=1—f —d(A—-A
(3.13) S 0 S ( )
and hence, with T = supf{t: R(t) > 0},
S T
1 =(1-2=
(3.14) Z <1 S)
is @ mean-zero Z(t) local-martingale with predictable variation process
2
S\ 1
3.15 = f — ] — dA.
(3.15) (Z) 0, AT] (S) R

ProoFs. Since (N3, R,) —4 (N% R) as n — o, it follows from Skorokhod
(1956) that there exist equivalent processes (N.* R}) =; (N4, R,) and
(N**, R*) =5 (N% R) defined on a common probability space such that
(NZ*, RY) —as (N** R*) as n — 0. Now A(t) — A(®) = [adF < ®as t— o,
and A is continuous by assumption C and continuity of F. Hence x = N**(w0) <
o a.s. and the jump times of N“* are a.s. distinct: 0 < T, < --- < T, < . Since
N 5, N** (in the sense that N¥*(t) —,,. N**(t) for all ¢t such that AN“*(¢t)
=0),if0< Th < .-+ < T denote the ordered jump times of N*, it follows
that T,;— Tifori=1, ---, « a.s. (and «x(n) = « for all n = some N,). Therefore,
noting that the jump points of N3* and N** are a subset of the jump points of
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R} and RR* respectively and R} —,; R* for any ¢t such that AA*(t) =
(R*(t))'"AN“*(t) = 0 we have

Az () Ef R dNEF = T (RA(Tw)) M iz,<0

—as. D=1 (R¥(T0)) ry=n = f =* dN"* = AX(t),
and hence (3.9) holds. Convergence in (3.10) follows similarly, and the martingale
property holds by uniform integrability arguments.
By Proposition (4.10) of Jacod and Memin (1980), the function A - 1 — F
given by (2.4) is continuous. Hence Theorem 4 follows from Theorem 3, (1.5),
and the identity (1.6). O

4. Approximate variance formulas and small sample behavior of
S,. Now we want to exploit (3.11) of Theorem 3 and (3.15) of Theorem 4 to
derive “approximate” or “heuristic” formulas, by replacing R by its expected
value a(1 — F). Doing this in (3.11) yields the approximate variance formula

1 1 _
41)  Var[A(t)] = J:M ToFe A Lt] TR =Cw

which should be compared with the formula resulting from the Gaussian limit
theory as given in (7.11) of Breslow and Crowley (1974):

R 1
(4.2) Asympt. Var[A,(t)] = J;m (1-F)’n(1 -G) aF:

In the heavy censoring Poisson limit theory, n(1 — G) is replaced by its limit
function «, and hence these two approximate variance formulas for A.(t) are
essentially the same in both the Gaussian and Poisson limit theories.

This is not the case for S,(t) however. Replacing R by its expected value
a(1 — F) in (3.15) and then taking expectations suggests that, at least approxi-
mately, with Ma(t) = E(S(t)/S(t))?

0,¢]

with C as defined in (4.1). If “=" held in (4.3), the solution would be My(t) =
exp(C(t)), and hence we have

Var[S(¢)] = S(¢)*fexp(C(t)) -1}

(4.4) I 1 1
‘ = S(t)? lexp <J(;’t] —"—‘———"(1 ~F)Ya dF) —lj'.
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When the limit function a is (4}.4) is replaced by n(1 — G), (4.4) yields the
following approximation of Var[S,(t)]:

N | (f 1 )_ 1
Var[S(t)] = S(t)? lexp o L= FyPnd =G dF lf

(4.5)

Since e* — 1 = x, the right side of (4.5) is always larger than the approximate
variance formula resulting from the Gaussian limit theory (the familiar “Green-

TABLE 1
Exact and approximate values of the mean and variance of the product-limit estimator I,

t F@) B8 n EF.@)] bi®) Var{Fu(t)} VGa.(t) VPu(2)
b5 60653 5 10 .60641 .00012 .02814 02739 02844
15 .60653 .00000 .01853 .01826 .01872

20 .60653 .00000 01384 .01370 .01396

25 60653 .00000 01105 .01096 01112

30 .60653 ~.00000 .00919 .00913 .00925

5 60653 1.0 10 .60485 .00168 03475 .03161 .03300
15 60639 .00014 .02193 02107 .02169

20 .60652 .00001 01621 .01580 .01615

25 .60653 .00000 .01289 .01264 .01286

30 .60653 .00000 .01070 .01054 .01069

5 60653 2.0 10 58154 02499 06394 104269 104527
15 .60019 .00634 .03586 .02846 .02959

20 .60488 .00165 02422 .02135 02198

25 .60609 .00044 .01842 .01708 .01748

30 .60641 .00012 .01499 01423 01451

1.0 .36788 5 10 .36246 00542 .03613 .03141 .03536
15 .36665 .00123 .02261 .02094 .02265

20 .36759 .00029 .01643 01571 .01665

25 .36781 .00007 .01295 01257 01317

30 .36786 .00002 .01071 .01047 .01089

1.0 36788 1.0 10 .33400 .03388 .05889 .04323 .05094
15 .35379 .01409 03778 .02882 .03212

20 .36180 .00608 .02647 02162 02344

25 .36520 .00268 .01999 01729 .01845

30 .36668 .00120 01599 01441 01521

1.0 36788 2.0 10 .21300 .15488 .08516 .08610 .12035
15 .25646 11142 07554 05740 07149

20 .28646 .08142 06480 .04305 .05068

25 30779 .06009 .05496 .03444 .03922

30 .32323 .04465 .04653 .02870 .03197

2.0 13534 5 10 .10688 .02846 .02379 .02330 .04706
15 .11654 .01879 .01785 01554 02446

20 12247 .01287 .01401 .01165 .01629

25 .12633 00901 01135 .00932 01215

30 .12893 00640 .00942 00777 00968
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wood’s formula”):

1
0g (1 —F)n(l - G)

see e.g. (7.13) in Breslow and Crowley (1974). Also note that (4.5) and (4.6) agree
as n — o (with 1 — G regarded as fixed).

Table 1 gives a numerical comparison of the exact variance of F.(t) =
S,(t) Lio.z,y(t) (in a case where it can be calculated exactly) with the two
approximations VP,(t) and VG,(t) defined above. The first 8 columns of Table
1 duplicate (with one added digit, and without the bias bound column) Table 1
of Chen, Hollander, and Langberg (1982) where exact formulas for E[F,(t)*] are

(4.6) Asympt. Var[S,)] = S(t)? dF = VG,(t);

TABLE 2 .

Exact and approximate values of the mean and variance of the product-limit estimator $,
t S@# B8 n  E{S.«t)} b))  Var{S.(t)} VG.(t) VP.(?)
5 .60653 5 10 60654 —.00001 .02802 .02739 .02844
15 .60653 .00000 .01852 .01826 .01872
20 .60653 .00000 .01384 .01370 .01396
25 .60653 .00000 .01105 .01096 .01112
30 .60653 .00000 .00919 .00913 .00925
5 60653 1.0 10 .60665 —.00012 .03335 .03161 .03300
15 .60654 —.00001 .02181 .02107 .02169
20 .60653 .00000 .01620 .01580 .01615
25 .60653 .00000 .01289 .01264 .01286
30 .60653 .00000 .01070 .01054 .01069
.5 60653 2.0 10 .60868 —.00215 .04776 .04269 04527
15 .60692 —.00039 .03126 .02846 .02959
20 .60661 —.00008 .02294 .02135 .02198
25 .60655 —.00002 .01807 .01708 .01748
30 .60653 .00000 .01489 .01423 .01451
1.0 .36788 510 .36883 —.00095 .03335 .03141 .03536
15 .36803 —.00015 .02191 .02094 .02265
20 .36791 —.00003 .01625 .01571 .01665
25 .36789 —.00001 .01291 .01257 .01317
30 .36788 .00000 .01070 .01047 .01089
1.0 36788 1.0 10 .37516 —.00728 .04745 .04323 .05094
15 .37010 —.00222 .03179 .02882 .03212
20 .36864 —.00076 .02360 .02162 .02344
25 .36816 —.00028 .01864 .01729 .01845
i 30 .36799 —.00011 .01536 .01441 .01521
1.0 .36788 2.0 10 41643 —.04855 .07794 .08610 .12035
15 .39464 —.02676 .05805 .05740 .07149
20 .38389 —-.01601 .04617 .04305 .05068
25 37793 —.01005 .03816 .03444 .03922
30 .37440 —.00652 .03238 .02870 .03197
2.0 13534 5 10 .15460 —.01926 .02540 .02330 .04706
15 .14486 —.00953 .01689 .01554 .02446
20 .14061 —.00527 .01266 .01165 .01629
25 .13845 —.00311 .01012 .00932 .01215

30 .13726 —.00192 .00841 00777 .00968
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derived under the proportional hazard censoring assumption 1 — G = (1 — F)?,
0 < B8 < «. Both their Table 1 and our Table 1 have been calculated with
St)=1—-F@t)=et1-Gt)=e? y=P[X=<Y]=(1+ )" Let b3(t) =
S(t) — E[F,(t)] denote the bias of FF,(t).

While the Gaussian limit theory approximation VG,(t) to Var[IF,(t)] is often
too small, the Poisson limit theory approximation of Var[iF,(t)] is sometimes
too large, less often a little too small, but in general somewhat more conservative.
Note that with

1-H@¢) =0 -FE)QQ - GE) =exp(=(1 + B)t),

for 3 =.5,1,2, 1 — H(2) = .05, .018, .0025 respectively, so it is probably
unreasonable to expect the Poisson approximation to be accurate for ¢t = 2 and
B =1 or 2 when n is 30 or less. The Poisson approximation does seem to be
reasonably good when n(1 — H(t)) > 1. :

Now the methods of Chen, Hollander, and Langberg (1982) apply equally well
to Sp(¢t) under 1 — G = (1 - F)? and easy calculations show that their (3.1)
holds with F,(t) replaced by S,(t) if the upper terminal of summation n — 1 on
the right side is replaced by n. Hence

@47 E[S(t)] = 3o (;’) H(t)91 — H(#)™ [T [veh + (1 — 4)]

where c;,=(n—i)/(n—i+1)and1—H=(1-F)(1 - G) = (1 — G)'** under
1-G=(1-F )8. Table 2 gives the resulting table of means and variances of
Sn(t) under the same set of assumptions used to calculate Table 1. Note that
both the biases b2(t) = S(t) — E[S.(t)] and variances of S,(t) are almost
everywhere smaller than those for IF,(t), sometimes substantially so, with the
exception of the values for ¢t = 2 with heavy censorship. These two tables lead us

to prefer S,.
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