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JACK KIEFER’S CONTRIBUTIONS TO EXPERIMENTAL DESIGN

By HENRY P. WYNN

Imperial College, London

1. History. Careful experimentation is part and parcel of the scientific
method developed in the eighteenth and nineteenth century. John Stuart Mill
was probably the first to give clear prescriptions on how to carry out experiments.
He separated experiments into “spontaneous” experiments, what we would now
call observational studies, and “artificial” experiments, namely controlled
experiments. Mill and others were firmly of the belief that controlled
experimentation was better, if the subject matter allowed it. This was carried
through into this century with the “crucial experiment” becoming the cornerstone
of the falsification ideas of Karl Popper and his followers. The details of
experimental strategy, however, were neglected by the philosophers, except that
it was recognized that careful variation in the levels of “agents” A, B, C, - ..
would yield an analysis of their effects a, b, ¢, - - -

The breakthrough into a more versatile approach to experimental design came
with the work of Ronald A. Fisher and his followers, notably Frank Yates, at the
Rothamstead Experimental Station in England. A number of useful concepts
were introduced such as balance, orthogonality, blocking and aliasing. This led
to an explosion of work on combinatorial design which took seed in the USA
through the work of Raj Chandra Bose and collaborators.

Here and there in the combinatorial literature the idea of efficiency—usually
relative to some standard design—had been discussed. However, at the end of
the second world war the theory of optimum design was almost nonexistent
except for a remarkable early paper by Smith (1918) and the important paper of
Wald (1943). It is no accident that the modern theory of optimum design has its
roots in the decision theory school of U.S. statistics founded by Abraham Wald.
The idea of “risk,” developed formally by Wald and arising out of the earlier
work of Neyman and Pearson, was the most important innovation of that school.
There were parallel developments in utility theory, mathematical programming
and mathematical economics so that the early history of the subjects were
interwoven. Together with Wald, Jacob Wolfowitz and Jack Kiefer were leading
members of this school. They started the second great advance in the science of
experimentation in this century by applying decision-theoretic ideas, and over
the subsequent twenty years Jack Kiefer himself nurtured this science to
maturity. '

2. Continuous theory. Since Wald’s paper, a number of papers had
appeared by Elfving (1952), Hoel (1958), Guest (1958) and important work by
Box and Draper and co-workers on response surface design. Thus, the literature
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leading up to the first Kiefer-Wolfowitz paper [23] had gradually liberated the
allowable region of experimentation to grow from one-at-a-time methods through
combinatorial design to multifactor experimentation and response surface design.
It had reached the point where Kiefer and Wolfowitz could allow an almost
arbitrary design region 2 in the same way that decision theory had earlier
allowed an almost arbitrary action space. The other brave step, technical rather
than conceptual, was to abolish, in a stroke, computational difficulties involved
in changing the sample size. Thus, a design became a probability measure £ over
the design space 2, and a “continuous theory” was born. ‘

It is worth restating briefly the basic Kiefer-Wolfowitz setup. At each point
in & there is a potential observation Y, whose expectadtion is

E(Yx) = §=1 aifi(x) = an(x)’

where 0 = (6, ---, 6,)T are unknown parameters and the f’s are continuous
functions on £, which is taken to be compact. For an (exact) experiment,
observations Y,, - --, Y,, are taken and assumed to be uncorrelated with equal
variance o2. The k X k information matrix is X7X, where X7 = [f(xy), - - -, f(xn)]
and cov(d) = ¢2(XTX)' is the covariance matrix of the least squares estimate of
6 based on the observations. ‘

The normalized version of X7X namely, (1/N)X7X, generalizes to the moment
matrix

M(¢) = fgf(x)f(x)Té(dx)-

A key mathematical benefit of this approach is that the set of all M(¢), the
moment space, is closed and convex. In addition, many of the optimality criteria
which had been introduced in earlier work, when extended to M(§), involved
minimization of a convex functional. The most important of these was
D-optimality (introduced by Wald):

min; {—log det M(¢)}.
This is one of a wider class of ®, criteria introduced by Kiefer in later work:
ming [trace(M(£)™P)] 7.
—1 < p < . The case p = 0 gives D-optimality, p = », the so-called E-optimality
(minimizing'the maximum eigenvalue of M(£)™'), and p = 1, A-optimality which
had been studied mostly in block design settings. The power of the extension to
measures is demonstrated by the proof of the beautiful General Equivalence

Theorem (GET) [29]. This showed that D-optimality was equivalent to
G-optimality which achieves

min;max.e o f(x)TM(£)7f (x).
The quantity f(x)TM(¢)~Yf(x) is the generalization of the (normalized) variance

function, the variance of the estimated response Y,.
Casting the problem as a convex program brought it into the arena with
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Lagrangian theory, game theory and minimax/saddle point theory. It was clear
then that more general results than the GET could be established. Jack Kiefer
tied up much of this in [58] for a general smooth class of optimality criteria.
Earlier, Karlin and Studden had given a game theoretical proof of the GET.
More recently, Pukelsheim (1980) has used the Fenchel duality theorem to
achieve duality theorems for ®, optimality following an emphasis on the duality
approach by Silvey and Titterington (1973). Thus, the core of continuous
optimum design can now be seen to have an extra existence as a fascinating
subculture of optimization theory.

The ability of the equivalence theorem to throw up rich examples led to
pioneering work by Jack Kiefer and his co-workers. The connection with
orthogonal polynomials proved vital to this analysis. This arose because of the
simple observation that the (generalized) variance function satisfied, for
polynomial models,

d(x, £) = Yk ¢7(x),

where ¢, - - -, ¢r are orthonormal polynomials with respect to the design. The
technique was to guess at a nice class of symmetric-looking designs possibly using
the invariance of D-optimality under linear transformations of the parameters.
The class would be defined up to unknown weights «, 3, v, - - - at certain support
points. A general expression for the orthonormal polynomials would be found
and the optimal «, 8, ¥ calculated using two additional features of the GET: (i)
the minmax value of d(x, £) is k (the number of parameters) and (ii) max,d(x, £)
is achieved at a support point for optimal £. This technique proved very successful
for quadratic regression on a simplex and hypercube ([31], [46]). It transpired
that the classical orthogonal functions were not necessarily optimum but, in a
mysterious way, provided the support for the optimum designs. A beautiful paper
by Kiefer and Studden [64] exploited the classical theory of orthogonal
polynomials to find limiting designs for large k. After such analytic methods
became difficult (as for example when 2 was a sphere), Kiefer and Galil used a
mixture of analysis, search and direct computation to find solutions, as in [81].

One particularly difficult area computationally is the so-called singular case
which arises in the extension of D-optimality (and ®,-optimality) to subsets of
parameters. The difficulty arises basically from the fact that, although a chosen
vector of parameters o = Bf may be estimable under a particular design (and
indeed at the optimum), so that BM (¢£)BT is nonsingular, M(¢) itself may be
singular. This leads to technical problems in the specification of a solution. A
discussion of this case with some history appears in the recent book by Silvey
(1980).

3. Exact theory. Despite the success of the continuous theory, Jack Kiefer
always had in mind that it was important for the development of the subject to
solve outstanding problems in the exact theory: that is, to find optimum designs
for fixed sample size or under more rigid combinatorial restrictions. Indeed, his
very first paper on design [22] established under mild conditions the optimality
in a wide sense of incomplete block designs and Latin squares. He made use of a
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delightfully simple but very useful lemma (Proposition 1, [61]) for symmetric
matrices.

In block design settings, or more general m-way layouts, one often works with
the so-called C-matrix, written C;, where d refers to the design. This is the
information matrix for estimating treatment contrasts. If there are v treatments
(v treatment parameters) C; will be a v X v matrix but have maximal rank
v — 1. The lemma says that C,, and hence d, is optimal if, within the class of all
C,, (a) it is completely symmetric (that is, all diagonal elements equal and all off
diagonal elements equal), (b) it has maximum trace. Optimal here means
“universally optimal”: that is, it maximizes any convex, nonincreasing,
permutation invariant function on C,. It therefore includes A-, E- and D-
optimality. This was the starting point for two main lines of research.

The first of the problems on which Kiefer spent a considerable effort was on
what happens in the Latin square type situations when the combinatorial
restrictions are relaxed to allow v treatments in a row and column design with b,
rows and b, columns (b; = b, = v is the Latin square case). He defined a
generalized Youden square (GYS). This is based on a balanced block design
(BBD) that is, a block design with v treatments in b blocks of size k. Treatment
i appears n; times in block j and (1) all the r; = }}; n; are equal, (2) all the A =
¥.; niny; are equal, and (3) | n; — k/v| <1 for all { and j. A GYD is a design in
which the treatment/row design and treatment/column design are each separately
BBD’s. He had proved [22] the universal optimality of a GYD in the so-called
regular case when v divides b, (or by). It was the failure of D-optimality in some
nonregular settings that led Jack Kiefer on a long and difficult quest. First A-
and E-optimality could be proved. He then produced a remarkable theorem ([61],
[83]) which says that D-optimality holds when v # 4 and clarified the case when
v = 4. In this work we see him at his most ingenious, using completely original
analytic arguments to solve an extremely hard combinatorial problem. There was
an immediate spinoff in the study of GYD’s both by himself [60] and others (Ash
(1981), Ruiz and Seiden (1974), Seiden and Wu (1978)). C.-S. Cheng (1981)
extended some of the work to Youden hyper-rectangles.

The other problem was what happens when no BIBD exists so that universal
optimality is not so apparent. The natural place to look for optimal designs is
among partially balanced block designs with two associate classes or, more
particularly, group divisible designs. In a series of papers C.-S. Cheng (for
example, Cheng (1978)) proved optimality for certain members of a class of
designs called regular graph designs. He exploited important links between
optimum combinatorial design and certain problems in graph theory concerned
with finding graphs with a maximal number of spanning trees. It is a tribute to
the work of Kiefer and Cheng that upon translation into the language of graph
theory their theorems gave new results.

The blending of optimality and combinatorics continues to be a very live
research area. For example, there has been a burst of recent work using Schur-
convexity, a slightly weaker notion than universal optimality; see Giovagnoli and
Wynn (1981), unpublished work by Gregory Constantine and the paper of Cheng
(1979). ’
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Jack Kiefer had a most fruitful collaboration on experimental design in the
last ten years with Zvi Galil. The second part of this consisted of an in-depth
study of the maximization of det(X7X) when X only has elements with values
+1. This is a linear regression problem in which each variable is allowed to take
values 1. It is usually called a weighing design problem because it derives from
an experiment to estimate weights when objects are weighed, possibly together,
on a chemical balance. When X is square then the solution, when 4 divides &, is
to take X = H, a Hadamard matrix if such a matrix exists—a well known but
unsolved conjecture (now established for all & < 200). They address a far less
studied case than the Hadamard conjecture when k = 1, 2, 3 mod 4, concentrating
mostly on the most interesting case k = 3 (mod 4). Ehlich (1964a, 1964b) had
made some original contributions to this problem, which Kiefer and Galil
extended to an almost complete solution (modulo the truth of the Hadamard
conjecture). Taking X to be an m X k matrix (m = 4/ — 1), they showed that,
for m = 2k — 5, the following “easy” solution X, is D-optimum. Take an
(m + 1) X (m + 1) Hadamard matrix, delete a row and select any k columns.
They also filled in many cases between the bound and the saturated case m = k,
[85], [92], [95].

Jack Kiefer had a barely disguised love for combinatorics although his work
was never really in the main stream of combinatorial theory. His profound
originality proves that he could have turned his hand to algebra or number theory
as easily as to mathematical statistics and probability theory.

4. Algorithms. An outgrowth from the continuous theory was the
introduction and development of algorithms of the steepest ascent type to
generate optimum designs computationally. They consisted of augmenting design
measures

£n+l = (1 - an)fn + ansln (0 =sSa= l)y

where £, was the previous design measure and {/, a measure giving the “direction”
of movement, often a single point mass. Wynn (1970) dealt with the natural case
a, = 1/(n + 1), work which was simultaneous with that of V. V. Fedorov (1972).
The work took firm hold in the United Kingdom notably with papers by Silvey
and Titterington (1973), and in the U.S.S.R. and Eastern Europe (Fedorov,
(1972), Pazman (1974)). The main problems were with the unboundedness of the
functionals (~log det M(¢) is infinite when M(§) is singular) and with the
“singular case” referred to above. These were essentially infinite dimensional
algorithms since they dealt with measures (see Wu and Wynn (1978)). C.-F. Wu
(1978) did important work bringing to bear the extensive literature in
optimization algorithms from the optimization literature. By keeping the support
of the design finite, finite dimensional algorithms could be developed.

Mitchell (1974) had developed special algorithms involving “excursions” in
which new points would be added and old points thrown out (the original Wynn
algorithm could be considered as a single infinite excursion). Kiefer and Galil
[86] improved on the Mitchell algorithm using a variety of sophisticated
computing techniques. They were, as they claimed, “15 to 50 times faster”. The
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algorithm was used to back up and explore the more theoretical work on weighing
designs. It was an excellent example of the computer being the slave of
mathematicians and a fine blend of sophisticated mathematics and computation.
There remain many interesting problems concerned with the speed of these
“optimum subset” algorithms. More recently, Welch (1982) has developed a
branch and bound integer program leading to exact optima.

5. Non-standard models. A criticism of the classical optimum design
theory was that, whereas the mathematics was nice, problems of investigating
different models had been ignored. Naturally Kiefer was aware of this. From his
files and research it is clear that he was an authority on the variance-bias
approach introduced by Box and Draper (1959) in their pioneering paper
following earlier work on response surfaces. He was particularly familiar with
the extensions introduced by Karson, Manson and Hader (1969). Roughly, the
idea is to guard against the possible presence of a more complex model—for
example, a quadratic model when a linear model is fitted. In [57] Kiefer gave an
illuminating and thorough discussion of the Box-Draper and Karson-Manson-
Hader approaches, pointing out some defects and giving methodology to get
around some of them. He explored the issues further in [63] and [75] and showed
in particular that, for dimensions greater than two, the D-optimum design for
quadratic regression on a simplex is more protective against a cubic departure
than the Box-Draper approach. Results of Draper and Herzberg based on the
same approach are discussed in [84]. The problem still seems largely unresolved
and it is possible that D-optimum designs will continue to be robust in higher
dimensions. Other authors have taken different approaches, for example, Marcus
and Sacks (1977).

Models in which errors are correlated have a small but long history going back
to a paper on analysis of variance by Papadakis (1937). Jack Kiefer, in his
Berkeley symposium paper [28], tackled head-on a problem posed by Williams
to give optimum one-dimensional exact designs to estimate treatment differences
in the presence of autocorrelated errors in discrete time. At each point in time
one observes

Yt = oy + &ty

where ¢, is the process and oy one of k treatment parameters allocated at time ¢.
He showed for an autoregressive process of order two that, asymptotically, the
best designs lay among one of the following patterns (letters are treatments): (1)
AA ... BB ..., (2) ABAB ..., (3) AABBAABB- .. or (with three or more
treatments) (4) ABCABC - - .. Over the two years up to 1981 he and Wynn [98]
have given a fairly complete theoretical solution to the problem for a pth order
process and a complete combinatorial solution in the case p = 3. They were also
able to push forward the combinatorial theory into higher dimensions and develop
a close connection with the theory of stationary discrete state processes [96]. As
in Jack Kiefer’s previous work on exact design the door was opened on a new
class of combinatorial objects and it was gratifying to find connections in other
fields, in this case communication theory. They had also investigated the
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robustness of classical designs, Latin squares and BIBD’s, for simple auto-
correlated models [88].

There has been parallel work in continuous time and the seminal work of
Jerome Sacks and Donald Ylvisaker ((1969) and other papers) should be
mentioned. Like them, Kiefer had seen the importance of studying time
dependent and spatial processes and the possibilities this gives for extending the
scope of optimum data collection into less controlled environments.

6. Personal note. To work with Jack Kiefer was a privilege and a joy. His
untimely death was a dreadful loss to his family, friends and colleagues and his
work remains a monument to a great scholar and a delightful human being.
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