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ASYMPTOTIC CONDITIONAL INFERENCE FOR REGULAR
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AUTOREGRESSIVE PROCESSES
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A conditional limit theorem is derived for a certain class of stochastic
processes whose distributions constitute a nonergodic family. The limit theo-
rem allows us to study the asymptotic behaviour under the conditional model
of some standard statistical procedures by making use of results for ergodic
families. Explosive Gaussian autoregressive processes are studied in some
detail. Here the conditional process is shown to be a nonexplosive Gaussian
autoregression bearing a simple relation to the original process. Some opti-
mality results under the conditional model are given for estimators and tests
based on the unconditional likelihood.

1. Introduction. _Asymptotic inference problems for parameters of noner-
godic stochastic processes (see Section 2) have been studied recently by Feigin
(1976, 1981), Heyde (1978), Basawa and Scott (1977, 1983), Basawa and Koul
(1979, 1983) and others. The main difficulties which arise can be summarized as
follows. The usual statistical procedures such as maximum likelihood (ML)
estimation and likelihood ratio (LR) tests involve nonstandard limit distribu-
tions. The classical efficiency criteria need to be modified to establish the
asymptotic optimality of ML estimators (cf. Heyde, 1978) while the LR statistic
can be shown to have a suboptimal asymptotic power function (Basawa and
Koul, 1983). Also the limit distributions of the ML estimators and the LR
statistics for such processes are computationally far from simple.

The regular nonergodic models of Basawa and Koul (1979) can be regarded
intuitively as mixtures of ergodic models, so it is natural to attempt to assess the
asymptotic performance of estimators and tests relative to the conditional dis-
tribution of the process given the mixing random variable. In cases where the
mixing random variable is ancillary, this is in accordance with standard statistical
practice. (For general discussions of conditional inference see Barndorff-Nielsen
(1978), Cox and Hinkley (1974), Lauritzen (1982) and, for applications closely
related to ours, Keiding (1974) and Heyde and Feigin (1975).) Under conditions
(2.5)-(2.7) following, the conditional model is shown to be locally asymptotically
normal, making it a simple matter to check for optimality of estimators and tests
in the conditional framework. Since the mixing random variable is usually
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unobserved, direct computation of conditional estimates and test functions may
be impossible without using a sample approximation. However this problem does
not arise when we wish only to establish conditional optimality of unconditional
procedures as in Section 5.

In Sections 3, 4 and 5 we study explosive Gaussian autoregressive processes
under the conditional model. It is known, Anderson (1959), that the unconditional
MLE of the coefficient in the first order case is unconditionally asymptotically
normal if and only if it is standardized by the observed Fisher information.
Conditionally we show this estimator to be asymptotically normal with the
standardization given in Theorem 5.1. Conditional optimality properties follow
from standard results for locally asymptotically normal families, LeCam (1960).

2. Conditional inference for regular nonergodic families. The notion
of regular nonergodic families of distributions was introduced by Basawa and
Koul (1979, 1982). Here we work in a slightly narrower framework but one which
is adequate for a variety of applications. Let {X,, n =1, 2, ...} be a stochastic
process such that for each n, X(n) = (X;, ..., X,,) has a density p,(-; 6) with
respect to some product measure u” on (R", #"). The parameter  will be
assumed to have as its parameter space some open subset © of R*. Let P, ,be the
probability distribution on (R", £ ") corresponding to the density p,(-; ) and
let Pybe the probability distribution on (IR”, % *) of the process {X,}. Expectation
with respect to P, will be denoted by E,. Let A,(y, ) denote the loglikelihood
ratio,

(2.1) An(¥, 0) = In{p.(X(n); ¥)/p.(X(n); 0)},
and assume the existence for each § € 0 of
2 .

(22) 1,;(6) = -E,,[" i ”)], i=L ek
j

(2.3) 8, (0) = Iy SRR X 0) iy
36;

and

8%n p,(X(n); 0)
36,90,

where 0 < I,,;(f) and 1,;(6) 1 « as n — o for each j and §. Assume also that for
each h € R* and each 6 € O we have under P, as n — o,

(2.4)  Gnj(0) = —I;}7(0)

I'—U,I/Z(o)’ I’;] = 1’ R} k’

(2.5) An(0 + I72(0)h, 6) = hTAL(0) — 2ahTG.(0)h + 0,(1),
(2.6) G.(0) —, W(0),

and

(2.7) (8n(0), G, (0)) —a (WY(6)Z, W(6))

where Z is a k X 1 vector with independent standard normal components
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while A,(0) is the k X 1 vector [A,j(0)]j=1....x, I.(f) is the diagonal matrix
[1,/0)6;)ij=1....o Ga(0) = [Grif(0)]ij=1,...» and W(F) is a positive semidefinite
random matrix independent of Z.

If the distribution of W () is degenerate then the family {p.(-; )} is locally
asymptotically normal (L.A.N) at § in the sense of Le Cam (1960). When W(6)
has a nondegenerate distribution the family is said to be nonergodic.

Supercritical branching processes provide examples of nonergodic families.
Consider for example the Bienaymé-Galton-Watson process {X,, n=1,2, ---}
with Xo=1,E X, =0>1and E 2% = z/[0 — (6§ — 1)z]. It is well-known that
X, /0" —,,. W where W has the standard exponential distribution and that,
conditional on W, X; — X;_;,j =1, 2, ---, are independent Poisson random
variables with means W(¢ — ¢'~!). Some straightforward calculations for this
process (see Basawa, 1981a) show that the assumptions (2.5) — (2.7) are all
satisfied with k =1,

o — 1 b -1 )
1,(0) = 96 =1 An(0) = 77 0(Xa = 1) = (6 — 1) XY Xjl,
— 2 — — _ 2 n .
Gn(0) = g =) [0*(X, — 1) — (6 = 1)* X7 Xj],
and
W) = W.

In this case it is natural to assess inference procedures conditionally on W
since (a) W is ancillary for 6, (b) {X,} has a particularly simple probabilistic
structure for given W, and (c) under the conditional probability measure given
W the unconditionally nonergodic family becomes locally asymptotically normal
and standard asymptotic theory applies.

This example suggests the possible desirability of conditioning on the mixing
random variable W(0) in the general framework of the assumptions (2.5) — (2.7).
Such a suggestion is made in the monograph of Basawa and Scott (1983). We
show below (Theorem 2.1) that under the assumptions (2.5) — (2.7), conditioning
on W(#) does indeed have the expected effect of reducing the nonergodic family
to a locally asymptotically normal family, thereby making it a relatively simple
matter to study the asymptotic performance of estimators and tests under the
conditional model. A detailed study is made of such conditioning applied to an
explosive Gaussian autoregressive process which, like the supercritical branching
process, is nonergodic. The conditioned process has a particularly nice structure,
namely that of a nonexplosive autoregression related in a simple way to the
original one. In Section 5 some standard statistical procedures are shown to be
optimal when assessed in terms of the conditional model.

THEOREM 2.1 Let {X,} be a process satisfying (2.5) — (2.7) and let Py, be a
conditional distribution under P, for {X,} given W(8) = w. Then under Py, as n
— oo,

(2.8) A0 + I;Y2(0)h, 0) = hTAL(0) — YohTwh + 0,(1), VY h E R,
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(2.9) Gn(0) = w
and
(2.10) (8,(0), Ga(0)) =4 (W*Z, w),

(except possibly for w € N(0) where P,(W(0) € N(6)) = 0).

PrRoOOF. To establish (2.10) it clearly suffices to show that
(2.11) E[exp(isTA,(0)) | W(0)] —as. exp(—YesT W(0)s)

for all real (k X 1) vectors s. By Skorokhod’s theorem (Billingsley, 1971, page 7)
condition (2.7) implies the existence, for each 6, of a probability space on which
is defined a sequence of random vectors {(A}(0), W*(#))} and a random variable
A*(0) such that (A%(0), W*(0)) =4 (A.(0), W(8)) and (A% (6), W*(6)) —as (A*(6),
W*(6)).

The dominated convergence theorem for conditional expectations and condi-
tion (2.7), which specifies the distribution of (A*(8), W*(6)), then give

Elexp(is"A%(8)) | W*(8)] — E(exp(isTA*(9)) | W*(8)] = exp(—YesTW(6)s),

thus establishing (2.11).

To prove (2.8), observe that conditions (2.5) and (2.6) imply that the indicator
function of the set S(6) = {| A, — hTA, + %.h"Wh | > ¢} converges in probability
to zero under Pyas n — « for each ¢ > 0. Applying the dominated convergence
theorem for conditional expectations again gives E;[Is4| W] — 0 as n — oo,
which is equivalent to (2.8).

REMARK. The conditions (2.5) — (2.7) may be satisfied when I,,(f) is not
defined precisely as in (2.2). The conclusion of Theorem 2.1 however remains
valid since it relies only on (2.5) - (2.7). We make use of this fact in the following
sections to simplify the statement of the results for autoregressive processes.

3. The explosive Gaussian autoregressive process. We restrict atten-
tion for the moment to the explosive Gaussian autoregressive process
(31) Xn_0Xn—1=Zn, n=1’2""’ |0|>1’

where X, = 0 and {Z,} is a sequence of independent standard normal random
variables.
In the notation of Section 2 we easily find that

(3.2) pa(X(n); 6) = (21) %expi—1e 3y (X; — 0X;-1)%.

Instead of defining I,,(6) by equation (2.2), which gives the cumbersome expres-
sion (82 — 1)72[0?" — 62 — (n — 1)(#*> — 1)], we shall use the asymptotically
equivalent definition,

(3.3) L,(0) = 6°"/(8% = 1)%,
which gives, with the definitions (2.3) and (2.4),
(3.4) A (0) = (02 — 17" XF X (X; — 6X;-1)
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and
(3.5) G.(0) = (0> — 1)%07*" 37 X}..

With this choice of I,(#), it is known that the basic conditions (2.5)-(2.7) are
satisfied. To see this note first that there is a random variable Y(8) such that

(3.6) VO? — 107X, —.s. Y() as n — oo,
This result follows at once from the fact that
E0[0—"—1 ] — 0—an]2 = 0—2(n+1)

(see e.g. Cramer and Leadbetter (1967), condition (3.5.6)). Moreover it is clear
that Y(0) is normally distributed with mean 0 and variance 1. A strengthened
version of (2.6) can now be established as follows:

G.(0) = (6> — D07 X7y X}
= (02 — 1)2 2;‘0=1 (0—n+an—j)21[1,n](j)0_2j
—as. (02 - I)Y(0)2 2;;1 0_2j as n — wo,

the last step being a consequence of the dominated convergence theorem since
for almost every realization {#7*X,(w)} there is a bound K(w) < o such that
| 67*X,(w)| < K(w) for all k. Hence

(3.7 Gr(0) —as. Y(0)® as n — o,
A completely analogous argument shows that
(3.8) A,(0) = Y(0)Q — 0722 3120 077, ; =, 0.

The random variables Y (0) and Y7} 67Z,_; are joint normal with zero means
and covariance

Ey(Y(0) X053 07Z,—) = limp_ B (07" 275! 0'Z,,-) (X020 079Z,-)]V0% -1
=nf"Vg2 -1 —>0 as n — o,

The second term in (3.8) therefore converges in distribution to Y(6)Z where Z
and Y(0) are independent standard normal random variables. Combining (3.7)
and (3.8), we obtain

(3.9) (8n(0), G.(0)) —a (Y(6)Z, Y*(9)).

Conditions (2.6) and (2.7) are therefore satisfied with W(8) = Y (6)2. The validity
of (2.5) is a consequence of the fact that the densities (3.2) constitute a globally
curved exponential family.

Instead of conditioning on W(8) = Y(0)? it is more convenient for the
autoregressive process to condition on Y(#). The proof of Theorem 2.1 carries
over essentially without change to establish that if Py, is a conditional distri-
bution for {X,} given Y(f) = y, then under Py, as n — o, the results (2.8) —
(2.10) hold with w'/? replaced by y. In Section 4 we shall derive the conditional
distribution of {X,} given Y (#) by showing that the process {X, — E(X,| Y(9))}
conditional on Y(#) is a nonexplosive Gaussian autoregression. Although this
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result is not essential for our study, we give the result since it is of interest in
itself.

A similar analysis can be carried out for the kth order autoregressive process,
AR(k), defined by

(3-10) Xn - ﬁan—l - BZXn—Q = e = ﬁan—k = Zny n = 17 2) )

where Z,, Z,, --- are i.i.d. N(0, 1) variates and X, = 0,1 — k < n < 0. An
alternative representation of (3.10) is

(3.11) (1 - 6B) [I'=1 (1 — §,B)X, = Z,

where B is the backward shift operator with B*X,, = X,,_,, and (8;, 6, - - - , 04—,
0) are certain functions of 8 = (81, B2, - - - , Bx) determined by equating the left-
hand sides of (3.10) and (3.11). Assume that

|0| >max{1? |01|’ |02|? R} |0k—1”‘

It can be shown as for the AR(1) process that v6> — 1 §7"X,, converges almost
surely to a random variable Y (6) where Y () again has the distribution N(0, 1).
Using the notation of Section 2 we find that

pa(X(n); B) = (2m) "*exp{—=e Tj1 (X; — X1 — -+ = BuX-n)®)
Defining I,(f) as in (3.3) and [,,(8) = I,(6),j =1, - - - , k, we obtain
(3.12) A, (B) = I;'2(0) (S (B), Sna(B), -+, Swe(B))T
with
Su(B) =2 Xmi X, = 1 Xy — oo = BXok),  1=1,---, R
The (k X k) matrix Gn (8) has components
(3.13) Gy (B) = I7(0) X7y X, X,
Corresponding to (3.7) we have the result
(3.14) G (B) —as Y(0)%Z,
where X is the (k X k) covariance matrix with rank 1 and components
S,=0 i j=1, -,k
and Y(#) has the distribution N(0, 1). The analogue of (3.9) is
(3.15) (An(B), G (B)) ~»dl(Y(0)El/2Z, Y(0)%2)

where Z is a (k X 1) vector of independent standard normal components,
independent of Y. Proofs of (3.14) and (3.15) are given by Basawa and Koul
(1979).

It can easily be verified that the conditions (2.5) — (2.7) are satisfied. For an
arbitrary real (k X 1) vector h, with I,(8) as in (3.3) and with 8 = (8, B, - - -

b
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B:) T, we have
(3.16) An(B + I;V2(0)h, B) = hTAL(B) — Y2h"G.(B)h,

where A,(8) and G,(B3) are defined in (3.12) and (3.13) respectively. The AR(k)
model under consideration thus satisfies the requirements of a regular nonergodic
family. Notice that the limits in (3.14) and (3.15) depend on § only through
0. As in the case of the AR(1) process, we shall condition on Y(§) =
V1 — 62 lim,0""X, rather than on W() = Y(9)2Z. In the next section we
derive the conditional distribution of the process given Y (6).

4. The conditioned autoregressive process. Consider the explosive
Gaussian autoregressive process defined in (3.11). We shall show that, condition-
ally on Y(8) = lim,_..0 "v8% — 1 X,,, the sequence

(4'1) Wn=Xn_E(Xn|Y)) n=1, 2: R}

is distributed as the autoregressive process,

[6-B) 'St (1= BYW,=Zn n=1,2, -,

4.2
(42) ]W,,=0, —-k+1=<n=<0.

We establish the result first in the case k = 1.
THEOREM 4.1. If{X,,n=1,2, ...} is the Gaussian AR(1) process,

[ - 0B)X,, = Z.,

4.3) X =0

with {Z,} an ii.d. standard normal sequence and | 6| > 1, then conditional on
Y(6) = lim,.0"v6*> — 1 X, the sequence

(4.4) W,=X,-EX,|Y)=X,—0"—-0")Y/V* — 1,
is distributed as the autoregressive process,

[0 -B)W, = Z,

Proor. First note from (4.3) that
(4.6) 0"Y = V0?2 -1 X, + Z*,,

where Z},; = Vo? — 1 357 07Z,,; is distributed as N (0, 1) independently of Z,
.-+, Z,. Writing equations (4.3) and (4.6) in matrix form, we see that

Xo|_|Zn
5[
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where X! = [Xy, ---, X,), Z} = [Zy, - -+, Z,] and
[ 1 7]
-0 1
(4.8) A= ' .
—0 1
i —(62 — 1)2 on-J

From (4.7) it follows at once that the inverse of the covariance matrix of
[X., Y] is

1462 -6 .
—0 1+6%2 -6

49) ATA = . .
-0 1+62 -0

-0 02 _0n(02 - 1)1/2
| _0n(02 — 1)1/2 02n

Deleting the last row and column we obtain the inverse of the conditional
covariance matrix of X, given Y which we immediately recognize as the inverse
of the covariance matrix of the AR(1) defined by (4.5).

The conditional expectation of X, given Y is found to be

E(X,|Y) =Y Cov(X,, Y)/Var Y
Y lim,w[Cov(0™"X,n, X,,)/Var(6"X,,)]/v6* —1
6" — 67 Y/Vo* —1.

Since for every n the conditional distribution given Y of the vector
{Xn — E(X,| Y)}n=1,...n is Gaussian with mean zero and covariance matrix
corresponding to the autoregressive process defined by (4.5), the proof is complete.

(4.10)

COROLLARY 4.1. If {X,} is the AR(k) process defined by

l(l -6B) /51 1 - 6B)X,=Z,, n=1,2, ---,
(4.11) ]Xn=0, -k+1=n=<0,

with | 0| > max{l, | 0,], ---, | 6x-1|} and {Z,} an i.i.d. standard normal sequence,
then conditional on Y = lim, .0 "v0%?'—1 X, the process W, = X, — E(X,| Y)
is distributed as the autoregression defined by (4.2).

PROOF. The process {[]%(1 — 6,B)X,} = {U,} satisfies the conditions of
Theorem 4.1, so conditional on lim,_.0"v6*> =1 U, = [I/= (1 — 67'9,)Y, the
process {V,,} = {U, — E(U,| Y)} is distributed as the AR(1), (§ — B)V,=Z,, n
=1,2, ..., with V, = 0. This proves the corollary.

5. Conditional inference for the autoregressive process. We now



CONDITIONAL INFERENCE FOR NONERGODIC MODELS 169

apply the foregoing results to the autoregressive process defined by (3.10) and
(3.11). (The notation of Section 3 will be used throughout.) We have seen already
that the process satisfies the conditions of Theorem 2.1. Notice also that the
unconditional maximum likelihood estimator £, of 8 satisfies

(5.1) G.(B)I2(0)(B, — B) — A.(B) = 0.

Application of Theorem 2.1 together with standard results for L.A.N. models
now yields the following theorem.

THEOREM 5.1. For the AR(k) process defined by (3.10) and (3.11), we have,
under the conditional measure Py(- | Y(0) = y),

(@) A (B) —a Nx(0, y*Z) as n— o,
G.(B) —>py22 as n— o,
ﬁn —p B as n— x,
R 0,2(1 —- 0—2)2
and ﬂn(ﬁn — ﬂ) —q Z y(]_——o_E'T)— (1, 0_1, cee, 0—k+1)T’

where Z is a standard normal random variable.

(ii) B. is asymptotically optimal in the following sense. Let T, be any estimator
of B for which there exists a random vector T(8) such that for each h € R*
the distribution under Ps.regn of (G.(8), IY2(0)(T, — 8 — I;**(0)h))
converges weakly to that of (Y(08)2Z, T(8)) as n — . Then, denoting by
& the standard normal c.d.f., we have for each 6 = 0

. 0lylv1—67%* |
lim,,_,. Py Wﬂ | T, —B|<6|Y=y)=<28() — 1,

with equality holding when T, = Bn. (Here | T, — 8| denotes the Euclidean
normof T, — B.)

(iii) If k = 1 and if ¢, is any test function for testing 6 = 0, against 6 > 0, such
that for each y € R and o € (0, 1),

limye By (6,(X(n)) | Y(0) = ¥) = a,

then for the sequence of alternatives 0, (h) = 8o + I;"/*(6o)h with h > 0 we
have

lim supp—.«Ep,n) ($.(X(n)) | Y(0) =y) =1 — ®(21-0 — h|y]),
where z,_, is the (1 — a)-quantile of ®. Equality is achieved by the test

1 if (Zil X?—I)I/Z(én - 00) > 21—as
0 otherwise,

or(X(n)) = {
where 0, is the unconditional maximum likelihood estimator of 6.

The results of Theorem 5.1 can be derived as indicated by using Theorem 2.1
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and standard results for L.A.N. families. A more direct approach however can be
made via the conditional process derived in Section 4. We illustrate by establish-
ing the very first result in the case k = 1, namely A,(8) —¢ N(0, y% under the
conditional measure. We have, under Py(- | Y = y),

I7726) 2 log py(X(n); 6)

= I;'2(0) 31 (X, — 0X-) Xjs
= I;72(0) T1(W; — W) (Wjy + 67167 — 1)72y) + 0(1)
= I;'2(0) ST W, Wiy — 617'2(0) Xt Wi,

+ y(0° = 1)7V2I;V2(0) BT 07 (W — 6W,1) + o(1)

where W, was defined by (4.4). The first two terms on the right are easily seen
to converge to zero in probability. The third term is a linear combination of
normal variates. Using the result

g-li-kl _ g=li+kl

Cov(W;, W,| Y =y) = Pr—

we can verify that
Var{I;V2(9) 3§ 6\(W; — W) | Y=y} > 02— 1 as n— .
Finally we obtain the desired result that under Py(- | Y =y)

I'—ll/2(0) 6%0. log pn(X(n); 0) —q4 N(O, y2).

It is fortunate in the autoregressive model we have considered that the
conditional process has such a simple structure. Other examples for which this
occurs may be found in Basawa (1981a, b). It should be noted however that
explicit knowledge of the conditional distributions is not essential for the deri-
vation of conditional optimality results using Theorem 2.1.
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