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THE ROBUSTNESS OF STEIN’S TWO-STAGE PROCEDURE

BY RAMKARAN

Lucknow University, India

The expressions for coverage probability and ASN of the Stein’s two-
stage confidence interval procedure for estimating the normal mean have been
obtained under the assumption that the underlying distribution is, in fact,
different from normal but could be approximated by the first four terms of
Edgeworth series. The comparison of coverage probabilities with the corre-
sponding probabilities obtained for the normal distribution shows that the
procedure is quite insensitive to moderate departures from normality, and
skewness of the parent population has very little effect on the coverage
probability of the procedure. The Monte Carlo investigations which involve
sampling from the gamma population confirm these conclusions.

1. Introduction. The first attempt to study the robustness of Stein’s two-stage
procedure against the possible departures from normality was made by Bhattacharjee
(1965) who assumed that the parent population could be approximated by the first four
terms of the Edgeworth series. Recently, Blumenthal and Govindarajulu (1977) investi-
gated this problem, assuming the parent population to be a mixture of two normal
populations differing in location parameters and having the same unknown variance. Both
of these studies are concerned with “Criterion—robustness” of the procedure (cf. Box and
Tiao, 1973), but give somewhat conflicting conclusions. Whereas Blumenthal and Govin-
darajulu claim that the procedure is remarkably robust, Bhattacharjee’s assertion is
surprisingly just the reverse. There seem to be some oversights in Bhattacharjee’s work
which would account for this discrepancy. The purpose of this article is, therefore, to show
that Stein’s procedure is, in fact, quite robust even under the Edgeworth series model.

2. The two-stage procedure. Let Y, Y,, Y; --. be a sequence of iid random
observations from N(u, ¢%). Take an initial sample of size m from this sequence and
calculate the unbiased estimate S% of ¢2. Then take an additional sample of size N — m
from the same sequence where

(2.1) N = max{m, [S}/Z] + 1}.

The quantity Z > 0 is a preassigned constant and [q] stands for the greatest integer less
than q. If Yy is the mean of N observations obtained by pooling the two samples, then
the “pivotal-quantity™

(2.2) : t = VN (Yn — n)/Sy

could be used for the inferences about u. Stein has shown that the sampling distribution
of t is Student’s ¢ with m — 1 d.f. and the coverage probability of the interval ( Yy + d), a
function of ¢, is always greater than or equal to 1 — q, irrespective of the values of x and
o?, provided Z = d?/b>. The quantity b is the upper 100 a/2% point of ¢ distribution with
m—1df.
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3. Comments on Bhattacharjee’s paper. Bhattacharjee claims to base his inves-
tigations on the “ pivotal-quantity” ¢ defined at (2.2) but, in fact, uses instead the quantity
t’ = (Yn — n)/vZ for computing the power of Student’s hypothesis and the coverage
probability of the interval described above. But the distribution of ¢’ is Student’s ¢ with
m — 1 d.f. only when ¢2 — o [Cf. Ruben, 1961] and not in general. The coverage probability
of the interval based on the procedure in question is, in fact, not independent of ¢* or
equal to 1-a for all o2 even if the sampling is done from the normal population. Moreover,
he has calculated the power and confidence level for the parametric region (—1.0 < A3 <
1.0; —.5 =< A4 < 2.5) in which the Edgeworth series may not represent a positive definite
and unimodal probability density [Cf. Draper and Tierney, 1972]. The conclusions based
on the calculations carried out for the parameter values outside the validity region (ie
—.45 < A3 < .45; 0 < A\, < 2.35) of the series might be very misleading. This fact becomes
quite clear later in our study.

4, The coverage probability and ASN. Letus assume that the probability distri-
bution of Y which has mean p and variance o2 can be approximated by the first four terms
of the Edgeworth series. That is

y—u\_ _ A d®(x) | Aedio(x) | NS d%$(x)
4.1) f< . )‘f(")_"’(x) 6 di° 24 dr* T2 dx

where ¢(x) is the density function of standard normal variate. The parameters A\; and A,
are the coefficients of skewness and kurtosis respectively. In order to evaluate the
expressions for the coverage probability and ASN when sampling is done from (4.1), we
need the joint density of Yy and S% and the density of S% or else the joint density of Xn
and S% and the density of S% where X = (Y — u)/o. These densities could be worked out
using Gayen’s (1949) expression for the joint distribution of the sample mean and variance
[Cf. Bhattacherjee, 1965]. Let the joint densities of sample mean and variance for the
single and two-stage sample be denoted by g(X, S%) and f(Xx, S%) respectively. From
(2.1) it easily follows that

Oifn<m
4.2) P(N =n) =< P(0=<S%=(mZ)/¢® ifn=m

P{Z(n — 1)/e? < Sk = (nZ)/e? ifn>m.
Thus the coverage probability of the interval ( Yy * d) is given by

P(A, A3, \) = P{Yy—d=pu=<Yy+d}=P(-d/foc < Xy=dfo)
(4.3)
= fj;‘ 8(Xm, S%) dXm dS%k + Yr-mn IJI; f(Xa, S%) dX, dS%,
where
R:{-A=<X,=<A;0=<S8% =< (mZ)/d%,
Ri{-A=<2X,<A;Z(n—-1)/e?< 8% = (nZ)/c?%

and A = d/o. After massive calculations and algebraic simplifications the above coverage
probability could be expressed in terms of incomplete gamma integrals and incomplete
moments of the standard normal distribution as follows:
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A
P(A, )\3, )\4) = roo + 2_; [{m'1u4 - GU2 + 3mu0} Vo
+ 6(m — 1D(muy — ug) Vi + 3m™(m — 1)%u, Vs)
A3 .
+ 72 [6m™'(m — 1)(m — 2)u, Vs

+ {m7'ug — 3m™'(2m + 3)ug + I(m + 4)us — 15muy} Vo
+ 6(m — 1){m™'uy — 3m™(m + 3)us + 6u} Vy

+ 9m™ (m — 1){(m + Dus — 3(m — 1)ue} Vel
+ Yr=m1 [WoZo

+ % [ln‘1W4 — 6n'mW, + 3(m + (nm)™'(n — m)(1 — 2m)) Wo}Z,

(4.4) + 6(m — 1){n'1W2 + <" —m_ 1) Wo} Z
mn

+ 3m'1(m - 1)2W0Z2]

— (16m* + 6m™ (m — 1)(m — 2)(n — m)) Wy} (Zo/n)
+ 6(m — 1){W, — 3(m + 3)W, + 3(2m + m™(n — m)(m — 2)) Wo}(Z,/n)
+ 9(m — Di{n"'(m + 1) Wz + (=3(m — 1)+ n~'(m + 1)(n — m))(Wo/m)}Z,

+6m~(m — 1)(m — 2)W0Z3]]]
where

m-—1
2

45 x=mD, D= (2b*)'(m—-1)A% V= I,( + i), 1=01,23,

I.(p) is the incomplete gamma integral (normalised) and

Aavm N
(4.6) w = p(Vm 8) = f LYo dy, i=0,2,4,6
—AvVm
‘'m—1 R m-—1 R .
(47) Z,'=Iu< 2 +l)—IL< 2 +l), l=0,1,2,3
(4.8) U=nD, L=(n-1)D, Wi=m(¥nA), i=0,2,4,6.

It is evident that the coverage probability is symmetric in A;. It could be easily verified
that P(A, A3, A\4) tends to unity as A — o for any given pair (A3, A4). In order to derive
the expression for ASN, we need probabilities P(N = n), n = m, m + 1, -... These
probabilities depend only on the distribution of S% and could be worked out using (4.2)
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and density g(S%). Thus, ASN is given by
E(N) = mP(0 = 8% = (Zm)/d?
+ ¥5ams1 nP{Z(n — 1)/0? < 8% = (nZ)/s?}
(4.9) =m[Vo + A(m — 1)2(Vp, — 2V, + V,)/(8m)
+ A(m — 1)(m — 2)(=V, + 3V, =3V, + V3)/(12m)]
+ Yrems1 B[ Zo + N(m — 1)X(Zy — 2Z, + Z5)/(8m)
+ M3(m — 1)(m — 2)(=Zo + 3Z, — 3Z, + Z3)/(12m)]

where all terms involved are the same as before. The ASN also is a function of A, A; and
A4 and is symmetric in Ag. It is easy to show that ASN approaches m as A — .

5. Discussion of the results. To study the behaviour of Stein’s procedure under
non-normal populations, the coverage probabilities and ASN have been computed for
various values of parameters A3, A\, and A. The desired coverage probability 1 — « has
been set at .95 and calculations for other parameters have been done for two different
first stage sample sizes m = 5 and m = 11. The various values of the coefficient of skewness
and kurtosis for which the calculations have been done are \; = 0.0, .2, .3, .4 and A\, =
-5, 0.0, .5, 1.0, 2.0, 2.4. These values except A\, = —.5 lie in the validity region of the
Edgeworth series. The value A, = —.5 has been deliberately included to show the misleading
nature of the series outside its validity region. Since the expression of the coverage
probability is symmetric in A;, the cases concerning only positive skewness have been
considered. The various values of parameter A which have been considered are .15, .20,
.25, .40, .50, .80, 1.00, 1.25, 1.50 and 2.00. We have presented here the tables for only a
few values of A3, A4 and A, though our conclusions are based on the whole range of
calculations.

As expected, the coverage probability approaches unity and ASN tends to m as A gets
large, for the normal parent coverage probability of the procedure tends to 1 — «, .95 in
our case, when A — 0 [Cf. Ruben, 1961]. The pattern of probabilities corresponding to A;
= A\, = 0 in Table 1 is consistent with this theoretical result. However, the asymptotic
coverage probability in non-normal populations falls short of the required one, ie., 1 — a.
Fortunately, this deficit does not seem to be very serious for practical purposes. It is clear
from Table 1 that the maximum deviation of the actual coverage probability from the
corresponding normal values is .014 when \; = 0.0, A\, = 2.4 and A = .20. The deviations
in other cases are even smaller. Thus, the procedure is quite robust against the mild
departures from normality. One very interesting feature which has been noticed in this
investigation is that the effect of kurtosis on the coverage probability, contrary to student’s
t case, is more dominant than that of the skewness which seems to be rather negligible in
most of the cases. Luckily, the values of ASN for Stein’s procedure under non-normal
populations in question are very close to those for the normal population and as such they

do not pose any problem in the interpretation of the results. For A; = .4 and A\, = —.5,
although the procedure is robust, there appear some odd phenomena because of the
inclusion of A\, = —.5. Firstly, the coverage probabilities fluctuate near A = 1.25 and exceed

unity (the coverage probabilities for A = 1.00, 1.25 and 1.50 are .99971, 1.00003 and .99999
respectively), and secondly, the ASN is smaller than even the minimum possible value,
i.e. 11 for A = 1.0 (the ASN for A = 1.0 is 10.99). These features, as will be clear in the
following text, could only be attributed to the failure of the Edgeworth series to represent
a genuine p.d.f. outside its validity region.

To confirm the above findings for small A\; and to study the effect of large values of A3
which lie outside the validity region, we have done Monte Carlo study using the gamma
distribution G(H, R), given by f(x) = (H? TR)'x*'exp(— x/H); x = 0, R, H > 0. The
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TABLE 1
The coverage probabilities and ASN (within parentheses)
for a = .05and m = 11.

A 20 40 80 .
(0, 0) 951 954 993 1.000
Normal (120.76) (30.64) (11.56) (11.00)
©,.5) 948 955 .993 1.000
e (120.65) (30.64) (11.65) (11.00)
©,2.4) 937 958 994 1.000
» o (120.24) (30.61) (11.90) (11.00)
(2,0) 950 953 993 1.000
“ (120.76) (30.64) (11.56)_ (11.00)
(4,0) 950 951 993 1.000
= (120.76) (30.64) (11.56) (11.00)
2 5) 948 954 993 1.000
- (120.65) (30.64) (11.61) (11.00)
(4,2.4) 936 955 995 1.000
i (120.25) (30.61) (11.53) (11.00)
4 —5) 953 951 994 1.000
& (120.87) (30.65) (12.12) (11.00)
TABLE 2
The estimates of coverage probabilities and ASN based on simulations.
R=10,H=10 R=50,H=10 R=400,H=10
As = 2.0, \,=6.0 As = .894, A, = 1.20 As =.316, A =.15
A
CcP ASN CP ASN cp ASN
2 900 12571 940 124.37 949 123.67
: (.691) (55.42) (.940) (124.60) (.949) (124.60)
40 927 32.64 948 32.20 949 31.61
. (.679) (14.38) (.941) (31.62) (.952) (31.59)
80 997 12.42 996 11.81 992 11.55
: (.745) (7.99) (.996) (11.84) (.993) (11.56)
Los 1.000 11.09 1.000 11.01 1.000 11.00
.  (.999) (11.01) (1.000) (11.00) (1.000) (11.00)

various degrees of skewness could be represented by considering different values of R. For
large values of R, this distribution tends to normal distribution and, therefore, we expect
that the results for such values of R should be very close to those obtained for the normal
population. For estimating the coverage probabilities and ASN for different values of the
width (2d) of the interval (Yy *+ d), we have simulated 5,000 two stage samples, using the
procedure described in Section 2, from G(H, R) on the M7600 machine of London
University. We have used GO5DGF sub-routine of NAG Library [MARK 7] for the
purpose. Taking the initial sample of the size m = 11, we have drawn the two-stage
samples from G (1.0, 1.0), G(1.0, 5.0) and G(1.0, 40.0). For each sample, the stopping time
N and the pooled mean Yy are obtained and it is checked if the population mean (ie. RH)
is covered by the interval (Yy + d). The relative frequency of this event in the repeated
experiments gives the estimates of coverage probability. The equation (2.1) is used to
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calculate N and the average of all stopping times is taken as the estimate of ASN. In order
to make the coverage probabilities and ASN comparable to those obtained for the normal
case, we have obtained the estimates corresponding to those values of d for which A[i.e.
d/N(RH?)] = .20, .40, .80 and 1.25. Table 2 displays the estimates of coverage probabilities
and ASN for the three cases mentioned above. The coverage probabilities and ASN
calculated for the Edgeworth series model from formulas (4.4) and (4.9) respectively,
taking same values of \; and A, as for the given gamma distribution, are written within
parentheses. The comparison of the values with corresponding values for the normal
distribution given in the first row of Table 1 shows that Stein’s procedure is, in fact,
robust for the values of R as low as 5. This confirms our conclusion made earlier that the
skewness has very little effect on the coverage probability. The estimates are quite close
to corresponding normal values for R = 40.0. Moreover, the difference between the coverage
probabilities and ASN for the gamma distribution and those calculated for the comparable
Edgeworth population are negligible provided values of A; and A, lie in the validity region
(see case R = 40.0). How badly the series could behave outside this region is shown in
case R = 1.0. Here the coverage probability falls as low as .679 (see A = .40) whereas the
corresponding probability for the gamma distribution is .927. For A = .8, ASN is 7.99
which is smaller than even the minimum possible value, ie., 11, whereas for the correspond-
ing gamma distribution it is 12.42.

Thus, we conclude, contrary to Bhattacharjee’s assertion, that Stein’s procedure for
estimating the mean is remarkably robust against the moderate departures from normality.
By virtue of the relationship between the confidence interval estimation and hypothesis
testing, similar conclusions can be drawn for the latter problem.
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