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ON THE MINIMAX PROPERTY FOR R-ESTIMATORS
OF LOCATION?

By JOHN R. COLLINS
University of Calgary

Consider the problem of estimating the unknown location parameter 6
based on a random sample from F (x — ), where F is an unknown member of
the class of distribution functions & = {F:.F is symmetric about 0 and
sup,| F(x) — ®(x)| < ¢}, where ® denotes the standard normal distribution
function. Huber (1964) showed that M-estimation has a minimax property
for this model, whereas Sacks and Ylvisaker (1972) showed that L-estimation
fails to have the minimax property. It is shown here that R-estimation does
have the minimax property for this model.

1. Introduction and summary. Consider the robust estimation problem of Huber
(1964). Random samples are obtained from F(x — ), where 6 is an unknown parameter
to be estimated and F is an unknown member of a convex and vaguely compact class %
of distributions symmetric about 0. Under suitable regularity conditions, consistent and
asymptotically normal estimates of 6 can be obtained using the class of M-estimators
(maximum likelihood type estimators), L-estimators (linear combinations of order statis-
tics), or R-estimators (estimators based on rank tests). For definitions of these classes of
estimators see, e.g., Chapter 3 of Huber (1981).

We briefly summarize Huber’s asymptotic minimax theory. Let ¥ be a class of
estimators (either the M—, L—, or R-estimators), let T denote a functional representing a
member of ¥, and let V (T, F) denote the corresponding asymptotic variance functional
(where T ranges over ¥ and F ranges over 7 ). Let F, denote the member of &
minimizing I(F), the Fisher information for location; and let T, denote the member of
¥ which is asymptotically efficient when F; is the true error distribution (i.e., V(T,, Fo)
= 1/I(F,)). Suppose that ¥ and 7 are such that

(1.1) sup{V(To, F): F € ¥} < V(T,, F,).

Then we say that the minimax property holds, for an immediate consequence of (1.1) is
that infre »supre ~V(T, F) is equal to 1/I(F,), with the infimum attained at T%. In cases
where (1.1) fails, the minimax variance problem does not have a saddlepoint and, in fact,
it can then be easily seen that infre . suppe -V(T, F) > 1/I(F,).

Table 1 summarizes the results to date on the minimax property for M-, L-, and R-
estimators for two important models for %, each representing close neighborhoods of the
standard normal error distribution: the gross errors model and the Kolmogorov model.
Huber (1964) showed that the minimax property for M-estimators holds quite generally
and for the gross errors and Kolmogorov models in particular. Jaeckel (1971) verified that
the minimax property holds for both L- and R-estimators in the gross errors model. (See
also Section 4.7 of Huber, 1981.) Sacks and Ylvisaker (1972) showed that the minimax
property fails for L-estimators in the Kolmogorov model, at least when ¢ > 0.07. In this
paper we settle the open question of whether the minimax property holds for R-estimators
in the Kolmogorov model. "
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TABLE 1.
Does the minimax property hold?

Class of Distributions

7 M-estimators L-estimators R-estimators
{F:F = (1—¢)® + &G for some G YES YES YES
symmetric about 0} [Huber, 1964] [Jaeckel, 1971] [Jaeckel, 1971]
(gross errors model).
{F:F is symmetric about 0 and YES NO OPEN

(when ¢ > .07)
[Sacks-Ylvisaker,
1972]

sup, | F(x) — ®(x) | < ¢}

(Kolmogorov model) PROBLEM

[Huber, 1964]

In Section 2, we give required definitions and notation. In Section 3 we show that the
minimax property does hold for R-estimators in the Kolmogorov model and present a
proof valid for all values of ¢, 0 < e < 1. .

The result is somewhat surprising for two reasons. One reason is, as noted by Huber
(1981), that unlike the case for M-estimators, 1/V (F, T') is not a convex function of F in
the case of R-estimators. Another reason is that Sacks and Ylvisaker (1982) have recently
constructed an example of a convex class % for which the minimax property fails for R-
estimators.

A conclusion, stated roughly, is that—according to the minimax variance criterion—
one can do as well estimating a location parameter with R-estimators as with M-estimators,
at least in two error distribution models (gross errors and Kolmogorov) of practical
importance. Of course Sacks and Ylvisaker (1982) found a model % for which M-
estimators do strictly better than R-estimators (and also L-estimators). However, their
example is somewhat artificial and does not seem to have the same degree of practical
importance as the gross errors and Kolmogorov models.

The question raised by Sacks and Ylvisaker (1982) of whether there are general
conditions on % which guarantee the minimax property for L- or R-estimators remains
open. An ad-hoc case-by-case check of the minimax property seems to be necessary.

2. Definitions and notation. For a fixed value of ¢, 0 < ¢ < 1, define the set of
distribution functions % by
(2.1) . = {F:F is symmetric about 0 and sup, | F(x) — ®(x)| < ¢}

where & is the standard normal distribution function, i.e., ®(x) = [, ¢(t) dt where ¢(t)
= (2r) Y%exp(— t2/2). Also denote by %' the sub-class of F’s in %, which have an

absolutely continuous density f.
Let f, be the (necessarily) absolutely continuous density of the unique F, in %, with

minimum Fishér information, and define ¥y by ¥o(x) = —f o(x)/fo(x). Then there are
positive constants Cy, C;, w, A, ko and &, (depending on ¢) such that

fo(x) = fo(—x) = Cocos2(ewx) 0 < x < ko
(2.2) = ¢(x) ko< x<k
= Ce™ x =k,
and
Yo(x) = —Yo(—x) =wtan(ewx) 0 <x <k
(2.3) =x kh<x=sh
=2 x = k.

There are two cases to consider. In Case A, ¢ < & = 0.0303 [Huber, 1964], we have
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ko < ky; in Case B, ¢ > ¢, [Sacks and Ylvisaker, 1972], we have k, = k,. For the determination
of the values for the constants C,, Ci, w, A, ko and k,, see Huber (1981), page 86, example
5.3. We list some properties of the solution that will be used in the next section:

(P1) The distribution function F, is strictly monotone increasing.
(P2) The density f, is absolutely continuous with [Z. fo(x) dx = 1.

(P3) The function ¥y = —f t/fo is absolutely continuous with piecewise continuous deriv-
ative yo.

(P4) For all x € [ko, k1], the identity Fo(x) = ®(x) — ¢ holds. [In Case B, this just reduces
to Fo(ke) = ®(ko) — &.]

(P5) In Case A, we have y4(ko — 0) = Y o(ko + 0). [To see this, note that ¥o(0) = 0, ¥o(ko)
= ko, and y¢ is positive and increasing on (0, k). This forces yo(x) < x for 0 < x <
ko, so that ¥/o(ko — 0) > 1 =y§ (ko + 0).]

Let F be a member of % with density f symmetric about 0. Consider the problem of
estimating 0 based on random samples from F(x — #) using an R-estimator generated by
a score function J (with J(1 — t) = =J(¢t) for all ¢ € [0, 1]) as defined in Section 3.4 of
Huber (1981). Then under suitable regularity conditions on J and F, the R-estimator of §
is consistent and asymptotically normal, with asymptotic variance given by

JF()]f (x) dx

(2.4) V(J, F) = 3
‘{f J'[F(x)]f %(x) dx}

When the true underlying distribution is F,, then any choice of J satisfying o/ (Fo(x))
= cyo(x) for some ¢ # 0 yields an asymptotically efficient R-estimator [see Section 3.5 of
Huber, 1981]. For then V(J, F,) = 1/I(F;) where I(Fo) = [[(f 4)*/fo] dx, the Fisher
information. To be specific, we set ¢ = 1 and define (without loss of generality) a specific
asymptotically efficient score function <J, as follows:

(2.5) Jo(Fo(x)) = Yo(x).

It will be useful to note that if F € 7 then both Jy[F(x)] and f(x) are absolutely
continuous with derivatives J o[ F (x)]f (x) and f ’(x), respectively, so that integration-by-
parts yields

JF (x)1f (x) dx

(2.6) V(do, F) = -
K [— f Jo[ F (x)]f "(x) dx]

3. The minimax result. We now show that the minimax property holds; i.e., in the
notation of Section 2, that sup{V(J,, F): F € %} = V (., F,). One technical difficulty
that arises is that there is no closed form expression for Jo(¢) as a function of ¢ € [0, 1].
However, a tractible expression for Jo[F(x)] is obtained by the following device: write
Joo F(x) =do o Foo Fg' o F(x) = yo[F5' ° F](x).

THEOREM. Let ¢, 0 < ¢ < 1, be fixed and let 7 be defined by (2.1). Let F, be the
distribution minimizing I(F ) over 7, and let J, be the asymptotically efficient score function
corresponding to F,, as defined in Section 2. Then the minimax property holds, i.e.,

(3.1) sup{V (o, F): F € Z} = V(Jo, Fo).
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PROOF. Since we clearly have that
(3.2) sup{V(dJo, F): F€ F} =sup{V(Jy, F): F € %},

it suffices to show that the left-hand side of (3.2) is equal to V(J,, F;). Let F be
an arbitrary member of &, with absolutely continuous density f. We will show that
V (o, F) < V (o, Fo). From formula (2.6) for V (J,, F'), it follows that it suffices to show
that both

(3.3) f JYF (x)]f (x) dx < f J 3 Fo(x))fo(x) dx
and
(3.4) —JlmFum%ndxz—JlMHuWMﬂdx

Note that the right-hand side of each of (3.3) and (3.4) is equal to I(Fp) > 0.

To prove (3.3), first note that by property (P1), the change of variables t = Fo(x) yields
that [ J3[Fo(x))fo(x) dx = [§ J §(¢) dt. Some more care is required in handling the
expression [ J 3[F (x)]f(x) dx, since there may exist intervals on which F is constant, and
in fact F may be substochastic (we know only that 1 — ¢ < F () < 1.) So let S be a subset
of the real line, obtained by deleting intervals on which f(x) = 0, with the property that
the change of variables t = F (x) yields a strictly increasing map of S onto (F (— o), F ()).
Then we have that

fﬁwmwnm=f%wmmnw=f JH(e) dt
(3.5) s Fis)

sJ; Ji(t) dt=fJ%[Fo(x)]fo(x) dx,

proving (3.3).
To prove (3.4), first note that by symmetry it is enough to show that

(3.6) - f Jo[F(0)]f"(x) dx = Y I(Fy).

Note that it follows from property (P1) that F ;' is strictly monotone increasing and that
Fy o F5'(x) = x. We define the function g by

(3.7 q(x) = Fq' ° F(x),

and note that'q is a continuous and monotone non-decreasing map of [0, »] onto
[0, F5* o F(%)](q(0) = 0 since F(0) = Fo(0) = 2 by symmetry). It follows that q’ exists
a.e. with ¢’(x) = 0 a.e. x. Note that F (x) = Fy[q(x)], that Jo[F (x)] = ¥o[q(x)], and that

f(x) = folg(x)]-q’ (x) a.e. x.
Rewriting (3.6) using the notation (3.7), it remains to establish that

(3.8) —J; Yolg(x)] ' (x) dx = Ve I(F,).

Note that both Y, and g are continuous and monotone non-decreasing, so that y, ° ¢
is a continuous monotone non-decreasing map of [0, »] onto [0, ¥o(g())]. It follows that
Yo © q is absolutely continuous on [0, A] for all A > 0. Furthermore, the total variation of
Yo © g over [0, ©) is < X\ < o, It follows that ¥, © g(x) = [§ [¥o ° q]’(y) dy for all x > 0.
Also, by the definition of #, we have f(x) — f(0) = [§ f’(y) dy for all x > 0. Hence it is
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valid to integrate by parts to obtain

- JO‘ Yolg(x)If '(x) dx = —lim,_.o[q(x)] lim,—.f (x) + ¥o[g(0)]f(0)

+ f Yo ° gl’(x)f(x) dx
(3.9 0

=J(: Yolg(x)]g’ (x)folg(x)]g’(x) dx

= j(: [ ofol(g(x))[g’ (x)* dx.

Define the function p by q(x) = x + p(x), so that ¢’(x) = 1 + p’(x). Then from (3.9), we
have .

—J{: Yolg(x)]f "(x) dx = j(: [Wofl(g(x))[1 + p’(x)]* dx
=J{: [Yofol(g(x))q’(x) dx

(3.10) +J(: [Wofol(g(x))-p"(x)[1 + p’(x)] dx

Falo F () o
=J(: [¥ofol(y) dy +J(: [Wofol(g(x))p’ (x) dx

+ J:c [ ofol(g(x))[p’ ()] dx.
Now straightforward calculation from (2.2) and (2.3) yields that in Case A,
[Wofol(x) = Y% Cow?, 0<x <k
(3.11) =¢(x), h<x<k
= 0, x> ky
and in Case B,
(8.12) [Wofol(x) = 2Coo®, 0=x<hi=h
: =0 x> ko = k.

In either Case A or Case B, it follows from property (P4) that F(x) = F(k,) = ®(k,) — ¢
= Fy(k;), and so from (3.11) or (3.12), it follows that

Folo F () oo
(3.13) J(: [Yofol(y) dy = J(: Yo(V)foly) dy = Y I(Fo).
In view of (3.10) and (3.13), the inequality (3.8) is equivalent to

(3.14) j(: [ofol(g(x))p’(x) dx + J(: [Wofol(g(x))[p’ (x)F dx = 0.

But since y4(x)fo(x) = 0 for all x > 0, the second term is non-negative; so in order to
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complete the proof of the theorem, we need only show that

(3.15) J(: [¥ofol(q(x))p’(x) dx = 0.

Consider first Case A, where ¢ < ¢ and ky < k;. Then F(x) = ®(x) — ¢ = Fo(x) for all
X € [ko, k). Since F(x) = Fo(x + p(x)) = Fy(x) for x € [k, ki], we have that p(x) = 0 for
all x € [k, ki]. Let x; = inf{x:x + p(x) = ko} and x, = sup{x:x + p(x) = k;}. Then from
(3.11), we calculate that

J(: [¥ofol(q(x))p’(x) dx = Y2 Cow’[p(x1) — p(0)] + fl ¢lq(x)]p’(x) dx

(3.16) = Yo Cow®p(x1) + p(x2) (k1) — p(x1) (ko)

+f q(x)plq(x)]g’ (x) plx) dx.

1

Thus to prove that (3.15) holds in Case A, it suffices to show that both

3.17) p(x) =20 forall x € [x, x2);
and
(3.18) s Cow?® — ¢(ko) = 0.

To obtain (3.17), first recall that p(x) = 0 for all x € [k, ki]. Since g(x) = x + p(x) is
monotone non-decreasing in x, and since x; + p(x;) = ko and ko + p(k,) = ko, we must
have that x; < k, and hence p(x;) = 0. Similarly it is easily seen that x. < k; and p(x;) =
0. To finish the verification of (3.17), we must show that if y satisfies x; < y < k,, then
p(y) = 0. But since x;, + p(x;) = ko, we have y + p(y) = ko, sothat p(y) = ke —y = 0.

To prove (3.18) in Case A, note that it follows from property (P5) and continuity of f,
at ko that [Yofol(ke — 0) = [Yofo](ke + 0). But this inequality is exactly (3.18). This
completes the proof of (3.15) in Case A.

Consider now Case B, where ¢ > ¢, and ko, = k;. Then from (3.12), we calculate that

(3.19) J(: [¥ofol(q(x))p’ (x) dx = Y2 Cow’p(x1)

where x, = inf{x:x + p(x) = ko}. But we know from property (P4) that p(k,) = 0. Hence
X1 < ko and p(x;) = 0, so that inequality (3.15) holds in Case B. This completes the proof
of the theorem. 0
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