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Suppose that a test of fit to a parametric family of distributions is
employed, with critical points determined from the limiting null distribution
of the test statistic for IID observations. It is shown that if the observations
are in fact a stationary process satisfying a positive dependence condition,
the test will reject a true null hypothesis too often. This result is established
for a broad class of chi squared and empiric df tests, including the Pearson,
Kolmogorov-Smirnov and Cramér-von Mises tests with general estimators of
unknown parameters. Furthermore, the method of proof is sufficiently general
to apply also to other classes of tests. Confounding of positive dependence
with lack of fit is therefore a general phenomenon in the use of omnibus tests
of fit.

1. Introduction. In testing the fit of a sequence of observations to a parametric
family of distributions, it is commonly assumed that the observations are independent
and identically distributed (IID). In practice, however, the observations may have sub-
stantial dependence, as when the data are collected as a time series. Suppose, then, that
X, .-+, X, are observations on a (strictly) stationary stochastic process (SSP) and that
G is the common univariate df of the X;. A statistician who believes that the X; are IID
tests the hypothesis that G is a member of a parametric family {F(-, 6): 6 in Q}, for Q an
open set in Euclidean m-space R™. We will show that when G = F(-, 6,) for some 6,, and
the SSP satisfies a positive dependency condition, chi-squared and empiric distribution
function (EDF) tests reject the true null hypothesis too often. That is, positive dependence
is confounded with lack of fit. Since the class of tests for which this result holds is very
broad, including the Pearson, Kolmogorov-Smirnov, and Cramer-von Mises tests with the
parameter 0 estimated in general ways, this confounding deserves recognition as a general
phenomenon in applying omnibus tests of fit.

Chanda (1981) and, more generally, Moore (1982) have independently studied the
limiting distribution of chi-squared statistics when the data are dependent, with emphasis
on obtaining the form of the limiting covariance matrix of the standardized cell frequencies.
Moore also proves the confounding of positive dependence with lack of fit in one case,
that of testing the fit of a general Gaussian SSP to a specified normal distribution. The
positivity condition that we impose on the bivariate distributions of (X;, X;) arises
naturally from consideration of the covariance matrix of cell frequencies when the data
form a SSP. We do not, however, make use of the detailed form of the covariance matrix.
Some specific examples of such matrices can be found in Moore (1982) and Chanda (1981).

Our procedure in this paper is to abstract and generalize three essential steps from
Moore (1982), which we now introduce in turn. The first two are asymptotic results. We
will assume that these hold. Our goal is to avoid detailed convergence arguments, but to
establish qualitative results about the limiting behavior of tests of fit that are true whenever
appropriate asymptotics are available. The required asymptotic results are in fact widely
true.
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First, we require that the estimator 6, = 6,(X;, ---, X,) used to estimate § have an
asymptotic expansion of central limit theorem type that is valid both for {X;} IID and for
the SSP in question. When {X;} is IID, many common estimators 6, have under F(-, 6,)
the representation

(1.1 n'2(0, — 6o) = n72 YL, g(X;, 0) + 0,(1),

where g has zero mean and finite covariance matrix. For example, this is true in regular
cases for maximum likelihood estimators (MLEs) and for Bayes estimators with respect
to continuous priors. (See e.g. Ibragimov and Has’'minskii (1981), Chapters 1.8 and III.)
In many cases, 6, continues to satisfy (1.1) with the same g when {X;} is a SSP. This
assertion must be checked in each case, but typically requires only repeating the IID-case
proof and employing a law of large numbers for the SSP. Moore (1982) gives references
for MLEs and a proof for minimum chi-squared estimators. Moreover, (1.1) can often be
obtained directly for specific estimators without appealing to results for general classes of
estimators such as MLEs. Note that while the asymptotic form of 6, is assumed the same
for IID and SSP observations, the limiting behavior will usually differ due to dependence
among the g(X;, 6o)’s.

Second, we require the availability of an appropriate central limit theorem for the SSP.
In the chi-squared case, an ordinary (multivariate) central limit theorem for sums
¥t h(X;) of functions of the SSP is needed. The EDF case requires in addition a weak
convergence result for the EDF process. Gastwirth and Rubin (1975) give theorems that
ensure that our results hold in many interesting examples, e.g. when {X;} is a Gaussian
SSP with Y7 | p(X;, Xi+:) | < . Limit theorems for functions of SSPs are an active field
of research; progress in this area will extend the class of processes for which our conclusions
hold.

Third, we require a positivity condition on the bivariate distributions of (X;, Xj).
Section 2 discusses this condition, and places it in the context of the considerable literature
on positive dependence of bivariate distributions. Useful equivalent conditions are ob-
tained, and it is noted that a number of exchangeable bivariate distributions satisfy these
conditions. In particular, our positivity condition is equivalent to

(1.2) Efh(X)MX))} 20 forall h with E|A(X)h(X;)]| <oo.

Readers willing to accept (1.2) as a positive dependency condition without discussion may
omit Section 2. Condition (1.2) is applied to study the effect of positive dependence on
the large sample behavior of chi-squared statistics in Section 3, and of EDF statistics in
Section 4. Section 5 comments on the generality of our methods, and applies them to
several other tests of fit.

Rinott and Pollak (1980) employ condition (1.2) for a sequence of IID bivariate
observations (X;, Y;) to study the effect of positive dependence between X and Y on the
asymptotic level of tests that X and Y have equal marginal distributions. While their
methods are similar to ours, their problem is quite different. And, as intuition suggests,
we reach opposite qualitative conclusions: tests of equal marginal distributions for bivariate
data are generally conservative under positive dependence within bivariate observations,
while tests of fit have larger than nominal levels under positive dependence across
observations.

2. A positivity condition. Throughout this section, (X, Y) will be an exchangeable
bivariate r.v. with distribution function F. Any pair of variables from a SSP are exchange-
able. Here is the required positivity condition.

DEFINITION 2.1. Exchangeable r.v.’s (X, Y), or their distribution F, are positive
dependent on intervals (PDI) if for every integer M = 2 and every partition of (—oo, o)
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into intervals A,, - .-, Ay the M X M matrix P with entries pi = P[Xin A;, Yin A;] is
positive semidefinite (psd).

Since (1.2) is the essential tool employed in Sections 3 and 4, the following is the
central fact about PDI distributions.

THEOREM 2.1. (X, Y) are PDI if and only if E{h(X)h(Y)} = O for all measurable h
such that E | h(X)h(Y) | < o.

PRrROOF. If h is a step function, we can write h = 3 b;1, where 1; are the indicator
functions of intervals A; that partition the line. Since then

E{h(X)h(Y)} =b'Pb

for b’ = (b, - -+, bn), clearly (1.2) implies PDI.

Suppose now that (X, Y) are PDI. If (1.2) can be established for h with |h| = C, C
constant, then truncating general h and employing the dominated convergence theorem
will complete the proof. Moreover, if | h| < C, there exists a sequence of bounded simple
functions h, converging to h such that E{h,(X)h,(Y)} — E{h(X)h(Y)}. So (1.2) need only
be proved for simple functions h satisfying | h| < C.

For any such h and any ¢ > 0, there is a step function h* with P[h(X) # h*(X)] <e.
This follows from the result (Halmos (1950), page 56) that if u is a ¢-finite measure on a
o-field & generated by a field %, then for any A in & and 5 > 0 there is an A* and %,
with (A A A*) < 7, where A A A* is the symmetric difference. Here, take %, to be all
finite unions of disjoint intervals, % the Borel sets on the line, and u the distribution of
X. PDI asserts that E{h*(X)h*(Y)} = 0, and (1.2) for h follows from this and

| Eth(X)R(Y)} = Eth*(X)h*(Y)} |
= | E{h(X)[MY) — h*(Y)l} + Eth*(Y)[AMX) — h*(X)}}| = 4C%. O

Shaked (1979) discusses the relations among several concepts of positive dependence.
He calls (X, Y) PDD if F is a positive semidefinite distribution function, i.e., if the M X
M matrix with entries F(a;, a;) is psd for all a; < a; < --- < ay and integers M = 2.
Shaked states (Proposition 2.2) that PDD is equivalent to (1.2). However, his proof that
PDD implies (1.2) involves integrating E{h(X)h(Y)} by parts and therefore requires that
h be of bounded variation. We therefore outline a direct proof of the fact that our condition
PDI is equivalent to PDD. This result places PDI in the context of the relations discussed
by Shaked, and with Theorem 2.1 establishes equivalence of PDD and (1.2).

THEOREM 2.2. (X, Y) are PDI if and only if they are PDD.

PrOOF. Fora, < --- <au, denote the matrix of F(a;, a;) by Fy and the column vector
of F(a;, ®) = F(c, a;) by fu. First notice that Fy, is psd for all a; and M if and only if
Fuy — fufu, the matrix of F(a;, a;) — F(a;, ©)F(x, a;), is. The “if” assertion is obvious.
To see “only if,” take ay = o and expand det(Fy,) by its last column to obtain det(Fy) =
det(Fa—1 — fu-1f1-1). Since det(Fy) = 0, all of the (M — 1) X (M — 1) upper left principal
minors of Fy — fufu (for arbitrary as) have nonnegative determinant, and this M X M
matrix is therefore psd. PDD is thus equivalent to Fa — farf 3 psd for all M and a;.

On the other hand, PDI is immediately equivalent to Cov{h(X)h(Y)} = 0 for all step
functions h. But if h = ¥ b;1;, where 1, is the indicator of A; = (a;-;, a;] and — = g, <
@< ... <ay = o, then

Covih(X)h(Y)} = 2" (Fa-1 = fu=1f -1)x,

where x; = b; — by, 1=1, ---, M — 1, and Fy_, is formed from a; - - - ay—,. The theorem
follows. O
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REMARKS. (1) It is easy to see that (1.2) is equivalent to Cov{h(X)h(Y)} = 0 for all
h for which the covariance exists. Shaked (1979) and Rinott and Pollak (1980) use the
condition in this form.

(2) PDI implies that the correlation p(X, Y) = 0. For (X, Y) bivariate normal, PDI is
equivalent to p(X, Y) = 0, but the equivalence does not hold for all bivariate exchangeable
distributions.

(3) If (X, Y) are conditionally IID, they are PDI. Moore (1982) established PDI for
symmetric bivariate normal (X, Y) with p > 0 in this way. Other distributions that are
conditionally IID, and hence PDI, are listed with references by Shaked (1977), page 510;
they include bivariate exponential, F, logistic, and x? distributions. The bivariate ¢
distributions are also in this class. Shaked (1979) shows that not all PDD distributions
are conditionally IID, and that the class of PDD distributions is closed under convolution,
mixture, and convergence in distribution. The class of PDD (or PDI) distributions is thus
extensive.

(4) Total positivity of order infinity (TPs) for F implies PDI, but the bivariate ¢, for
example, is PDI but not even TP,.

3. Chi-squared statistics. Observations X, ---, X, are to be tested for fit to the
family {F(-, 6): 6 in Q}. Choose cells A, = (as-1, ar], k = 1, - - -, M with boundaries —c =
a < a < --- <ay = « Let 1, be the indicator function of A,, so that the kth cell
frequency is N, = Y%, 1.(X;). The corresponding cell probability is p.(0) = F(ax, 0) —
F(ay-1, 0). Let V,(0) be the M-vector of standardized cell frequencies, having kth compo-
nent [N, — np.(0))/[np:(8)]"2. Except in the simple null hypothesis case @ = {6}, the
unknown parameter 6 is estimated by 6, = 0,.(X;, - - -, X,). Chi squared statistics are psd
quadratic forms in V,(6,). In particular, the Pearson statistic is the sum of squares
Va(6,)' Va(6,).

Suppose now that X;, X5, --. are a SSP, and that the common univariate marginal
distribution of the X; is F(-, 6,) for some 6, in Q. Suppose further that the estimator 6,
satisfies (1.1) both when {X;} is IID F(., 6,) and for the SSP in question. Then Moore
(1982) follows the IID-case development of Moore and Spruill (1975) to show that

(3.1) Va(0,) = n™2 32y h(X:) + 0,(1).

Here h(x) = A(x) — Bg(x, 6,), where B is the M X m matrix with (i, j)th entry p;*/?dp;/36;
and A(x) is the M-vector with components [1,(x) — p:]/p¥% (When the argument 6 is
omitted, § = 6, is assumed.) Since E{h(X;)} = 0, a central limit theorem applied to (3.1)
will imply

(3.2) Va(0n) = N(0, 2), 2 = limy.(1/n)Cov{YL, h(Xi)} < c.

Moore (1982) cites several applicable central limit theorems for SSPs, and notes that (3.2)
often continues-to hold even when data-dependent cells are employed. The limiting
covariance matrix Z will of course differ from Zyp, the limiting covariance matrix of

V.(8,) in the IID case. Chanda (1981) and Moore (1982) derive the form of T for several
common estimators 6,,. Here is our main result on chi-squared tests.

THEOREM 3.1. Suppose that X,, Xo, - - - is a SSP such that (X;, X;) is PDI for all i #+
J, that X; has distribution function F(-, 6,), and that (3.2) holds under F(-, 6,) both for {X;}
IID and for the SSP in question. Then if Zyp is the limiting covariance matrix of V,(6,) in
the IID case, £ — Zyp is psd.

ProOF. Write
Z = E{h(X))h(X1)"} + lim,u(1/n) Xfjerinj Cy,
where C; = E{h(X;)h(X;)’}. The first term on the right is Zyp since all C; = 0 in the IID
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case. Theorem 2.1 implies that all C; are psd, since a’C;a = E{f(X;)f(X;)} where f(x) =
M ayh(x), @, and h, being the ith components of the M-vectors a and h, respectively.
Thus 2 — Zyp = lim,_.(1/n) ¥, C;, which exists and is finite by (3.2), is psd. O

General statistics of chi-squared type have the form T, = V,.(6,)’' W,V,(6,), where W,
is a (possibly data-dependent) psd M X M matrix converging in F(-, 6,)-probability as n
— o to a psd matrix W = W(f,). A number of useful examples of such statistics, in
addition to the Pearson case W = I, are discussed in Moore and Spruill (1975) and Moore
(1977). In all these cases, the centering matrix W is the same in the limit for {X;} IID and
for SSP’s such that 6, remains a consistent estimator of 6. The limiting null distribution
of T, is that of VWV for V ~ N(0, =). This is the distribution of =¥ \.Z%, where the Z,
are independent N(0, 1) r.v.’s and ), are the characteristic roots of W22 W2 Theorem
3.1 implies that WY3(Z — Z;p) W2 is psd, and hence (Bellman (1960), page 115) that
M(WYZZWY2) = N\ (W22 WY?), where M\.(H) denotes the kth largest characteristic
root of a matrix H. We have proved the following result. *

COROLLARY 3.1. Suppose that the conditions of Theorem 3.1 hold, and that T, =
Vo(0,) W, V,.(0,) where W, has the same psd limit in probability in the IID and SSP cases.
Then the limiting null distribution of T, in the SSP case is stochastically larger than in the
IID case.

In the limit, the test of fit with critical region T, > c rejects at least as often in the
SSP case as in the IID case. This result applies in particular to the Pearson statistic with
0, the minimum chi-squared estimator (the Pearson-Fisher statistic) or with 6, the raw
data maximum likelihood estimator (the Chernoff-Lehmann statistic). These common
tests, when applied to SSP data by a naive user who believes the data to be IID, therefore
reject too often whenever the SSP is positively dependent in the PDI sense and is
sufficiently regular to be covered by a central limit theorem implying (3.2).

REMARKS. (1) The difference A\.(SSP) — A.(IID) for some characteristic values A,
and therefore the difference in test level, is strict when 2 and Zyp have a common null
space _# and Z — Zyp is positive definite on _#*. Examination of the form of X given by
Moore (1982) shows that this is usually the case. Moore also shows that for several
common Gaussian SSP’s the characteristic values increase without bound, and the test
level approaches 1, as the positive dependence of the SSP increases. In fact, the machinery
of Section 2 can be used to show that the matrix C; in the proof of Theorem 3.1 is
monotone in the incidence matrix P; of Definition 2.1 for (X;, X;), in the sense that P’
— P® psd implies C¥ — C{ psd. By a result of Rinott and Pollak (1980, page 194) it
follows that the test levels in Moore’s Gaussian 1-dependent and first order autoregressive
examples are increasing functions of the correlation p(X;, X;.;). The confounding of
positive dependence with lack of fit can therefore be arbitrarily serious in common cases.

(2) Corollary 3.1 is a general statement resulting from the assumption that all (X, X;)
are PDI. For some chi-squared tests based on M cells, the conclusion of Corollary 3.1 can
be obtained assuming only that the incidence matrix P of Definition 2.1 is psd for
partitions of the line into exactly M intervals. This is done for the Pearson statistic
without estimated parameters in Theorem 3.1 of Moore (1982). A slight modification of
the argument given there applies as well to the Pearson-Fisher statistic, V.(6,)’ V.(6,)
with 6, the minimum chi-squared estimator. The Pearson and Pearson-Fisher statistics
are distinguished by the fact that Zyp is a projection matrix. We do not have a direct
proof requiring only PDI for fixed M in other cases covered by Corollary 3.1, such as the
Chernoff-Lehmann statistic.

(3) Common IID-case chi-squared statistics employ centeringmatrices W,(X;, - - -, X,,)
having the same limit W for quite general SSPs {X;}. By Corollary 3.1 and Remark 1,
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such statistics have different limiting laws for different degrees of dependence among the
X;. It is sometimes possible to choose W, to adjust for the dependence, and obtain a
statistic having the same distribution for, e.g., any m-dependent SSP. Moore (1982) gives
an example of such a statistic. In this example, W, involves sample estimators of the
incidence matrices P;, and does not have the same limit in the IID and dependent-data
cases.

4. EDF statistics. The statistics considered in this section are functions of the EDF
process with parameter 6 estimated. Durbin (1973) laid down the outline for the large-
sample theory of such statistics in the IID case. Neuhaus (1976) presents the theory in a
manner very similar in outline and generality to the analogous chi-squared theory of
Moore and Spruill (1975). We will show, without repeating details, that Neuhaus’ devel-
opment extends to suitable SSPs.

We remark first that a basic condition for the meaningfulness of EDF statistics for
testing fit of the univariate marginal of a SSP X;, X;, - -- is that the Glivenko-Cantelli
result sup | F,.(x) — F(x, 6,) | — 0 a.s. continues to hold, where F, is the EDF of X;, - - -,
X.,.. This is clearly true for {X;} ergodic; see e.g. Tucker (1959). Ergodicity is stronger than
the condition stated by Moore (1982) for N,./n — pr(6o), which is required for meaning-
fulness of chi-squared tests. But ergodicity is weak relative to the conditions known to
imply central limit theorems for functions of {X;}, and carries with it the laws of large
numbers that are usually sufficient to verify (1.1) for SSPs in regular cases. Of course, we
do not invoke ergodicity explicitly because of our strategy of assuming that the required
convegence results hold.

Suppose that X;, X,, - - - have common df F(-, 6,). Define, following Neuhaus,

F("0)=F(F_l("00)’0), Vi=F(Xi,00) i=1’2"",

and let F, be the EDF of Vj, - - -, V,. The EDF process is Z,(t) = n**[F,(t) — F(t, 0,)] for
0 <t = 1, and takes values in the Skorohod space D[0, 1]. If F is suitably regular and 6,
satisfies (1.1), Neuhaus’ arguments apply in the SSP case, and show that under F(-, 6,)

(4.1) Z,(t) = n7V2 Ty h(t, Vi) + 0,(1),

where E{h(t, V;)} = 0 and 0,(1) now means uniform convergence to zero in probability
over 0 <t < 1. Here

h(t’ U) = lt(v) - F(t, 00) - g(U, 00),Q(t, 00),

where 1, is the indicator function of (—, t], &(-, fo) = g(F7(-, o), 6,) with g the function
in (1.1), and q(¢, 8) is the m-vector of derivatives dF(s, 0)/d0, evaluated at s = F7(t, 6,).
The expression (4.1) is analogous to (3.1), and similarly holds with the same function h
both for {X;} IID and for SSPs whenever 4, satisfies (1.1) in both cases and F is sufficiently
regular.

A suitable central limit theorem applied to (4.1) will imply the analog of (3.2):

Z,—.,Zy in D[0,1], where Z,is a Gaussian process
(4.2) with a.s. continuous paths, zero mean, and covariance function
(s, t) = lim,(1/n)Cavi XL, Als, Vi), i1 hlt, V))} < oo

Examination of the form of h(t, v) and of Neuhaus’ proof of the weak convergence Z, — .,
Z, in the IID case (his Theorem 2.2) show that (4.2) follows from: (a) A finite-dimensional
central limit theorem for Y h(¢, V;) that includes convergence of covariances in its
conclusion; and (b) A weak convergence result for the EDF process n'/[F.(t) — F(t, 6o)]
without parameter estimation. This separation occurs because the 6, enter h(t, V;) only
via the product of a function g of V; and a function q of ¢ that is the same for all n.
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Since both (a) and (b) are known to hold for many SSP’s, (4.2) will often be true in
the SSP case as well as in the IID case. For example, Theorem 22.2 of Billingsley (1968),
which has been considerably extended by later authors, implies (4.2) for certain ¥-mixing
processes. Since many common time series models are not ¥-mixing, more useful results
for our purposes are given by Gastwirth and Rubin (1975). They establish (a) for all h
having finite variance, and also (b), for a class of mixing processes that includes all
Gaussian SSP’s with = | p(X;, Xi14:) | < oo.

THEOREM 4.1. Suppose that X, X,, - - - is a SSP such that (X;, X;) is PDI for all i #
J, that X; has df F(-, 6,), and that (4.2) holds under F(-, 6,) both for {X;} IID and for the
SSP in question. Then if cup(s, t) is the covariance function of Z, in the IID case, c(s, t) —
cn(s, t) is a psd function.

ProOF. Following the proof of Theorem 3.1, we need only show that
ci(s, t) = Eth(s, Vi)h(t, V)}

is psd, all ¢ # j. For any function f on [0, 1] for which the integral converges absolutely,

1 1
J{: J(: f(s)f(t)ey(s, t) ds dt = Ethy(Vi)h(V;))
where h(v) = [} f(s)h(s, v) ds. Since (V;, V;) is PDI, this integral is nonnegative. 0

To obtain comparisons of asymptotic test levels for the SSP and IID case, we apply
Theorem 4.1 together with a generalization by Rinott and Pollak (1980) of a lemma of
T. W. Anderson.

LEMMA 4.1. (Rinott and Pollak). Let Z,, Z, be Gaussian processes in C[0, 1] with zero
means and covariance functions c,(s, t), co(s, t) respectively, such that c.(s, t) — ci(s, t) is a
psd function. Then P[Z, in A) = P[Z, in A] for any closed, convex, symmetric set A in
Cjo, 1].

Taking A, = {f in C[0, 1]: A(f) =< ¢} for A a continuous functional on C[0, 1], the large
sample level of the test of fit with critical region A(Z,) > ¢ will be greater in the SSP case
than in the IID case whenever A, is closed, convex, and symmetric and Theorem 4.1
applies. Note that only continuity on C[0, 1] (that is, under uniform convergence to a
continuous limit) is required of A, since Z, is in C[0, 1] a.s. and A(Z,,) — 4 A(Z,) follows
from continuity a.s. with respect to the distribution of Z,. '

The result above covers the Kolmogorov-Smirnov (KS) test, for which A(f) =sup | f|.
The Cramér-von Mises (CvM) statistic is not a fixed functional of Z,, but rather A,(Z,)
where A,(f) = [ f%(t) dF(t, 8,). But Neuhaus (1976, page 76) shows that A,(Z,) —. A(Z,),
where A(f) = f f(t) dF(t, 6,), whenever Z, —., Z, in D[0, 1] and [ f@t) dF(t, 6,) —
[ f(t) dF(t, 8,) in probability for all f in C[0, 1]. The latter condition is satisfied under
(1.1) and Neuhaus’ regularity conditions on F. Lemma 4.1 applied to A, now shows that
the limiting level of the CvM critical regions A.(Z,) > c is larger for SSPs satisfying the
conditions of Theorem 4.1 than for IID observations.

The Kolmogorov-Smirnov and Cramér-von Mises examples motivate, and show two
different ways of applying, our concluding result.

COROLLARY 4.1. Suppose that the conclusion of Theorem 4.1 holds for a SSP {X;} and
that a test of fit of X1, -- -, X, has critical regions S, such that P[(X,, ---, X,) in S,] —
P[A(Z,) >c], where A is a functional on C[0, 1] with A, = {f:A(f) < ¢} closed, convex, and
symmetric. Then the limiting level of the test is at least as large in the SSP case as in the
IID case.
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REMARKS. (1) Normal cdf’s satisfy Neuhaus’ regularity conditions and those needed
to ensure that the MLE’s (X, s) of the parameters (u, o) satisfy (1.1). Moreover, for
Gaussian processes PDI is equivalent to p, = 0 for k = 1, where p, = p(X;, X;+). The
convergence results of Gastwirth and Rubin therefore ensure that Corollary 4.1 applies to
any Gaussian SSP {X;} with p, = 0 and ¥ p, < © when (X, s) are used as estimators in
testing normality. This class includes the first-order autoregressive and all m-dependent
Gaussian processes.

(2) Corollary 4.1 is designed to apply to critical regions of the form {A(Z,) > c} or
{A.(Z,) >c}. EDF tests are sometimes employed with critical regions of forms such as
{A(Z,) >c,}, where ¢, — c. When the distribution function of A(Z,) is continuous, the
conclusion of the corollary continues to apply.

(3) In addition to the usual KS and CvM statistics, Corollary 4.1 applies to weighted
versions of these statistics, as well as to the extensions of the CvM statistic discussed by
Neuhaus (1973). The treatment is similar to that of the CvM statistic above; the necessary
analysis can typically be found in the literature on IID-case convergence.

(4) In the CvM case, the limiting null distribution is that of Y5, \.ZZ, where the Z,
are independent N(0, 1) r.v.’s and )\, are the characteristic roots of the covariance function
¢(s, t) considered as an operator on an appropriate L, space. (See Neuhaus (1979) for a
survey.) In this case, one can obtain A.(SSP) = A.(IID) as in the chi-squared case.

5. Other statistics. The method of proof used in this paper is both simple and quite
general in applicability. Consider any statistic of the form T, = A(U,(0,)), where 6, is an
estimator of 6, U,(#) is an asymptotically Gaussian random variable in a space S, and A:S
— [0, =) is a continuous, convex, symmetric functional. The limiting null distribution of
T, in the IID case is obtained by an analytic expansion, first of 6, and then of U,(6,),
about the true 6,, followed by application of a CLT on S to the dominant term of the
expansion. Thus U,(6,) is asymptotically Gaussian for IID data. Inspection typically
reveals that for quite general SSP’s, the estimator 6, remains consistent and therefore the
same analytic expansion of U,(f,) remains valid. Whenever a suitable CLT for SSP’s on
S exists, U,(8,) is therefore asymptotically Gaussian both for IID and for SSP data. The
positive dependency condition (1.2) implies that the difference between the covariance
functions for the SSP and IID cases is positive semidefinite. It then follows by Anderson’s
lemma (see Tong (1980), page 55) or its generalization to function space that the
asymptotic null distribution of T, is stochastically larger for SSP than for IID data. Thus
any critical region {T, >c} has asymptotic size at least as large for SSP as for IID data.

In Section 4 we applied this method with U,(6,) = Z, on S = D[0, 1]. In the setting of
Section 3, with U,(4,) = V.(d,) on S = R, Anderson’s lemma for N(0, Z) provides an
alternate proof of Corollary 3.1. There A(x) = x’ Wx for positive semidefinite W. Other
possible choices for A when x = (x;, - - -, Xa) are A;(x) = max | x|, Ao(x) = ¥¥ | x,| and
As(x) = maXigmenm | N1 %k |. Taking x, = n™%(N, — nps), which does not change the
applicability of our method, A, generates a statistic of Hoeffding equivalent to David’s
empty cell statistic, and A; generates a KS statistic for discrete or grouped data. Both of
these statistics, particularly the latter, are discussed by Pettitt and Stephens (1977).

The confounding of positive dependence with lack of fit holds for tests based on convex,
symmetric functionals of other asymptotically Gaussian quantities as well, provided only
that the technical task of establishing the required CLT for the SSP case is successful.
Candidates include tests of fit based on the quantile process and on spacings, for which
Shorack (1972) establishes convergence to Gaussian processes in the IID case. In addition,
some common test statistics have analytic expansions showing that under the null
hypothesis they are asymptotically equivalent for both IID and SSP data to statistics of
the classes treated here. Inspection of the analysis shows that our qualitative conclusion
applies. For example, this is true of the log likelihood ratio statistic for grouped data
because of its analytic relation to the Pearson statistic. Cressie and Read (1982) have
proposed a family of statistics asymptotically equivalent to the Pearson statistic. This
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family includes the log likelihood ratio, Neyman modified chi-squared, and Freeman-
Tukey statistics. Their analysis combined with our method shows that Corollary 3.1 holds
for the entire class.
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