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EDGEWORTH EXPANSIONS FOR THE POWER
OF PERMUTATION TESTS

By R. D. JoHN AND J. ROBINSON

C.S.LR.O. Division of Mathematics and Statistics and University of Sydney

A randomization model for a two-sample situation with additive treat-
ment effects is considered. Edgeworth expansions for the power of the usual
permutation test are derived, under some conditions on the unit errors, from
previously obtained expansions under the null hypothesis of no treatment
effect. A general error structure is considered and conditions for the validity
of the expansions for both conditional and unconditional power are examined.
The results are shown to generalise expansions obtained earlier by different
methods for the special case of independent and identically distributed random
variables.

1. Introduction. Permutation tests arise naturally from two different models. In the
randomization model there is presumed to be a physical act of randomization which leads
to a permutation distribution. We are interested in the difference in effects of two
treatments, assumed to have additive effects, which have been applied at random to N
experimental units, m receiving the first and n = N — m the second. Associated with the
ith unit is a random variable X;, the unit error, which gives the observation expected if,
say, the second treatment were applied to all units. Then we observe

(1.1) Yi=XR,+0, i=1-..--,m, Y1=XR,, i=m+1,...,N,

where (R, - - -, Ry) is a random permutation of (1, - - -, N) taking each possible value with
probability (N!)~! and @ is the difference in effects of the first and second treatment. In the
more usually described model it is assumed that the observations Yi, --., Y, and Y1,
+++, Yy are two samples from populations with distribution functions F(x — 8) and F(x).
If we assume X, - .., Xy are independent, each with distribution function F(x), then the
first model incorporates the second.

Expansions for the power of the permutation test based on the statistic ¥, Y; have
been considered under the assumptions of the second model by Bickel and van Zwet (1978)
and a similar treatment has been considered for the one sample case by Albers, Bickel and
van Zwet (1976) and Albers (1974). In these papers the authors considered expansions for
rank tests and obtained the results on permutation tests as a by-product. However, in the
case of permutation tests it is essential to consider more general distributions for the unit
errors, allowing a certain degree of dependency among them so as to incorporate more
realistic models for them. In fact there is no point in considering randomization models if
we make the further assumption that the errors are independent and identically distributed,
for then randomization is irrelevant. )

The results are obtained here by a different method from that of the forementioned
articles, in that we condition on X, ..., Xy and not on Zi, - .., Zy, the order statistics of
Yi, .-+, Yn. Thus only results from Robinson (1978) on equally probable permutations
need to be used to obtain the power expansions. This simplifies this part of the proof and
permits generalisation to models where it is not assumed that X;, - - -, Xy are independently
and identically distributed. We obtain an approximation to the conditional power of the
permutation test under the contiguous alternative when 8 is of order N2 on a certain set
E where some conditions on the X, hold. Under the assumption that the complement of E
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has probability of order N %2, an expression for the unconditional power can be obtained
and is the same as that given by Bickel and van Zwet (1978) in the case of independent
and identically distributed X, - - -, Xy. We can also obtain their result that the difference
between the powers of the permutation test and Student’s ¢ test is of order N**log N,
directly. Moreover, the conditional power of the permutation test can be compared with
that of the ¢ test actually performed, namely that where tables of ¢ with N — 2 degrees of
freedom are used to obtain the critical point. A special case of this when § = 0 gives a
comparison of significance levels for these tests.

The results of Section 2 are only of interest if the probability that E contains Xj, - -,
Xy is large enough. In Section 3, a model for X, - - ., Xy is introduced which is motivated
by models proposed for randomization models. Then a generalisation of the methods of
Albers (1974) enables us to obtain a bound on the probability of E for this class of random
variables. This discussion of E is separated particularly so that these conditions are
divorced from the actual expansions. It may be possible to obtain more general classes of
random variables for which appropriate bounds on the probability of E can be found. It is
also apparent that this approach could be used to generalise the one sample results of
Albers (1974) and is of interest in considering the k-sample problem.

2. Edgeworth expansions for power. In the sequel we will use ¢, ¢, C, B as positive
generic constants which may vary on each occasion. Let Y7, - -+, Yn be given by (1.1) and
let Zi, - -+, Zy be their ordered values. Let X = N™' ¥¥, X, and define Y and Z similarly.
Put p =m/N, q =1 — p. Let E(X) be the set where

(2.1) N (Xi—X)>*>CN
(2.2) YN X, -X|°<CN
(2.3) Xy sin®(Y + %X, — X)(pg T (X, — X)*)7*} > CN

for all || < Y%m, cN'? < |t| < CN*? and define E(Y) and E(Z) similarly. Let E be the set
where (2.1) to (2.3) hold and in addition

(2.4) (X - X - N (X - X)) >CN
and
(2.5) P{E(Y)|X}=1- BN~

Define Ty = Y7, (Y, — Y)/{pq SX: (Y, — Y)?}'/% Let £%(Z) be the level a critical point of
the permutation test based on Ty. On E(Z), as in Bickel and van Zwet (1978, page 962) we
have, provided

(2.6) e<a<l—ce¢

and ‘

2.7) e<p<l-—g

that

(2.8) [£2(Z) — ¢u(Z) | = CN72
where

(2.9)  $(Z) = ua + (W2 = 1)B5(Z) + ua/2N + (ui — 3u.)Bs(Z) — (2ul — 5u.)B3(Z),
in which
(2.10) B3(Z) = Y%(g — p)(pg)™* L1 (Z, — Z)*/{T=1 (Z, — Z)*)
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— 6

_1-6pg _ ZVi/ TN _ 7)2\2 _ — -1
(2.11) Bi«(Z) = 24pq [2= (Z, = Z)* /{3 (Z.— Z)*) 3/N]— (4N)

and u, = ® (1 — «), where ® is the standard normal distribution function.
We can now obtain an approximation to the conditional power of the permutation test
under the contiguous alternative when @ is of order N'/? on the set E.

THEOREM 1. Suppose (2.6), (2.7) and

(2.12) 0<f=<CN'2

hold. Then on E,

(2.13) | P{Ts = ¢4(Z) | X} — #%(X)| = BN **log N
where

F9(X) = 1 = Do — Ap) — Aod(tta — Ag){B5(X) (20 — Ap)
(2.14) + Ba(X)(Bua — BuaAg + Af — 3)+ N1 + 2ul — uaAo) + %B3X)

(A — bu.Af —8AF + 8ulA} — 4u’Ag + 24u.As — 20u? + 10)),
for

(2.15) Ag=0N{(pg) ' YL X; — X)*}"~

Proor. YN, (Y, — Y)? = 0 implies that Y., (X, — X)? = Npq#?® so (2.1) and (2.12)
ensure that T is well defined on E(X). Now

(2.16) To= (To + Ag)(1 + 24;N'Ty + AFN~1)"1/2
where Tyis Tyat § = 0. If 0 < Ag < N2,
x(t) = (t+ Ag)(1 + 2AtN ' + AZN"1) 12

is an increasing function of ¢ for ¢t > —%NAjy' — Ay, since x’(t) = 0 there and it may be
inverted to yield

(2.17) t=x{1—-A;N1—x2N"1)}"2 - 4,1 — x*N").

Also for 0 < Ay < N2, —14NAZ' — %hA; < —N""2 s0 | t| = N*/? lies in the above domain,
since —4NA;' — %A, has a maximum of —N % at Ay = N'/%

Now from (2.1) and (2.12), A; < C < N2 for large enough N and since Ty < N'/?, from
(2.16) and (2.17), we have for all |v| = N2, -

P(T, < v|X) = P(To < v* | X)
where
v* =v{l1 —AJN'(1 - v NH)}2 - 4y(1 — v®>N).
So from Robinson (1978), for |v| < N'/?,
2.18) |P(Ty < v|X) — G(v*, X) | < BN?
where

(219)  G(v,X) =2(v) — () {%N"v + Hy(v)B:(X) + H3(v)B:(X) + % Hs (v) B3(X)),
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where (3(X), 84(X) are defined as in (2.10) and (2.11) with X replacing Z, ¢(v) = ®'(v) and

¢ (v) = (=1)'H.(v)$(v).
Now Ay < C, so for |v| < log N, it is easy to show that

[v* — (v — Ap) — NHAp® — %AN) | < CN 732,
So for |v| < log N,

(2.20) | G(v*, X) — Go(v, X) | < CN~32
where
(2.21) ) Gy(v, X) = G(v — Ap, X) + N"H(A* — LA)p(v — Ay).

Also for |v| > log N and large enough N, v* > % log N, so then also (2.20) is true.
It can be shown, although we omit the proof here since it is relatively straightforward,
that if (2.6), (2.7) and (2.12) hold, then on E

(2.22) P{|$.(Z) — {&(X)| < BN *log N| X} >1—- BN™*?2,
Thus, on E, from the definitions of E and E(Y) and (2.8)
|P{Ty=¢X(Z)| X} — P{Ty=¢(X)+ R(Z)| X} | = BN2,
where R(Z) is a quantity such that on E,
P{|R(Z)|=BN **log N|X}=1- BN %2,
From this, together with (2.18) and (2.20), we have on E,
P{Ty=£3(Z)| X} =1 — Gy(§.(X) + O(N*?log N), X) + O(N~%?)
= 7(X) + O(N~*?log N),
where 73(X) is obtained by a direct substitution of (2.9) into (2.21) and a straightforward
expansion. [

The theorem is of interest only if
(2.23) P(E)>1—- BN™*2,

This condition is studied in detail in Section 3. We can also obtain a result on the
unconditional power.

CorOLLARY 1. If (2.23) holds then
(2.24) |P{Ty=¢4(Z)) — E7p(X)| < BN"**log N.

The result for the unconditional power of the permutation test in the case X, -+, Xy
independent, identically distributed, as obtained by Bickel and van Zwet (1978, page 980,
equation (6.34)), is readily derived from (2.24).

We also remark that an expression for the power of the two sample Student’s test

follows via a conditional argument from Theorem 1, since the two sample Student statistic,
Ts, and T, are related by the identity

To=Ts{l + (T%—2)/N} ™2,

In the independent identically distributed case the difference between the powers of
Student’s test and the permutation test is O(N~*log N).

It is of interest to compare the conditional power of the permutation test with that of
the t-test performed in practice where the critical point is taken as the upper 100«
percentage point of the ¢-distribution with N — 2 degrees of freedom. If the latter power is
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denoted by 7%4(X), we have
(X)) — 7§4(X) = —(u2 = DBs(X) — (ud — 3u,) {(B1(X) + uN~'}
— W%B3X )1l — 10ud + 15u, — (u2 — 1) {245 —~ 6Aju, + bAy(uZ — 1)}].

For given observations y;, ---, yv, we could calculate this with X; = y; = 8,i=1, +.«,
m,X,=y,i=m+1, .-+, N, but for § satisfying (2.12), we have from Theorem 1 that it
is equivalent, to O(N %2 log N), to calculating it replacing X; with y;. Further, this gives
the difference in the significance levels of the tests when § = 0 and so Ay = 0. If 83(X) and
Bs(X) + Y%N7' are small, and so skewness and kurtosis are small, the difference in
conditional power is small, but as is expected, with a highly skew or kurtic distribution the
errors are non-negligible. It is interesting to note that with equal sample sizes 83(X) = 0
and the difference in power is the same, to O(N%2log N), for all  satisfying (2.12).

3. The probability for E. The results of the previous section have no practical value
unless (2.23) can be shown to hold for a wide class of variables X;, ..+, Xx. The methods
of Albers, Bickel and van Zwet (1976) and Bickel and van Zwet (1978), who obtain closely
related results for the case of X, - - -, X being independent, identically distributed random
variables, do not appear to extend to more general random variables. However, in the case
8 = 0 in particular, we need to obtain this more general result in order for our approxi-
mations to the critical point of the permutation test to be of use. It may be possible to
obtain the result for some general class of dependent random variables; however, we
propose a particular model for the errors which incorporates some degree of dependency
and nonstationarity. This model is motivated by the context of randomized agricultural
experiments where the plot error is considered as an independent random error and a
“soil” error (see for example Neyman, Iwaszkiewicz and Kolodziejczyk, 1935). Let

(3.1) X.=V.+ W

where Vi, ..., Vy are independent random variables, independent of Wi, ..., Wy about
whose joint distribution we will make only mild assumptions. We will show that, subject
to certain smoothness and moment assumptions on V, and some “boundedness” condition
on the W;, P(E) is sufficiently large for this class of variables.

Put EW, = u, E|W; — |’ = w,, EVi=0and E|Vi|’ = v;;. Let i = N7' Y%, p,.
Consider the following conditions

(3.2) Zﬁil wis,; =< CN,
(3.3) Y1 vis, < CN,
(3.4) N w—ji|® =CN,

(3.5) There exist positive constants 8, 7, ¢, C such that for at least SN indices i there
is an interval x; of length 7 such that on x,, V, has density f; and ¢ < f; < C,

(3.6) PN, |W,— W|°<CN)>1—- BN~
(3.7 P(|YX, W,|< CN)>1—- BN,
(3.8) P{YX, (W;— W)?’<CN}>1- BN~

A remark concerning the conditions (3.1) to (3.8) is perhaps warranted. Clearly some
restraint must be placed on the W,, and those imposed by these conditions are fairly
general. For example, they will be satisfied if the W, are themselves bounded random
variables. Further examples based on simple interaction of neighbouring plots in an
agricultural context are not difficult to construct.

We proceed by conditioning on W1y, ..., Wy, thereby reducing the problem to the case
where X;, ..., Xy are independent. The following lemmas establish bounds on the
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probability that each of the conditions (2.1) to (2.5) hold. The required large probability
for the set E for the more general case follows by taking expectations of these results. The
proofs of the lemmas are straightforward but technically involved and are omitted. Details
can be found in John (1981).

We remark that the condition (3.5) is really only required in the proof of Lemma 2, but
is used in the other lemma because it implies certain non-negligibility conditions on the
second moments of the V,, which would otherwise have to be assumed.

LEMMA 1. Suppose (3.3) and (3.5) hold. Then on the set where ¥, (W,— W) < CN,
N, |W:— W|°< CN and | Y, W,| < CN, there exist constants ¢, C, B such that

(39) P{e<N'Y, (X,—X)’<C|W)=1—BN*{N+3I¥ (W, — W)}

(3.10) PN, |X,|<CN|W)>1-BN®

(3.11) PN, |X,—X|°<CN|W)>1-BN N+ 3N | W, - W|*)
P[3E (X, - X)' = N (T (X, - X)*}* > CN| W]

(3.12) _ —5/2 N YA )12
>1—BN?(N+Y¥, (Wi— W)2). O

LEMMA 2. Suppose (2.7), (3.3), (3.5) hold and that |0| < K. Let Ry, ---, Ry be a
uniform random permutation of (1, ---, N) independent of X1, -+ -, Xn. Let E, be the set
where for all | Y| < 7/2 and all cN'* < |t| < CN*?,

Y7 sin® (Y + %t(Xz — X + q0)(pgS3) ™%}
+ Y mer sin® (Y + %t(Xg, — X — pb)(pqS7)~"*} > cN,

where S} = Y (Xg, — X + q0)* + YW1t (Xgr, — X — pb)°. Then on the set where
SN, (W, — W)2< CN and |31 W, | < CN there exists a constant B such that

(3.13) P(E,|W)>1-BN*{N+3Y¥L (W,—W)?}. O
We now have the following theorem.

THEOREM 2. If conditions (3.2) to (3.8) hold and if

(3.14) |0 <K,
then
(3.15) P(E)=1- BN™*2

ProoF. Let A = {W:3X,| W, — W|° < CN}, then from Lemma 1, on A
(3.16) PON, | X, — X|° < CN|W) = 1 — BN2(YN, E(|V.|") + Y. |W; — W|®}.
Applying the C, inequality and using (3.2) and (3.4) we have
(3.17) EIL,W) YK, |W,— W|®=CN
where I, is the characteristic function of the set A. So taking the expectation in (3.16)
P(XL|X,— X|°<CN)
=1— BN (YN, + EIN(W) YN, | W, — W|*®} — (1 - P(A)} =1— BN~

from (3.3), (3.6) and (3.17).

Similarly we can show that the sets on which (2.4) and (2.1) hold have probabilities 1
— O(N~?) and 1 — O(N™?), respectively, and in the same way we see that the set on
which (2.3) holds has probability 1 — O(N?).
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It remains to show that the set on which (2.5) holds has probability 1 — O(N~%?). Now
M| Y- Y =23 | X, - XI° + Npg(g* + p*) 0]},
so since (3.14) holds
Py(TY | Y, — T|° < CN|X) = Po(SY, | X, — X|° < eN | X)

where the constant in the left hand inequality is larger than 2* times the constant in (2.2).
Thus, the set where Py(TY,|Y,— Y|° < CN|X) > 1 — BN*? contains the set where
YN, | X: — X|® < ¢eN. So

. P{Py(3Y, | Y. - Y|°<CN|X)>1— BN} >1- BN~

If E'(Y) is the set where (2.3) holds with Y; replacing X;, then again beginning with
Lemma 2 and arguing as above we have Po(E’'(Y)°) = BN~>. Then, using a Markov
inequality

P[|Py{E(Y)'|X}— PA{E(Y)} | = CN~¥?] < BN3*
and it follows that
P[P,{E'(Y)|X}=1-CN®?]=1- BN~

Finally, ¥¥, (Y, — Y)? = cN on the set where a similar inequality holds for the X, for
0 less than a chosen constant, so

P[Py{3N, (Y, - V)’=cN|X) =1]=1-O(N?). O
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