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ASYMPTOTICS FOR M-TYPE SMOOTHING SPLINES

By DENNis D. Cox

University of Wisconsin

Limit theorems giving rates of convergence of nonparametric regression
estimates obtained from smoothing splines are proved. The main emphasis is
on nonlinear, robust smoothing splines, but new results are obtained for the
usual (linear) case. It is assumed that the knots become asymptotically
uniform in a vague sense. Convergence of derivatives is also investigated. The
main mathematical tools are a linearization of the robust smoothing spline,
and an approximation of the linear smoothing spline utilizing the Green’s
function of an associated boundary value problem.

1. Introduction. Let #(-) be an unknown real valued function defined on a compact
interval, which may be assumed to be [0, 1]. Consider observations

(1.1) 2=0(t)+e, 1<i<n,

where 0 = i, <t < -.- < t, =<1 are known, and the random errors ¢, €, ---, &, are
assumed independent and identically distributed (abbreviated i.i.d) with either Ee; = 0 or
the law (&) symmetric about 0. The goal is to estimate # from the observations. If 6 is
assumed to belong to a space of functions which is parameterized by a finite number of
parameters (e.g. the polynomials of degree m or less) then standard regression techniques
may be applied. However, if we are only willing to assume that 8 belongs to

(1.2) r={fe C™'[0,1]: /™ is absolutely continuous, and f"™ & L0, 1]},

then use of a nonparametric regression technique is in order. One of the most popular such
techniques is polynomial spline smoothing. For this, we take our estimate # as the
minimizer over £ € W7 of

(1.3) % Yri{z — £+ f {£(8)) at,
0

where A > 0 is a smoothing constant, either chosen by the investigator or determined
from the data. It turns out that fis a polynomial spline function of degree 2m — 1, i.e.
e C*2[0,1] and §®™ " is a step function. The basic idea of this estimate can be traced
back to Whittaker (1923), who proposed a discrete version using finite differences in place
of derivatives in (1.3). In a 1964 article, Schoenberg proposed replacement of the finite
differences in Whittaker’s objective function by derivatives. Schoenberg related this via
Lagrange multipliers to the following constrained minimization problem: minimize
n~! Y {z, — £(¢,))? subject to [{£"(¢)}? dt < M, where M is a given constant. Under the
assumption of normal errors, one recognizes'this as a maximum likelihood estimation
approach, where the parameter space is @ (M) = {¢ € W§: [(£™)? < M}. This is closely
related to the method of sieves introduced by Grenander (1981). A complementary
approach to Schoenberg’s was given by Reinsch (1967), who considered the problem of
minimizing [ (£™)? subject to an upper bound constraint on the residual sum of squares.
We can think of no statistical justification for this approach, although it is typical of what
is done in much of the numerical analysis literature. Kimeldorf and Wahba (1970a) showed
that smoothing splines are optimal Bayes estimates for the squared error loss function
under the assumptions that the errors are normal, and that 8 is chosen according to a
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Gaussian prior for which W7 is the reproducing kernel Hilbert space (see Kallianpur,
1971).

As with many statistical procedures which are optimal for normal errors, ordinary
smoothing splines are highly sensitive to one or more outlying observations. This was
noted quite early by Greville (1957), who proposed a numerical procedure that amounts to
an iteratively reweighted leas" squares computation. More recently, Huber (1979) has
utilized the following robustified smoothing spline estimate of 6: let § be the minimizer
over { € W7 of

(1.4) %Zi‘zlp(zl—g(ti)) +>\J' (£ (8))? dt.

Here, p is a suitably chosen function, usually convex and symmetric about 0. Huber’s
favorite is

(x) = x* if |x
P c@lx|-C) if |x

where C is a tuning constant usually determined from the data. Huber derived such
estimates by looking at the Lagrangian equation for the (constrained) maximum likelihood
problem with the parameter space ® (M), but where the errors are assumed to have a
density of the form exp {—p(e)}. Alternatively, one could argue that such estimates are
Bayesian maximum a posteriori, wherein one uses Huber’s error density and Kimeldorf
and Wahba’s prior. Such an approach involves some measure theoretic difficulties (see e.g.
Larkin, 1972, and Leonard, 1978) without being particularly compelling. For the case m =
2, Utreras (1981) gives a numerical procedure for computing the minimizer of (1.4), which
we refer to as an M-type smoothing spline. In Section 2 of this last reference, some of the
basic properties of these estimates are described, such as, that the estimates are polynomial
spline functions. We will review such properties that are important for us in Section 2
below.

Now one would hope that as the knots ¢, &, ---, t, become more numerous, the
estimate # would converge in some sense to 4. This will indeed happen, provided A = A,, is
varied with n. The basic result, first stated by Craven and Wahba (1979) (abbreviated
hereafter by CW) gives convergence rates for the least squares smoothing spline (the
minimizer of (1.3)). If ¢, = ¢,, = i/n, § € W, and the limit relations

| =
|=

C,
Cy

(1.5) n— o, A—>0,n"\ >
hold, then
(1.6) E,—llZ{Ll {é(tl) —6(t)}2 = O\ + O(n A"V,

The proof in CW is lacking in rigor at one point, but this detail has been repaired by
Utreras (1980b). One may find still more general results in Speckman (1981a).

Theorem 4.3 below extends the estimate (1.6) to fairly arbitrary knot sequences. Slightly
stronger conditions than (1.5) are required, but the loss of generality is not serious, as is
explained in the remarks following the statement of the theorem in Section 4. In order to
describe the hypothesis of that theorem, let F, be the cumulative distribution function
(abbreviated c.d.f.) for the probability measure obtained by putting equal magnitude point
masses at each knot. Then, the third limit relation in (1.5) is replaced by ‘

(1.7) (J' | t — Fu(t)] dt))\_l/’"|log?\ [—0
in the conditions for Theorem 4.3. If m > 2, then the factor | log A | is not necessary in (1.7).

Note that (1.7) requires that the knots be asymptotically uniform in a rather weak sense.
For the equispaced knots case (t, = i/n), the first factor in (1.7) is O(n™'), but for the
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random knots case (¢, - -, ¢, i.i.d. from the uniform distribution on [0, 1]), this factor is
0,(n"*/?). The main tool used in the proof of Theorem 4.3 is given in Theorem 3.2. This
latter result may be described heuristically as follows: First let n — o while holding A fixed
in the variational equation for é given in Proposition 2.2. (That one can do this is suggested
by Lemma 2.3 of Cogburn and Davis (1974), and also by Theorem 2.3 of Speckman
(1981a).) One then obtains a differential equation with boundary conditions for the
estimate. Theorem 3.2 shows that the Green’s function for this boundary value problem
can be used to approximate the original estimate # (which minimized (1.3)) and gives
bounds on the error. This result is used extensively in the sequel.

One would hope that an analog of (1.6) holds for general M-type smoothing splines.
That this is the case for a wide class of p functions is stated in Theorem 5.1, but under the
restriction m = 2 (cubic smoothing splines). We are quite sure that this holds for all m, it
only being necessary to compute the appropriate Green’s function, and verify certain
asymptotic estimates on it. Theorem 5.1 hinges also on Theorem 3.2, and on a generaliza-
tion of Huber’s (1973) asymptotic linearization of robust regression estimates (see Theorem
3.1 below). Results for general m but in the periodic case are given in Theorem 4.4.

It is frequently of interest to estimate one or more derivatives of §. The natural approach
is to use §”, the pth order derivative of the smoothing spline, as an estimate of §*”’. This
topic is treated in Section 6, where it shows that under rather complicated conditions, the
L? norm || §” — §'” ||; does converge to 0 in probability. In particular we only look at the
case of periodic smoothing (i.e. the unknown 6 is assumed periodic, and 6 is taken as the
minimizer of (1.4) over the space of periodic functions, see (2.8) below). Consistency results
for derivatives of linear (least squares) smoothing splines (i.e. minimizers of (1.3)) have
been obtained by Rice and Rosenblatt (1981b) in the general case, and Ragozin (1981) in
the nonperiodic case. Related work by Stone (1980) suggests that the order of convergence
bounds in Theorem 6.3 are tight, but we believe that significant improvement can be made
in weakening the hypotheses of the theorem.

Indeed, all of our convergence theorems in Sections 4 through 6 contain rates of
convergence which the uninitiated reader may find disappointingly slow. In the usual finite
dimensional parameter estimation problems, all decent estimates converge to the true
parameter at rate n~'/? in probability, no matter what distance measure is used. The
papers by Stone (1980) and Speckman (1981b) show that this is not the case if the
parameter space is infinite dimensional. Now our upper bounds, which are valid for an
infinite dimensional space of functions © (defined by smoothness and boundary conditions),
depend on the parameter A and the sample size n. If one chooses A as a function of n so as
to minimize the upper bound in each case, then an “optimal” or “best possible” upper
bound on the rate of convergence is obtained. We conjecture that in all cases treated here,
the rate so obtained cannot be improved on by any estimator sequence which would be
consistent for any element of © of it were true. See the reference of Stone’s for a more
precise definition of optimal convergence rates.

Finally, we mention two problems of great interest that are not treated in this work.
Firstly, the problem of scale estimation is ignored throughout. The objective function (1.4)
should be amended to

=1 p({z. — £(8)}/S) + A J' {£™(8))* dt,
0

where S is an estimate of the scale of the errors, obtained usually from the residuals. We
have tacitly assumed S is known, and hence incorporated it in the p function. A problem
of somewhat greater magnitude is that of “estimating” the smoothing parameters, A and
m. The estimation of m has received little attention, but there is a voluminous literature
on the “estimation” of A, mostly by the use of cross validation (consult CW and the
references cited therein). Suggestions for the estimation of both S and A are given in Huber
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(1979). Some results on consistency (even asymptotic optimality) of cross validated
estimates related to smoothing splines have been given by Speckman (1981b).

2. Definitions and basic results. In this section, we establish some notations and
give some characterizations of the solution to the minimization problem (1.4). This
naturally leads to the formalism of reproducing kernel Hilbert spaces. The general results
are specialized to the two cases of interest to us—namely, polynomial smoothing splines
and periodic smoothing splines.

Let

Zn = (zln, 22ny ** Znn),, &n = (Eln; 21,y 0, Enn),

be the data and error vectors, respectively, as given in (1.1). Then we may rewrite the
observation model as

(21) Zn = Xn0 + &,
where X,, is a linear operator whose domain is some function space H and whose range is
R", viz.

X0 = (0(t1n), 0(t2n), - -+, O(tnn)) .

We are interested in the case where our function space is a Hilbert space, and where X, is
continuous. We are then naturally led to suppose that the parameter space H is a
reproducing kernel Hilbert space (RKHS), i.e. a Hilbert space of functions (on [0, 1]) for
which the evaluation functional f — f(¢) is continuous for each ¢ It follows from the
classical RKHS theory (see e.g. Aronsajn, 1950) that there is a “reproducing kernel”
K:[0, 1] X [0, 1] - R which satisfies: (i) for each fixed ¢ € [0, 1], K(-, ¢) is in H; (ii) for
each t €[0, 1] and each f€ H,

<K(" t), f) =f(t),

where (-, -) denotes the inner product on H. Thus, K(-, ¢) is the element of H which
represents evaluation at ¢ (in the sense of Riesz representation).

Given the observations as in (2.1), we are interested in estimating 6. For convenience,
let

yl=K(',tz), l=i=n

(we drop the subscript n whenever possible). Then, according to the reproducing property,
h(t) = (h,y.). Hence, our estimate will be a minimizer of an objective function of the form

2.2) n Yk p(zo— (yo B)) + N || 2R

with respect to the variable 2 € H. Here, Zis an orthogonal projection whose null space,

(2.3a) N={h&€H:2h=0},

is finite dimensional. Note that 2 is self adjoint and idempotent (i.e. 2> = 2). Examples
will be given shortly. Define the subspace

(2.3b) Sn = Span{yl, Ctty yﬂ}'

If w € S; N N, then the value of the objective function (2.2) at A + w is the same as at A.
However, the usual situation is that N C S,, in which case the existence of a minimizer
implies the existence of a minimizer in S,. Thus, the following result is obtained.

. ProposiTION 2.1 If p is strictly convex and N C S;, then there is a unique minimizer
0 of (2.2),and § € S,..O
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The next proposition provides a variational equation for computing 8. It’s proof follows
by taking directional derivatives and setting them equal to 0.

PrROPOSITION 2.2. Suppose Y = p’ exists everywhere;, then a minimizer 6 of (2.2)
satisfies
(24) —nT R iz = (5, 0)) +A2f = 0.0

We now specialize to the examples which are of interest to us. For the first one, the
RKHS is the Sobolev space

Wit = W0,1] = {f: f©, .-, f™ " are absolutely
continuous on [0, 1], and /™ & L¥0, 1]},

where m is a positive integer. If we use the inner product

1
(f, & =25 f0)g(0) +f ™ g™ ) dt,
)
then the reproducing kernel is

Lt (s_uml(t_u)

K(s, t) = . TR " du,

where u. = max(u, 0). Let 2 be the orthogonal projection onto the closed subspace of
functions f satisfying

fP?0)=0 for 0<i=m—1.
Then we note that

(2.5) (Pf) = J' {(F™(0)) dt,
0

so the objective function (2.2) to be minimized is

(2.6) n” Yz — h(t) + A J (™ ()} dt.
0

The space S, of (2.3b) depends only on ¢;, ---, ¢, and is the space of polynomial spline
functions (see Sectlon 3 of Greville, 1969). If n =m, then N given in (2.3a) is a subspace of
S.., S0 a minimizer d of (2.6) is in S,,. In fact, 6 is in
Mem—1(t, tay +++ , ) = {x E S, : x is a polynomial of degree
2.7) 2m —1in (¢, ], 1=i<=n-—1,xis
a polynomial of degreem — 1 in [0, #]
and [4, 1] and x € C*™70, 1]}.

This follows because the problem of minimizing

J {h(m)(t)}2 dt
)

subject to constraints A(t,) = 6 (t), 1 =i=<n, has solution 4 = 6. Hence, dis an interpolating
spline, and belongs to n:—1 by Theorems 6.2 and 7.3 of Greville (1969).
For the other case of interest, the RKHS is the periodic Sobolev space

(2.8) K™= {fe Wg:f20) =f1),0<i<m-1},
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equipped with the inner product

(f, 8 = (f AU dt)(f &(?) dt) +J' ™ @0g™ () dt,
0 0 0

for which the reproducing kernel is conveniently given in the form
K(s, ) =1+ 2351 2nv) *cos{2mv(t — s)}.

If the projection 2 is projection onto the subspace of functions with integral 0, then
equation (2.5) holds in this setting. If ¢, = £/n for 1 < k < n, then an explicit formula may
be given for the solution to the least squares minimization problem (pages 1113 and 1114
of Cogburn and Davis, 1974). In this case of periodic splines we shall denote the space S,
of (23b) by §2m_1(t1, Lo, ¢, tn).

3. Approximation theorems. In this section, we give two technical results which
form the basis for the rest of the paper. The first theorem shows that under certain
conditions (Assumptions 1 and 2), a nonlinear M-type smoothing spline can be approxi-
mated by a linear smoothing spline acting on some transformed (unobservable) data. This
is useful since the asymptotics for linear smoothing splines are somewhat easier to obtain.
However, in order to check the conditions for this asymptotic linearization, it is required
to know something of the limiting behavior of impulse response smoothing splines. These
are smoothing splines to the data vector which is zero except for one component. The
second theorem shows that these impulse responses can be approximated by a Green’s
function for a certain boundary value problem. The limiting behavior of the Green’s
function can be explicitly calculated in many instances, as is shown in the subsequent
sections. Furthermore, this approximation theorem provides a new means for obtaining
limit theorems for linear smoothing splines.

Let H denote the RKHS of the last section. Suppose 8 is unknown and consider the
observations

3.1) Zn=00t,) +e, for 1<i=<n,

where the ¢, are i.i.d. with common distribution having c.d.f. denoted by F. It will be
convenient to assume that the knots {¢,,:1 < i < n} at stage n are not necessarily a subset
of the knots of stage n + 1 (e.g. t,, = i/n). Given any vector x € R", let s,x be the unique
element in S, such that (s,x)(%.) = x; (note that s, is well defined if S, = nam-1 or S, =
$om—-1, provided n = m). Let 2 be the projection of (2.2), and y.. the element of S,
representing evaluation at ¢;,,. Define operators on S, by

(32) Tt = % "y () Yin

(3.3) Yo = In + 2(\/EY') 2.
Note that 4, and %, are self adjoint, and 7, is positive definite. We shall omit the

subscripts n, A wherever possible. Now consider the function ®,,:S, — S, given by

(3’4) (I)ﬂ}\(g) = - % =1 ym\l/(zm - g(tm)) + 2}\-@£

We are interested in solutions of ®,,(¢) = 0. We shall denote such M-type smoothing spline
estimates of 8 by 8,,. Define pseudo data

2= o(tm) + \I/(Em)/(E‘P,)y
and let Z denote the associated vector. Consider the operator on S, given by

(3.5) Yor(§) = —TnsnZ + Guré.
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Note that the solution . of ¥, (¢) = 0 is the minimizer of
1 ~ ’
(3.6) o 2 {2 — £ta)}” + OVVEY) | ZE|1%,

where || - || denotes the norm of H. Note that % is invertible if n = m, since %¢ = 0 is the
equation for obtaining a least squares smoothing spline for identically zero data, and the
solution is, uniquely, the zero spline. Also, note that for an arbitrary data vector z, the
least squares smoothing spline on z is ¥~' J3z.

For continuous functions §; and &, define

1 1/2
dn(éy, &) = [; Yi=1 {&1(ten) — sfz(tkn)}z] .

We will be interested in a sequence of semi-norms {|| - || .:n = m} given by a bilinear form,
viz,, | x ||» = (x, x)&/% Each | - || . is supposed to be defined on a space containing S, and
{8} such that || - || . is a norm on S,. An example is || ¢|| » = dn(§, 0). We also suppose that
A = A, varies in a manner so that the limit conditions below hold. The following assumptions

will be made:

ASSUMPTION 1. ¢ € C*(—x, «) and satisfies M = sup-w<i<w | ¢" () | < 0, EY’ = [ ' dF
#0, By =0, Var(y') = [ (' — EY’)* dF < », and Var(y) < o,

AssUMPTION 2. Define norms
MENm =1l Faélln

on S, and constants

(3.7) A, = sup{d;(§ 0)/| £]|7:£ € Sn},
(3.8) B, = sup{||| ¥ |||2r:1 = k = n},
(3.9) C.=E| -0

Assume that

(3.10) lim,_.n"'A,B, = lim,..A2B,C, = 0.

REMARK. The constants A, simply relate the two different norms on S,, and the C,’s
are the mean squared error of the linear estimate. The B,’s are somewhat more difficult to
interpret; see (3.15) and the accompanying remarks. Theorem 3.2 and Corollary 3.3 will
shed some light on the asymptotic behavior of the B,’s. If || - || » = dx(-, 0), then the limit
relations (3.10) are generally implied by the simpler requirements that A — 0 and nA'/™
— o, However, we shall need the requirement in (3.21) below, which is stronger than
nA\™ — oo, Sufficient conditions for these limit relations to hold for other choices of
|l - I » (involving derivatives) are given in the hypotheses of Theorem 6.3 below.

THEOREM 3.1. Under Assumptions 1 and 2, we have that for any 8 > 0, there is an

no such that for all n = no
P[there is a solution O, to ®..(£) = 0 satisfying || br — Oox I?=<8C.1=1-34.

REMARK. _The conclusion says that with high probability, 6, and ,\ will be much
closer than 6., and 6. Hence, 6\ will enjoy the same asymptotics as the least squares
estimate 6,,.

Proor. We partially follow Huber (1973, pages 805-806). By Taylor’s theorem

| Tar(§) — @r()/EY |||in = T1 + T,
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where

T =|l|n"" Thet Yea{0(tn) — &)} (' (ern) = EY'}/EY ||| mr
and

Ty = || %n™" Thot Yen{0(trn) — E(Ern) Y24 (€rn + @in) /EY ||| mn,
where a., is between 0 and 0(tz,) — £(¢,). If K = 8/8, then
(3.11) Pl 6r — 0. < %(KC,)'?]1>1 — §/2.
Define the sets

' F.={{ €8, £ 0|2 = KC,).

Recalling that || - || » and hence ||| - ||| .1 is given by a bilinear form, we have for any £ € S,
that

ETi = E||n"" Tk Yan {0(ten) — £(trn)} (4 (ern) — EY'}/EY' |||20
=172 T | Y |l 7r {0(trn) — £(trn)}?Var(')/(EY')?
= n7'Buda(¢, 0)*Var)/(BY)? < n B, Au || £ — 02Var@')/(EY').
By Markov’s inequality, if £ € F,, and
D = {267 'Var(y')(EY')*}'7,

then

(3.12) P[T, = D(n"'KA,B,C,)"*]1>1- §/2.
If £ € F,, then we have

(3.13) T: < Y2M| EY'| " (maxe ||| yen ||| )7 (£, 8)

<D'BY?A,| ¢ — 0|2 < D'KA,BY*C,,

where D’ = %M | EYy’|™". Putting together (3.11), (3.12), and (3.13), we obtain an event of
probability greater than 1 — § on which we have for all £ € F,,,

|“ (I)n}\(g)/E‘P, - gn}x(g - 0)'”71}\
< | @ @/EY — Fur(®) [[lox + || Grlé = Gua) — Gur(& = O) |||
= {D(n"'A,B,)"? + D'’K'?A,BY*CY? + %}(KC,)".

In view of the limit relations (3.10), the quantity in braces will be less than or equal to 1 for
all n sufficiently large. For such n, if x € F,, — § and

Ux) = x — 92 ®(x + 9)/Ey’

then || U(x) |2 = KC., i.e. the continuous function U maps the compact, convex set F,, —
4 into itself (note F,, — 8 C S,., where §n is finite dimensional). ByABrouwer’s theorem, U
has a fixed point £ in F,, — . Putting ,, = £ + 6, we see that ®,,(f,») = 0. Furthermore,

| @r(@r)/EY — ¥aBa) Il = [Il Gnor = Bu) [[lnr = || Gur — G || »
(3.14)

=< (D(n"'A.B,)" + D'K'?A,BY*CY*} (KC,) ",

where the inequality holds on an event of probability greater than 1 — 8. Applying (3.10)
again will complete the proof of the theorem. [J

We now turn to the problem of estimating the constant B, in (3.8). First note that

(3.15) b = Gt Yin = G TT Yy = (97 T )ypm
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where y,. = ns(e;.) and €,, = (0, - -+, 0, 1,0, - - -, 0) is the jth unit coordinate vector in R".
In the case of natural polynomial smoothing splines 6,,, = %\, is the minimizer over ¢
of

(3.16) ;LZL] {ndy, — &(trn)}* + A J {E™ (@) dt,
0

where &y, is Kronecker’s delta. The next result shows 67"& may be well approximated by the
Green’s function of a certain boundary value problem, a result suggested by the work of
Utreras (1980) and Speckman (1981). Let G\ (¢, 7) be the Green’s function for the differential
operator (—1)"AD?™ + 1 acting on the subspace of C*"[0, 1] of functions satisfying the
natural boundary conditions:

fP0)=f?P1) =0 for p=m,m+1,---,2m—1.

(For the case of periodic spline smoothing, we require periodic boundary conditions, i.e.
£P0) = fP1)forp=0,1,2, - --,2m — 1) That is to say, G, has the following properties:

(1) (=1)™AGF™(t, 7) + Ga(t, 7) = 8(t — 1),
where 8(-) is Dirac’s delta ‘function” (more correctly, generalized function), and
9r+e
Gt 1) = Py Gi(t, 7).

This property of G is interpreted as requiring that, when considered as a function of ¢, for
fixed 7, G(-, ) € C*™ %[0, 1] N C*™ {[0, ) U (r, 1]}, and that G*""°(-, r) has an appropriate
jump discontinuity at ¢ = 7.

(ii) Ga(-, 7) satisfies the natural (or periodic, as the case may be) boundary conditions,
to wit G’;’O(O, T) = Gﬁ:’o( 1, 7) = 0 for m = p = 2m — 1. The existence of G, is assured, since
(=1)™D*™ is a positive operator on the space of functions satisfying the boundary conditions
(use m-fold integration by parts), so its eigenvalues are nonnegative.

Our approximation of §,), makes use of the following operator defined on C[0, 1]:

(3.17) (Znr§) () =J §W)GA(t, u) d(u — F(u)).
0

Here, F,(u) denotes the c.d.f. of the probability measure which assigns mass 1/n to each
knot t,. We shall require that

(3.18) DREJ' |t — Fu(t)| dt
0

converges to 0 as n — . This is equivalent to assuming F, converges weakly to the
uniform distribution, or just that F,(¢) — ¢ for V¢ € [0, 1].

THEOREM 3.2. Assume n = m = 2, and suppose there exist constants Cp 4 > 0 such
that for all t, r € [0, 1] and all A > 0;
(3.19) | GXU(, 7)| < Cpgr P+t V/om
provided p + q < 2m — 2, and
(3.20) | GP(t, 7)| < CpgA (L)
ifp+q=2m— 1, where
LA = max{|log A|, 1}.
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Put
gn}\/'(t) = G)\(ty tjn)

where G, is the Green’s function defined above. Assume that \ varies with n in such a
way that

(3.21) lim, D, A™Y™(LA) = 0.
Then for all t € [0, 1], if n is sufficiently large,
(3.22) G (8) = Yo (Ror &) (B).

Furthermore, if p < 2m — 2, then 8 ) may be obtained by termwise differentiation of the
series, and

(3.23) sup, | R, (t) — g®,(t) | = KD A~ P+372 (L))

where K is a constant depending only on m.

REMARK. That assumptions (3.19) and (3.20) concerning| G4 are typically true will
be seen in Sections 4 and 5.

Proor. For any function ¢ € C'[0, 1], if p < 2m — 2 then

()P (1) = J G™(t, wi(w) d(w — Fa(w)) = — J {u- Fn(un{% G(t, u)$<u>} du.
0 0
Consequently,
(3.24) supi| (#£) () | < Dusupe. aiuaw(t, wEw) |

We will now use this bound to show by induction that
(3.25) sup: | (Zaguy) P (t) | = K*DiN~ P02 (LN

where K = max{C,,:0 < p < 2m — 1 and j = 0, 1} depends only on m. For » = 0 the result
is obvious from (3.19) and (3.20). Assume that for some »,

sup | (2'g)'P | <= K*Dy\~Pra0/2m(L )",
Then
sup | (#2"*'g)?| < D,sup| G"(#'g) + G (#'g)" |
< D;H[CplA—(p+2>/'2m(L}\)KV}\—(2u+1)/2m(LA)v + oA~ PHOm(LN) K\~ 2/2m( [ \)7]
< max{Cpo, Cp1 }K”D;“A*‘P”””’/Z""(L?\)”“
and (3.25) follows since max(Cp, Cp1) < K. Therefore, if only
D, AYmMILA< K7,
it follows that

o (2g) P (1)

converges uniformly in ¢ € [0, 1] by comparison with a geometric series. In particular, if
(3.21) holds, the series Y #’g, eventually defines a continuous function & whose first 2m
— 2 derivatives are continuous and computable by termwise differentiation. We need to
show ¢, is the unique minimizer of (3.16), and hence that ¢, = §,,,. A necessary and
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sufficient condition for £, to be that minimizer is that for all » € W7,
1 1
(3.26) A j (A (t) dt + f & (t)h(t) dF,(t) = h(bn).
0 0

The necessity follows from Proposition 2. If ¢, satisfies the condition, then it is a minimizer
since (3.16) defines a convex function £ of £& We will show the unicity of any such
minimizer by establishing strict convexity of % For ¢ A € W7 fixed and « a real variable

%5 L+ ah) =2A f (R ()} dt + 2 f {h()}? dF,(¢).
0 0

If this is zero, then A™ = 0 a.e.,, and so A" is a constant, since it is (absolutely)
continuous. Hence, 7 is a polynomial of degree m — 1 vanishing at the distinct points ¢,,,
tn2, +++, tan. Since n = m, A = 0. This proves that

2
%Ef(§+ah)>0 forall he WP, h=0,

which implies strict convexity for %,
To show that (3.26) holds, first note that by uniform convergence,

gj =gw t «@n)\gjy

and since m = 2 (so that m < 2m — 2),
1 1
A J MR ™(t) dt + J &, (t)h(t) dt
0 0

(3.27) = J {AG™(¢, t,,)h™(8) + G(¢, t,)h(t)} dt
0

1 1
+ J & (1) J {AG™ (¢, T)R'™ () + G(t, )h(¢t)} dt d(r — F,(r)).
0 0
Using the boundary conditions and m-fold integration by parts gives

f {(AG™°(t, T)R'™(t) + G(¢, T)h(2)} dt
0

= J' (=)™ ]AG* ML, )R/ (E) + G(¢, T)R(t)) dt
0
= (=)™ A[G* %=, 1) — G O7+, 1) A(T)
+<j + J’ ){(—l)m)\GZ""O(t, 7) + G(t, 7)}A(t) dt = h(r),
0 T+

where the last equation follows from the definition of G as a Green’s function. Substituting
this result back into (3.27) gives

)\J EM(R™(t) dt + J’ E(OA(E) dt = h(t,) + J £ (t)h(t)(dt — dF,(2)).
0 0 0

This proves ¢, satisfies (3.26), and we need only show (3.23) to complete the proof of the
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theorem. If p < 2m — 2, then from (3.25) and (3.21) we have that for all n sufficiently large,
sup| 0% — g® | = Y=, sup| (RBingm) P | < S K*DyA~(pravtb/2m [\
= KD,A~P*32™([)\) /{1 — KD, A\"Y™(L\)}

which proves the result. 0

CoROLLARY 3.3. Under the same assumptions as Theorem 3.2, if p < 2m — 2, then
for some constant C,, depending only on p and m,

(3.28) sup, | GR(t) | = C,A~(PrV/2m,

REMARK. The factor (LA) can be dispensed with in (3.21), (3.22), and (3.28) if m = 3
and p = 2m — 3.

4. Periodic spline smoothing. Periodic spline smoothing was first introduced by
Cogburn and Davis (1974). While these splines are seldom used in practice, they have
figured prominently in the theory of smoothing splines (see e.g. Wahba, 1975 and Craven
and Wahba, 1979). One reason for this is that circular symmetry greatly simplifies the
calculations, as is demonstrated in the following.

PropOSITION 4.1.  Suppose in addition to Assumption 1 that ¢’ >0.If6 € K™, t;, =
Jj/n for 1 =j < n, and both of the following limits hold for a sequence {\,} of positive
numbers:

1
(4.1) {0(u) - J a(t) dt}limn%,k,, = 0;
0
(4.2) lim, A Y™ = oo,
then if \ = A\,
(4.3) d2(Bnr, 02) = 0p(E d2(6,», 0)).

Proor. The assumption ¥’ > 0 implies strict convexity of p, so B, exists uniquely.
Computing the constants in Assumption 2, we clearly have A, = 1, and using (3.15) and
the definition of ||| - ||| »x gives

1
Il en lll7x = dA(GrAYun, 0) = 5 Y1 (nA%),

where the matrix A = s7'97's is the “influence” matrix of CW. Under the circular
symmetry assumptions, A is a circulant matrix so for some constant K depending only on
m

n S A% = Trace A> < KA™V2",
(see Lemma 4.3 of CW). Hence
B, = KA,V
It is also proved in Section 4 of Craven and Wahba that

1
O(n™ AV if 0= J a(¢) dt,
0

O\, + O(n™'A;V2™) otherwise.
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(The case when 8 is constant is different since there is no bias.) It now follows that (4.1)
and (4.2) imply (3.10), and hence the theorem. [

REMARK. The best obtainable rate of convergence according to Craven and Wahba
(if @ # constant) is
E di(én}\, 0) = O(n‘ZM/(ZmH))’

obtainable by using the deterministic sequence A = n2™@™*V_ Using this in (4.3), we
obtain the following asymptotic estimate as n — oo:

d2(Bur, 022) = (E d%(Bnr, 0))Op(n =m0/ Cm1)),

In order to eliminate the assumption of equispaced knots, and obtain theorems about
convergence of the derivatives 7, §” to §”, we will need to invoke Theorem 3.2. This
requires the following.

LEMMA 4.2. Let H)(¢, 7) denote the Green’s function for (—1)"AD*" + 1 with periodic
boundary conditions. Then, there exist constants C,, such that for any A € [0, Ao],

supe.| HYU(t, 7)| < Cp A~ Pra+hsam
providedp +qg=2m —2,and ifp +q=2m — 1,
supe,|HRU (¢, 7)| < Cp A~ PHa+D2m )
where LA = max(| log A |, 1).
ProoF. H, is most conveniently given by
(4.4) Hy(t,7) = Y5 {1 + A27p)*™} exp{(27iv (¢ — 7)}.

This bilinear expansion may be easily obtained by the method described on page 363 of
Courant and Hilbert (1953), since the eigenvalues and eigenfunctions of D*" operating on
K®™ are (2miv)®™ and exp{2mirt}, respectively, for » = ..., =1, 0, +1, - .. . It is readily
verified that H{? may be computed by termwise differentiation if p + ¢ = 2m — 2, and
standard theorems on Fourier series in conjunction with estimates given below also allow
this if p + ¢ = 2m — 1, provided ¢ # 7 (see e.g. page 275 of Carslaw, 1930). If r=p + ¢ <
2m — 2, then

(4.5) sup | H?? | = Y5 o 270) {1 + A(279)""} ' = 1+ 2 35, (270) {1 + A(27p)?™) L,
Writing p = 277%™, define the step functions
fu®) =301 (ep) {1 + (p)*) 'L, (x)
for x = 0, where I,, is the indicator function for the interval [(v — 1) &, »u). Then, for all x
=0,
limyiofy(x) = f() = (1 + x27),
and furthermore if x* = [r/(2m — r)]/*" then

fx*) fO0=x=ux*

fulx) = {f(x) if x* < x.

Hence, by dominated convergence, as p | 0

Yo 2mp) (1 + AQ2ap)2™) ! = (2m) Y J' fu(x) dx
(4.6) 0

0

~ (2m)p” J’ f(x) dx,
1)
which proves the theorem for p + ¢ < 2m — 2.
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The case p + ¢ = 2m — 1 requires a more careful analysis. We begin with the well
known Fourier series

Yo—y = Yiwsmo (2miv) 'exp(2mivy),

valid if 0 < y < 1. Writing u = 27A"/?™ as before, we have

l HP(t, 1) — (—1)q+'">c‘<% —t+ ¢>

T T A @) A(27v)

—1)¢ i1, )2m—1 _1\9,2m—1
Pt {( V¥@miv) —( L% }exp{2wiv(t— 7)}

<AV 2mr) L + A@2ar)P)

< (A STy 4 (2m) ORI R Y Ly

where [ -] denotes the greatest integer function. Now the first term in the last expression
is O (A" "log(1/))), while the second is O (A~!). The theorem is now obvious. [1

As a byproduct, it is now possible to prove the following result, which considerably
extends the class of knot sequences for which standard smoothing spline asymptotics are
applicable.

THEOREM 4.3. Assume m = 2. Let 0, be the minimizer over £ € W§ (or £ € K'™) of

%Eg=l {Zen — E(En) 2 + A f {(£™ ()Y dt,
o

where the data zx, are given in (3.1). Assume the errors {e,} are mean zero, uncorrelated,
and with common variance 6> < . Suppose that \ varies with n in such a way that
A | 0 and, (3.21) holds.

(a) If 0is a polynomial of degree at most m — 1,

E d%@B,», 8) = O(nA~"2m),

asn— o,
(b) If 6 is not a polynomial of degree at most m — 1, then

E d%(Bnx, 8) = O(A) + O(nA V2",

REMARKs. These rates of convergence are stated in CW, but the proof is not rigorous
in one detail. However, their “heuristic” argument can be rigorized, provided the knots #,
are equispaced. The conclusion also follows from the main theorem in Utreras (1980c¢) in
conjunction with the CW argument, if m = 2 and the knots satisfy

maxlsk<n(tk+l,n - tkn)
- <C,
mMiNi<k<n(ber1,n — ben)

for some constant C. It should be noted that the results of CW and Utreras are slightly
better than ours in the sense that they only require nA'?*" — oo, whereas (3.21) always
implies nA"/" |log A | ' — . However, this is not a loss of significant generality, since the
optimal rate of convergence always requires nA — o (and we only consider m = 2). For a
completely rigorous version of the CW results (including non-uniform asymptotic knot
distributions) see Speckman (1981).

Proor. We recap the argument from CW. Let 8, be the smoothing spline obtained
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from perfect data, i.e. 8, minimizes

’1122=1 {0t:) — £} + A J' {£™ @) dt.
0

Then E di(ﬁ, #) can be decomposed into bias squared plus variance, to wit
. _ 1
4.7) E d2(6,,, 0) = d2(6.,, 0) + 02<z tr A2>

(see page 389 of CW). Here, A denotes the influence matrix (a ~function of n and A\) whose

(i, /)th entry is n 7Gx, (tn) (see (3.16)) ie. if 6 = (Gur(tin), -+ , Gux(£un))’ denotes the vector
of values of the smooth, then @ = Az, where z is the data vector. By Lemma 4.1 of CW,

d? (ém,a)sxj (8™ (#))? dt.
0

Hence, the theorem is proved once we show that tr A2 = O(A7'/?™),

An argument on page 400 of CW shows that it is sufficient to consider tr A3, where A,
is almost the A matrix for periodic smoothing, denoted A;. The only difference between A,
and A, is in the eigenvalue corresponding to the constant eigenvector (ie. (1, 1, ---, 1)’).
This eigenvalue is 1 for A;, and between 0 and 1 for A,. Hence, it suffices to show that
tr A = O(A7'/?™). Now the eigenvalues of A; are all between 0 and 1, so 0 < tr A% < tr A;.
By Theorem 3.2 and Lemma 4.2,

1
trA; ==Y, Hi(t, t,) + O(DA7%2"(L)))
n

and the second term on the right hand side is o (A~/?™) by (3.21). Also

‘%Z/Hx(t;,tj)—J'Hx(t, t) dt

J Hy (¢t ¢) d(¢ - F.(2)

= DnSup I H)l\() + H;\)l | —_ D’IO(}\*Z/ZM(L)\)) — O(A—'I/ZM).

Since [ H,(t, t) dt = O(A~"/*™), the desired conclusion is obtained. O

REMARK. From the proof of Lemma 4.2 we have

1 (7 dx
H t = :o=_w 2my—1 __ )\ —1/2m| _—_ ,
j tt)ydt=Y {1+ AQ@2mv)™} A <2w 4[00 157 x2m>

and it follows that if (3.21) holds, then tr A, is also asymptotically equivalent to the last
quantity. Similar arguments show that

= O(D,\"*™(LA)),

trA?—JJ{HA(t, 7)}2dt dr

and

2 - \-l2m i B dx
ff{Hx(t, T} dtdr ~\ {277 f_w Tk

so if (3.21) is strengthened to
lim, e {D,A73*™(LA)} =0
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then we have

1 (°  dx
2 _y—l2m) *
tr A1 A {2'” J_m —-—‘—'—(1 T me)z}.

The next theorem partially extends this result to general M-type smoothing splines.

THEOREM 4.4. Assume m = 2. Let 8, be the solution over £ € #™ of D, (£) =0,
where ®,) is given by (3.4). Suppose in addition to Assumption 1 that ¢’ > 0, so 6, exists

uniquely.
Ifo € '™, and A, > 0 varies in such a way that
(4.8) lim, D, A,**™(LA,) = lim A, = 0,
then
(4.9) di(Bnn, 8) = Op(\a) + Op(n7'AZ™).

Proor. From the argument of Theorem 4.3, we have
(4.10) Co=E d2(@., 0) = O(\x) + O(n"A;V*™).
Now, by (3.15)
1 ~
B, = d; (9n3Ye, 0) = max ;Eﬁl {01 (8))?,
and by Lemma 4.2, writing gnax = H (-, t), we have

1 s 0 2 2. \
;E, Onrr(t)* = n Y gnrt)’ + ;E[ {0nrr (&) — grar(ti)}

=2 J {(H (tr, u)}? du + 2 f (H (&, w)}* d(u — F,(u)) + 2KD;A"¥™(LA)%.
0

The third term in the last expression is
}\71/2m{Dn>\—5/4m(L)\)} =0 ()\—1/2m)
by (4.8). Lemma 4.2 implies

f {H (tr, u)}* d(u — F,(u)) < 2D,sup | H(¢, w)H" (¢, u)|

= 0(DA"¥?™(LA)) = o(A™V?™)
by (4.8). Finally,

(4.11) f {(Hx(t, WY du=Y7 . {1+ A@27p)*) % ~ (27r)_1)\_1/2mj (1+x*)2dx
0 —o0

as A | 0. Hence B, = O(A;'/?*™). Since A, = 1 for all n, we have
AZB,.C. = OA A" + O™ — 0
as n — « by (4.8). Also
n'A,B,=0n'AT*™) 50
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as n — . Hence, by Theorem 3.1,
supx d2(0nr, 1r) = 0p(Cy),

which, together with (4.10), completes the proof. (1

REMARKS. (1) If 6 is a constant, then there is no bias, and the conclusion of the
theorem may be simplified to

supy d2(0ny, 6) = O,(n~'A7V2™).

Of course, if it was known that @ = constant, then one would set A = o (which forces d to
be constant) and obtain O,(n ') rate of convergence.

(2) Suppose A, is a power of n, say A, = n* Also assume D, =~ n"", as in the equispaced
knots case. Then the assumptions of the theorem are equivalent to requiring —4m/5 < «
<0.

(3) According to Speckman (1981b), the optimal convergence rate for the integrated
mean squared error (abbreviated IMSE, meaning either E |6 — 8|3 or E d%(4, 8)) for a
linear estimate of arbitrary 8 € 2 ™ is

IMSE = O (n?™/®"+V),

—2m/(2m+1)

IfweputA,=n in part (a), then the upper bound will be of this optimal order
(note that this choice for A, is permitted by (4.8)).

5. Natural cubic spline smoothing. We now wish to extend the results of the
previous section on periodic smoothing to smoothing by natural splines. Because of the
complications involved in estimating the Green’s function and its derivatives, we must
unfortunately restrict ourselves to the case m = 2. If H, is given by (4.4) with m = 2, then
the Green’s function for the natural boundary conditions is

G (t, 7) = Hy(t, 7) = Xp-2 H™(0, 7) {npo (8) + 11 (8)3,
where 1), is the solution to the boundary value problem
A® +9=0, n9%) =8,,6, for ¢g=2,3 and k=0,]1.
By directly solving the differential equation, it can be shown that if y = 27/2A"/* then
(5.1) no2(£) = A% " {cos(yt) — sin(y7)} + e Ao,
(5.2) n0s(t) = 22A*4e ™ 'cos(yt) + e 2 Ags,

where Ao, is a sum of products of e*"* and powers of sin(y?), cos(yt). By the symmetry of
the boundary value problem, it is easy to see that

Mp(t) = (—1)Pnep(1 — 8),
so that 72 and 75 are essentially defined by (5.1) and (5.2) as well. The estimates on G,

needed for Theorem 3.2 now follow from these formulae in conjunction with Lemma 4.2.

THEOREM 5.1. Assume m = 2. Let 0, be the solution over ¢ € W3of ®a(£) =0,
where @, is given by (3.4). Suppose in addition to Assumption 1 that ' > 0. Let A\, > 0
and suppose € W3. If

(5.3) limy D A7"3(LA,) = lim,_ A, = 0,
then
d2(Bnr, 0) = Op(A,) + Oyl ™A,
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ProoF. In view of Theorem 4.3 and the remarks above, it is sufficient to show that

j (G (ten, W)} du = ON™%)
o

as A | O (see the proof of Theorem 4.4). It is easily checked from (5.1) and (5.2) that

1
f {(nop(w)}? du = O (A ®P+V/4),
o

and since
. sup I Hpo |2 = O(}\—2(p+l)/4),

it follows from Lemma 4.2 that the required inequality holds. [0
6. Estimates of derivatives. In this section, we obtain rates of convergence for the
IMSE in estimating 6”’ by §?'. Again, we restrict ourselves to periodic smoothing splines.
We shall need two lemmas which give asymptotic estimates on the integrated bias
squared and variance for periodic smoothing spline estimates of the pth derivative of 6.

First, we extend the definition of 2# ™ to arbitrary (noninteger) positive real numbers r
> 0:

O ={(fELN0,1]:Yr—w | f, 7| 270 | < 0},

where

= j f(t)exp(—2mivt) dt
0

are the Fourier coefficients of f.

LEMMA 6.1. Assume n=m = 2, and that {\,} is such that X, — 0 and (3.21) holds.
Suppose 0 € A" for some r > 2. Let 8,\be the minimizer of

1

%zzzl {0(tin) — £trn)}* + An f (™ (1)) dt,

0

with respect to £ € X' ™. If 0 < p < min(r, 2m — 2), and max(p, %) < q < min(r, 2m + p),
then for all n sufficiently large

18P —6R B=<| 09 [ZAS™P/™(K, + K2D.A™%*™(LA)})?,
where K, and K, are constants independent of n, and depending on 6 only through r.
Proor. First note that

_ 1 .
0n7\ = ; Ez=1 0(tkn)0n7\k

where 6, ; is the minimizer over ¢ € # ™ of (3.16). We will drop the subscripts n'and A. By
Theorem 3.2,

6

S|~

Th-10(8) Y- Z2'H (-, t) = Z@{f H(-, 7)0(r) an(T)}
(6.1)

zygr{f H(-, 7)8(r) dr — gza} =0+, By,
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where
or = f H(.,7)0(r) dr — 6,

and it is necessary to justify the last line of (6.1) by proving convergence of the two series
2R [ H(-, 7)0(7) dr and 2 £"0. By a generalization of the argument used for (3.25), one
can show that ¥V £ € C'[0, 1] and any nonnegative integers » and p < 2m — 2,

| @&)? e = {CLDA™™LA) Y CoA™ P72 AT | & o + (| € ),

where C; and C; are constants depending only on p. Hence, by (3.21), both of the
aforementioned series converge absolutely and uniformly for all n sufficiently large
provided 8 € C', which is the case if § € % with r > 2. This justifies the calculation of
(6.1), and furthermore yields that the series in the final expression of (6.1) may be
differentiated term by term p times if p does not exceed min(2m — 2, r), and that for all n
sufficiently large,

(6.2) =1 [@rdn) ' o = Ca DA™ PHLA) AT | b e + | 65 [le),
where C3 = 2C,Cy. Nowforp=0or l,andp + % <qg =,
63 lle < X7=o | 6, | X | 2200 P"2/{1 + N (279)*")
(6.3) = [ A% 200 |72/ (1 + A 2av)™™ VAT | 0. )7 | 290 |29} 2
~ Cy\ 721/ | 9@ ||

as n — o, where

1 o x4m+2p—2q
== Z—_ dx
4 wfo (14 x2m™)? *

This is finite provided g > % = p + % for p = 0, 1. Finally, the last piece we shall need for
the Lemma is the estimate

67 1B = 5ea | 6, | 270 | | A27)™" /{1 + N(270)*"}|?
(6.4) =310, 12| 27 |2 | A(27v)*™ P79/ (1 + A(270)?™}|?
< }\(q—p)/m " 99 "gcs’
where
Cs = supa=o{x ™77/ (1 + x*)}?,

which is finite if p = ¢ = 2m + p. Now collect (6.2) through (6.4) and put them into (6.1)
to obtain that for all n sufficiently large

168 = 0P o=l ¢ ll: + | 251 R 1o
=G5 || 09 oA 9PP™ + C3D A" PIELA)(BCARI34™ || 919 |1y),
which proves the lemma if we take K; = C; and K, = 3C3C,.

LEMMA 6.2. Letey, ¢, - - - be independent random variables with mean 0 and common
variance o® < ®. Assume n = m = 2, and that A — 0 and (3.21) holds. Then, if 0<p < 2m
-2,

2
<= Koznfl{}\f(2p+l)/2m + D,2[A7(p+3)/m(L}\)2} ,
2

1 e
E “ ; Ez=1 exlnrr
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where K depends only on p and m.

Proor. Fubini’s theorem implies
E||n7 Ticy el |8 = n 7% Y | 67 |
=207 (T |l & I8 + 3 || 647 — g |13).
Direct calculation using (4.4) yields
& 1 = To= |(2mr)?/ {1 + A@mp)™™} I,

and the argument used in proving (4.6) shows that the right hand side is asymptotically
equivalent to

(277)_1A*(2p+1}/2m J {xp/(l + me)}2 dx,
[

as A | 0. Now by (3.23),
I 67}!” — g ”3 < KDZA~P*3/m(],))2
where K depends only on m. This completes the proof. [

THEOREM 6.3. Let 8 € #" for some r > 2. Take p < min(r, 2m — 2). Suppose the
following hold:

2p + % < q@ = min(r, 2m + p),
and
lim, A, = lim,n A, ®*D/™ = lim, D, A;>*"(L\) = 0.

Then
" 0*'(5\) — g ”% — Op()\,(zq_m/m) + Op(n—lx—(zpﬂ)/zm).
PRroOF. Let | £]|7 = dh(& 0) + || £” |3. Now apply Lemmas 6.1 and 6.2 and note that

the fact that D,A™“*(L) — 0 allows us to ignore the second terms in the upper bounds
of both lemmas. This yields

(6.5) C. = OMNIT™P/™) + O(n I\ @+0/2m)
Also, if p = 2m — 2, by Theorem 3.2, we can estimate B,, as follows:
16205 =21 g%, 15 +218%), — g, |2

=230 . 2mr)?{1 + AQ27p)?™} L + O(DIN" /™ (L))

= O(\~@P+D/2m) )
Finally, A, < 1 for all n, so

AZB,C, = O(\W™P/m\;@P+V2my 4 O (n=I);@P+1/my
which tends to 0 by hypothesis. Also,
n'A,B, = O(nIA"@P+D2my _,

The result now follows by Theorem 3.1 and (6.5). O

REMARKS. (1) If 6 is constant, then the bias term O (A (277/™) may be deleted.
(2) If A\, = n“and D, = n”’, then the limit assumptions reduce to the requirement that

—min{m/(2p + 1), 4m/5} < a <0.
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(3) Under the conditions on « cited in (2), the best obtainable upper bound on the rate
of convergence is

Ellé(p) =g® ”% = O (n 2m-p)/@m+D)y

given by a = —2m/(2m + 1), and with the provisions that m = 2, and p < (m — 1)/2. This
upper bound agrees with the optimal pointwise convergence rate of arbitrary derivative
estimates obtained for a slightly different model by Stone (1980).
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