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Asymptotic lower bounds for estimation of the parameters of models with
both parametric and nonparametric components are given in the form of
representation theorems (for regular estimates) and asymptotic minimax
bounds. The methods used involve: (i) the notion of a “Hellinger-differentiable
(root-) density”, where part of the differentiation is with respect to the
nonparametric part of the model, to obtain appropriate scores; and (ii)
calculation of the “effective score” for the real or vector (finite-dimensional)
parameter of interest as that component of the score function orthogonal to
all nuisance parameter “scores” (perhaps infinite-dimensional). The resulting
asymptotic information for estimation of the parametric component of the
model is just (4 times) the squared L2-norm of the “effective score”. A
corollary of these results is a simple necessary condition for “adaptive esti-
mation”: adaptation is possible only if the scores for the parameter of interest
are orthogonal to the scores for the nuisance function or nonparametric part
of the model. Examples considered include the one-sample location model
with and without symmetry, mixture models, the two-sample shift model, and
Cox’s proportional hazards model.

1. Introduction. Lower bounds for estimation have a long history and play an
important role in statistical theory. In parametric problems the representation theorem of
Haéjek (1970), and the closely related asymptotic minimax theorems of Hajek (1972) and
LeCam (1972), provide a rather complete description of optimal estimation in the case of
large sample sizes. More recently, representation theorems and asymptotic minimax
theorems have been established for a variety of nonparametric problems including: (i)
estimation of a differentiable functional of an unknown density or distribution function
(Beran, 1977a, 1977b; Levit, 1978); (ii) estimation of a distribution function (Beran, 1977;
Koshevnik and Levit, 1976; Millar, 1979; Wellner, 1982); and (iii) estimation of a spectral
distribution (Levit and Samarov, 1978).

However, many common statistical models are of “mixed” type, incorporating both
parametric and nonparametric components; see Oakes (1981), who uses the term
“semiparametric” for such models, and the examples below. The study of lower bounds for
such “mixed” or “semiparametric” models was initiated by Stein (1956), but has been
relatively neglected since Stein’s original investigation; exceptions are the work of Lindsay
(1978, 1980) who studied the interesting subclass of mixture models (see Example 2 below),
and Bickel (1982) who examined the possibility of “adaptive estimation” generally. A
related but different set of problems, involving robust estimation in parametric models,
has been recently investigated by Beran (1980, 1981), Millar (1981), and Rieder (1981).
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Our aim in this paper is to fill this gap by providing asymptotic lower bounds for
estimation of the parameters of models with both parametric and nonparametric compo-
nents in the form of representation theorems and asymptotic minimax bounds. Section 3
contains our results for the parametric component; Section 4 gives bounds for estimates of
the nonparametric component, and remarks on joint bounds. Our theorems in Section 3
also provide fairly general necessary conditions for “adaptive estimation”; these conditions
are related to conditions given by Bickel (1982). Our primary aim, however, is to provide
lower bounds for the (more usual) cases in which adaptation is not possible.

The key ideas involve the notion of a “Hellinger-differentiable likelihood” to obtain
appropriate scores for both the parametric and nonparametric components of the model,
and then orthogonal projection of the score function for the parametric, finite-dimensional
component of the model onto the infinite-dimensional space generated by the nonpara-
metric or nuisance-parameter scores. The L? norm of the component of the parametric
scores that is orthogonal to the infinite-dimensional subspace of nuisance-parameter scores
is shown to yield the “information” for the parametric component in such a model. These
are natural extensions to mixed parametric-nonparametric models of their more familiar
parametric counterparts; see Wilks (1962), page 377, Efron (1977), page 564, and Neyman
(1958) for examples of the projection of scores of the parameters of interest on nuisance
parameter scores in classical parametric estimation and testing contexts.

The following examples illustrate the types of problems that we have in mind. In each
case, the primary question which concerns us is: How well can we estimate the (real)
parameter #? In Section 4 we also give asymptotic lower bounds for estimates of the
distribution G associated with the density g.

ExXAMPLE 1. One-sample location model. Suppose that X1, - - -, X,, are iid with density
f=71(; 0 8 = g(- — ) with respect to Lebesgue measure x on R' where § € R’
and g belongs to a class of densities ¥ sufficiently small that @ is identifiable, and I, =
[ (£%/8) du < . Here § € R, the “location”, is the parametric component of the model,
while g € ¢ is the nonparametric component.

EXAMPLE la. % = ¥, = {all densities g on R' symmetric about 0}.

EXAMPLE 1b. % = %7 = {all densities g on R' with T(g) = 0} where T is a specified
location functional in the sense of Bickel and Lehmann (1975), e.g. T(g) = median (g).
Note that %, C %r, since T'(g) = 0 for all g € %,: see Theorem 1 of Bickel and Lehmann
(1975), and %y is substantially larger than %..

ExXAMPLE 2. Mixture models. Suppose that X;, ..., X, are iid with density f =
f(-; 0,8 on X given by f(x; 6, g) = [ M(x; 6, $)g(¢) dp where M is a fixed density function
with parameters (6, ¢) € R' X R* and g € ¥, a class of densities sufficiently small that 6
and g are identifiable. The model is identifiable if (6, g) # (8*, g*) implies Psy # Pp+ g
where Py (A) = [4 f(x; 0, g du(x); see Kiefer and Wolfowitz (1956, page 891), Teicher
(1961), and Section 6 for further discussion. See Kiefer and Wolfowitz (1956) and Lindsay
(1980) for many interesting special cases of this model. Here @ is the parametric component
of the model, and the “mixing density” g is the nonparametric component.

ExampLE 3. Two-sample shift model. Suppose that Xy, ---, Xy, are iid fi =
fi(-;60,m, 8 =g(- —n),and Xz, +--, Xon are iid f2 = fo(-; 6, 1, &) = g(- — n — 6) where
€ R, nER', and g € ¥, a class of densities sufficiently small that 8 and n are identifiable;
e.g. 9 = %rof Example 1b. In this model 6, the “shift parameter”, is the parametric part
of the model of primary interest; 7 is a nuisance or incidental parametric part of the model;
and g is the nonparametric part.

ExamMPLE 4. Cox’s regression model. Cox (1972) introduced a convenient regression
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model for censored survival analysis based on the assumption
(1.1) A(t]| 2) = exp(82)A(¢)

where A(t| 2) = g(¢| 2)/G(t|2) is the hazard function, and g(¢| z) the density function,
governing the survival time of an individual with regression variable z, and where A(¢) =
£(¢)/G(¢t) is an underlying hazard function with g € ¥* = {all densities with respect to
Lebesgue measure » on R*}. (In this example, for any density function g, denote the
corresponding survival function by G = 1 — G = [” g dv.) The regression parameter
# € R! (or R*) is the parametric part of the model, while g, or equivalently A, is the
nonparametric part. For a more complete description of this model with censored obser-
vations, see Section 6.

An important feature of mixed parametric-nonparametric or “semiparametric” models
such as these is that many functionals of the density f (or associated df F') agree: in
Example 1a, the median, mean (when it exists), symmetric trimmed means, and many
other functionals all yield 6, the center of symmetry; in Example 3, the difference between
any measure of location applied to f; and f; yields the shift §; in the two-sample version of
Example 4, Begun (1981) has given a large class of functionals which all equal the regression
parameter 6. Hence the completely nonparametric approach to representation theorems
and asymptotic minimax bounds for estimating functionals of f or F taken by Beran (1977a,
1977b) and Levit (1978) fails for these models: it is simply not clear which functional
should be analyzed. Our approach here is based instead on analysis of the local asymptotic
behavior of the appropriate likelihoods.

A referee has suggested the following program for carrying through the functional
approach even when many functionals agree: calculate the asymptotic minimax bound for
every such (differentiable) functional, and then minimize this bound over all such func-
tionals subject to the linear constraints on derivatives imposed by agreement of the
functionals at the model. It may be possible to carry through this program in particular
cases, but it seems to us to be a cumbersome method. We prefer the present approach and
methods which seem to be more consistent with the philosophy that “the likelihoods tell
the story.”

2. Preliminaries; differentiable likelihoods. For notational and expositional ease,
we will concentrate on the simplest but most important type of mixed parametric-
nonparametric model with a single real-valued parametric component § € R' and a single
nonparametric component g € ¥ where ¥ is a specified set of density functions. Our
treatment of this case extends without difficulty to problems involving a finite-dimensional
parametric component § € R" and a parametric nuisance component § € R*, as is the case
in Example 3. These extensions are sketched in the remarks at the end of this and the
following section; further details and extensions, investigation of other differentiability
conditions, and more examples are given in Huang (1982).

Suppose that X, ..., X, are iid Z-valued random variables with density function f =
f(-; 0, g) with respect to a sigma-finite measure 1 on the measurable space (%, %) where
9 € R' and g € ¥ C the collection of all densities with respect to a sigma-finite measure
v on some measurable space (%, 2). In many applications 2 and % are some Euclidean
space R* and u and » are Lebesgue measure on R*. Let L*(u) = L*( %, u) and L*(») =
L* (%@, v) denote the usual L*-spaces of square-integrable functions and let (-, ). (|| - ||.)
and (-, -),(||-|l,) denote the usual inner products (and norms) in L*() and L*(»)
respectively. Thus f'/% € L*(n), g"* € L*(v), and | f*|l. =1 = | g"*|]..

Our analysis of this mixed model will be framed, for convenience of comparison with
the more familiar parametric case, in terms of the differentiability of f with respect to its
parameters 6 and g. An alternative (but less transparent) treatment would involve only
the assumption that the local likelihood ratios behave as in Lemma 2.1 below with « as
given in Proposition 2.1.

DEeFINITION 2.1. (Hellinger differentiability of f“2). The root density f/* =
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f2 (-; 6, g) is said to be Hellinger-differentiable at (6, g) € R' X ¥ if there exists a
function ps € L*(u) and a bounded linear operator A: L%(») — L*(u) such that, with f, =
f ( ) 0n> gn)’

IF* = = {po- 6: — 8) + A(g:"” — &)} |l
10, — 0]+ llgx — g™,

—0 as n—o

(2.1)

for all sequences 6, — 6 and g,/ — g'/* in L*(»), where g, € ¥ for all n = 1; the expression
inside the brackets { } in (2.1) is the differential at (6, g).

If g is regarded as fixed and “known”, then py is typically just the usual parametric
score function for 6, i.e. (8/06)log f(-; 6, g), times % f"/?; here, as in LeCam (1970), we only
require differentiability in the L-sense. The operator A can be regarded as yielding a
“score for g”.

Now let © (k) denote the collection of all sequences {6} »=1 such that | n'/*(8, — ) — h/|
—0asn— o where h € R', and let ® = U {@(h) : h € R'}. Similarly, let ¥ (g, 8) denote
the collection of all sequences { g»}»=1 with each g, € ¥ such that |n'*(gl/? — g'/?) —
Bll.— 0 as n— o where 8 € L*(») (and 8 L g'/? necessarily), let

B={BELW:|n"(g/*—&"%) —B|l.,—0 as n— o
(2.2)
for some sequence g, with all g, € ¥4},

and let ¥(g) =U{%(g,B):BE B)}; €(g) is the set of sequences converging to g in any of
the possible “directions” 8 € #. Note that the subset # of L%(») is closed (by an easy
argument) and that it depends heavily on ¢: we have insisted that all of the g,’s converging
to g belong to %. Our subsequent development will rely on the following Assumption about
B:

AssUMPTION S. The set # defined in (2.2) is a subspace of L%(»).

This assumption amounts to saying that we can parameterize % locally by a subspace
of L(»). Assumption S is related to the convexity assumption (C) of Bickel (1982), and to
the “extensiveness” hypothesis of Levit (1978, Condition 5). It is also related to the
considerations on pages 246-247 of Millar (1979). Although Assumption S imposes some
restrictions on our methods, it seems to be weaker than Bickel’s convexity hypothesis and
to be satisfied in many cases of interest.

The following proposition is an immediate consequence of Hellinger differentiability of

f1/2.

PROPOSITION 2.1.  Suppose f'/* is Hellinger-differentiable at (0, g) € R* X %, and that
{(0r, 8n)}n=1 € O(h) X € (g, B) for some h € R', B € L*(v). Then, with f,=f(-; 0., &) and
f = f( ° 0’ g)y

(2.3) IR (% = %) = allu—> 0 as n— oo
where a € L*() is given by
(2.4) a = hpy + AB.

Note that a L £ since || f*2||. =1 = || f¥/?||, for all n = 1. Let
(2.5) H= {a € L*(y):a=hpy + AB forsome h€ER' BE %#).

Under Assumption S, H is a subspace of L*(u) since it is the image of a subspace (of R’
X L*(»)) under a bounded linear transformation. For a € H let & (f, a) denote the collection
of all sequences {f.} such that (2.3) holds and let # (f) denote the union of the Z (f, a)’s
over o € H.

For { f.}»=1and fas in Proposition 2.1, define the local log likelihood ratio L,, whenever
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the right side is finite, by
(2.6) Ly = 2log{ITi=: [FY*(X) /f2(X)]).

The following Lemma describing the asymptotic behavior of L, is a consequence of
arguments of LeCam (1969); it has been used repeatedly by Beran (1977a, 1977b).

LEMMA 2.1. (Local asymptotic normality). If f, and f as in Proposition 2.1 satisfy
(2.8), then, for every e > 0,

2.7) Pi{|L, — 2n72 Y5, a(X)f VX)) + o?’|>e} >0 as n—o o
where o* = 4| a||. Thus, under Py,
(2.8) L,—4N(—%6% 6% as n— «

and the sequences {[]-1 f.(x.)} and {[[%1 f(x.)} are contiguous.

REMARK 2.1. When the model is given by a density f = f(-; 8, , g where § € R",
€ R°, and g € 9, Definition 2.1 and Proposition 2.1 must be altered as follows: with f, =
f(-; 0o, M, &) and |6, — 8| > 0, |9, — | > 0, | "> — g"*||, = 0 as n — o where | - |
denotes the usual Euclidean norm, instead of (2.1) require that

I 7% =% = [po- O — 0) + p, - (g — m) + A(&:° —&")_,

1)’
10, = 0+ |m — | +llg"” — "Il

0

as n — o for some r-vector py of functions in L*(u) (the scores for 6), s-vector p, of
functions in L?(u) (the scores for 5), and A a bounded linear transformation as in Definition
2.1. The required change in Proposition 2.1 is that (2.4) must be replaced by

(2.4) a=h-pg+k-p,+AB

where |[n*0,—0) —h|— 0, |n"*(n, —n) — k| — 0, and | n'*(gl* — g"/%) — B|l,— 0 as
n — o for some (h, k, 8) E R" X R* X A.

3. Main results: parametric component. Now we turn to asymptotic lower bounds
for estimation of 4 in the presence of the unknown nuisance parameter g. If the density g
were known, g = go say, then the results of Hajek (1970, 1972) together with Lemma 1
guarantee that any (regular) estimator of 4 has a limiting distribution at least as dispersed
as N(0, 1/I,) where I, = 4| po||% is the usual parametric Fisher information for §. When g
is unknown, the “information for §” will, in general, be smaller than when g is known, and
it will be harder to estimate 6. The questions are: How much smaller is the information?
And how much larger will the asymptotic variance of a “best” estimate be? In terms of
adaptive estimation (to be defined carefully below), is “adaptation” possible?

The main thesis of this paper is that asymptotic lower bounds for estimation of § when
g is unknown are determined by the geometry of the scores as given by (2.4): Finding the
“information” for estimation of § in the presence of nuisance parameters requires (orthog-
onal) projection of the score for the parameter of interest onto the space of nuisance
parameter scores {AfB: B € 4}, thereby yielding the “effective” component of ps orthogonal
to the nuisance parameter scores.

We now make this brief description more precise. By Assumption S, {AB:B8E€ %} isa
closed subspace of H defined in (2.5). Hence, by the classical projection theorem (see e.g.
Luenberger, 1969, page 51) there exists a 8* € # minimizing || ps — AB|2; this 8* satisfies

(3.1) (pg —AB*) L AB forall Be 4.
Thus a of (2.4) can be decomposed as

(3.2) a=h(pg —AB*) + A(hB* + B)
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and hence

lalli = los — A(=B) I = h*llps — AB* || + | A(RB* + B) |l by (3.1)
(3.3)
= h?||lps— AB*||? forall BE &

with equality if and only if 8 = —hB*. The “geometric picture” should now be clear: A8 *
is the projection of p, onto {—AB: 8 € #}; therefore 8 = —hB* minimizes || a||% = || hos —
A(—B) |% and represents a “least favorable” or worst possible direction of approach to g for
the problem of estimating 6. In the language of Stein (1956), 8* yields the most difficult
one-dimensional sub-problem. The “effective score for §” is now ps — AB*, and four times
the square of its norm in L*(u) is the asymptotic “information” I, for estimation of  in the
presence of g:

(3.4) I, = 4]lps — AB*|2.

The following representation theorem (Theorem 3.1) and asymptotic minimax lower
bounds (Theorem 3.2) for estiplates of # make this precise.

We say that an estimator 6, of 6 is regular (or ® X %-regular) at f = f(-; 6, g) if, for
every sequence {fn, = f(+; 6., &) }n=1 With {(0,, £€:)}r=1 € ® X ¥ (g), the distribution of
n2%(@, — 6,) (under f,) converges weakly to a law % = Z(f) which depends on f (and
hence 6 and g) but not on the particular sequence {(6., g.)}. Thus ¥ = £ (f) does not
depend on A or B. Regularity of an estimator , in this sense is a local stability property in
the spirit of Hajek (1970) and Beran (1977a, 1977b).

THEOREM 3.1. Suppose that 8, is a regular estimator of 6 in the model f= f(-; 6, g)
with imit law ¥ = Z(f), that the conclusion of Proposition 2.1 holds with a given by
(2.4), and that Assumption S holds. Then ¥ may be represented as the convolution of a
N(0, 1/1,) distribution with &, = #(f), a distribution depending only on f = f(-; 6, g),
where I, is given by (3.4).

Equivalently, if S, Z,., and W denote random variables with laws &, N(0, 1/1,.), and
£ respectively,

(3.5) S=4Z,+ W,

where Z, and W are independent.

To state our asymptotic minimax bound, which is a special case of the general Hajek-
LeCam asymptotic minimax theorem (see Proposition 2.1 of Millar (1979) for a nice
restatement), we introduce a loss function ¢ R' — R™* which will be assumed to be
subconvex (i.e. {x:¢(x) = y} is closed, convex, and symmetric for every y = 0) and to
satisfy

(3.6) J 4(2)p(A\2) dz < oo forall A>0,

where ¢ denotes the standard normal density function.

THEOREM 3.2. Suppose that the conclusion of Proposition 2.1 holds, that Assumption
S holds, and that ¢ is subconvex and satisfies (3.6). Then, with B,(c) = {f, € Z(f):
£ = ) < 6),

3.7) i e, o lim ..« inf;, sup;, e s, @ Ef,£(n 20, — 6,)) = E¢(Z,)

where Z, ~ N(0, 1/1,,) and I, is given by (3.4).

Here the infimum over estimates ,, is taken over the class of “generalized procedures,”
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the closure of the class of randomized (Markov kernel) procedures, as explained in Millar
(1979, page 235).

REMARK 3.1. Although (3.1) does not provide a concrete recipe for finding the
important “least favorable” 8* € # and hence I,, it follows from classical L? theory (e.g.
Theorem 1, page 160, Luenberger, 1969) that 8* satisfies the “normal equation”

(3.8) A*AB* = A*pg

where A* denotes the adjoint of the bounded linear operator A. This is precisely analogous
to the familiar (finite-dimensional) normal equations encountered in standard linear model
theory where the role of A is played by a “design matrix” X, and that of A* by the
transpose XT. Hence 8* = (A*A)'A*p, whenever A*A is invertible. In the examples with
which we are familiar, determination of 8*, and hence I, has previously proceeded by
guesswork, calculus of variations techniques, or finite-dimensional approximations (see
Efron (1977) together with Begun and Wellner (1982) for an example of the latter), followed
by direct verification of the key orthogonality relationship (3.1). See the examples given in
Section 6.

Before proceeding to the proofs of Theorems 3.1 and 3.2, we want to briefly outline
their implications for adaptive estimation. Recall that

(3.9) Io = 4| ol

is the usual parametric information for § when g is known.

DEFINITION 3.1. A sequence of estimates {§,} of 6 is said to be ¥-adaptive (or simply
adaptive) if, under f, = f(+; 6, &),

(3.10) n%@, — 6,) -a N©, 1/I,) as n— o

for all {(6, g:)}r=1 € ® X € (g) and all (6, g) with 0 < I, < oo,

Thus an adaptive estimator, without knowledge of g € ¥, estimates 6 as well asymp-
totically as if g were known, uniformly in local (shrinking) neighborhoods of each g € ¥.
This is a more stringent definition of an adaptive estimator than the definitions which
seem to be accepted in the current literature; see also Fabian and Hannan (1982). For
example, Bickel (1982) only requires that (3.10) hold for all f, = f(-; 6, &), {6».} € © with
g fixed; this is in keeping with most work on adaptive estimation in the cases of Examples
1la or 3 (e.g. Stone, 1975). Beran (1978) has shown in the context of Example 1a however,
that estimates which are adaptive in the sense of Definition 3.1 exist in this case. Beran’s
result bolsters our feeling that Definition 3.1 captures the local uniformity that should
reasonably be required of adaptive estimates when g € ¢ is unknown. In this connection,
see Section 5(e) of Bickel (1982), and the work of Klaassen (1981) which indicates that we
can not require the convergence in (3.10) to be uniform in fixed neighborhoods of g € %.

Comparison of (3.4) and (3.9) shows immediately that

(3.11) I, =< IL;
and from the definition of 8* it is clear that equality holds in (3.11) if and only if
(3.12) pe L AB forall BE £

Thus (3.12) provides a necessary condition for adaptive estimation:

COROLLARY 3.1. If Assumption S holds, and the conclusion of Proposition 2.1 holds
with o given by (2.4), then a necessary condition for the existence of a sequence of
adaptive estimates is that (3.12) hold for all (0, g) such that 0 < I, < .

Proor. This follows immediately from Theorem 3.1 and Definition 3.1 upon noting
that I,, < I if (3.12) fails. O
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REMARK 3.2. When the model is given by a density f (-; 8, 9, g), where § € R", n € R°,
£ € % as in Remark 2.1, which is differentiable in the sense that (2.3) holds with « given
by (2.4)’ of Remark 2.1, then the arguments and Theorem statements of this section
require slight modifications: the scores for 8, the parameters of interest, must first be
projected onto the scores p, for the (parametric) nuisance parameters 5. This part is easy;
introducing the r X s matrix B and the s X s matrix D defined by

B = <P0, p{)#! D = (pﬂ! p{)#!

then, supposing D nonsingular with inverse D', the part of ps; orthogonal to the space
generated by p, is just pg., = (ps — BD'p,)) L p,; thus ps., = (pg — BD'p,) is the “effective
score for 8” in the presence of the nuisance parameter 7 in the parametric problem with
g fixed and known. The argument then proceeds as before by projecting each of the r
components of py., onto {AB: B € %} i.e. find B* = (B4, -+, BF), B} € %, such that

(3.1)’ (ps.n — AB*) L AB forall BE .
Then, defining the r X r matrix I, by
(3.4)" I, = 4(pp. — AB*, (ps., — AB*) T,

the vector versions of Theorems 3.1 and 3.2 have statements with the number 1/, replaced
by the matrix I,' (assuming the inverse exists) with I, given by (3.4)’, and the random
variable Z, replaced by a random vector Z, ~ N, (0, I;'). Paralleling the discussion of
adaptation for the simple model f (-; 6, g), a necessary condition for adaptation to g € ¢
for the model f (-; 6, , g) is that the “effective scores for 8”, py.,, satisfy

(3.12)" po.n=ps—BD 'p, L AB forall BE A

Of course the analogue of the number I in the vector version of the problem is the r X r
matrix

(39), I = 4<p9-1n p9T~n>u-

In this connection, note that Stein’s (1956) condition for adaptation C = BD™'E can be re-
written as E(Sy — BD™'S,)S, = 0 (r X 1) where Sy, S,, and S, denote the classical scores
(derivatives of log density with respect to the parameters); i.e. Sy — BD™'S, L S,.

REMARK 3.3. Although we have not attempted to construct a general class of esti-
mators which achieve the asymptotic bounds given in Theorems 3.1, 3.2, and the following
section, it seems very likely that “generalized” or nonparametric maximum likelihood
estimators as defined by Kiefer and Wolfowitz (1956) (see Scholz, 1980) will typically be
asymptotically fully efficient and attain our bounds under conditions only slightly stronger
than the differentiability condition of Definition 2.1. This would seem to be especially the
case when the necessary condition (3.12) for adaptive estimation fails; i.e. when adaptation
to g € %is not possible. When (3.12) holds, so that the possibility of adapation is not ruled
out, the method of nonparametric maximum likelihood estimation apparently breaks
down, and construction of estimators which achieve our bounds typically involves esti-
mation of the score function ps or ps/f*/% this is certainly the case for the asymptotically
efficient adaptive estimators of Stone (1975) and Beran (1974) for Examples 1a and 3, and
also, more generally, for Bickel’s (1982) adaptive estimators, which rely upon his condition
(H) that the scores can be estimated sufficiently well. Our point is that estimation in
situations in which the necessary condition (3.12) for adaptation holds seems to be
qualitatively different (and more difficult) than estimation in non-adaptive situations
where (3.12) fails; we feel that both cases are of interest and importance.

Of course other families of nonparametric estimators, such as minimum distance
estimators as in Beran (1978) and Millar (1981a), or the sieve estimators of Grenander
(1981) (see also Geman and Hwang, 1982), may achieve the bounds given here and hence
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be proven to be asymptotically fully efficient. The asymptotic efficiency of these and other
nonparametric estimators deserves further study.

A promising method of estimation of 8 proposed by Huang (1982) which generalizes the
approach of Stone (1975), is the following: let ¢ *(-; 8, g) = (0s — AB*)/f"* € L*(F) denote
the effective score for 8 (divided by f'/?), and consider finding # such that the “effective
score equation”

Jw(x; 8,8)dF.(x) =n' Y, y*(Xi;0,8) =0

is (asymptotically) satisfied, where F, is the empirical measure of X’s iid f and g is some
suitable initial estimator of g. Preliminary results of Huang (1982) indicate that 6 attains
the bounds given in Section 3 in great generality. This will be explored fully elsewhere.

4. Main results: nonparametric component. Our object in this section is to give
asymptotic lower bounds for estimation of G = [-. gdv, the continuous distribution
function corresponding to g € ¥, in the special case when g is a density function on % =
R'. We will also briefly indicate lower bounds for estimation of (6, G) jointly, and for
estimates of functions of (8, G). For simplicity, we suppose that the support of g is
contained in the unit interval [0, 1]. This can usually be accomplished by means of a fixed
strictly continuous mapping of R' into [0, 1], such as a probability integral transformation.

In our initial formulation of the lower bounds, we will also suppose that the subset % of
L*(v) defined in (2.2) is exactly the subspace

(4.1) Bo={BEL*):BLg".

When 2 is a proper subspace of %, a corresponding projection operator is required; these
modifications will be indicated later in this section.

Recall that A*: L*(u) — L*(v) denotes the adjoint of the linear operator A. Our lower
bounds for estimation of G will require the following invertibility assumption:

AssuMPTION I. The linear operator A*A: L*(v) — L%(») is invertible with bounded
inverse (A*A)7!.

Of course (A*A)™" is necessarily a linear operator; see e.g. Luenberger (1969, page 147).
Suppose that Assumption I holds, and define C: L*(v) — L*(u) by
(4.2) C=A(A*A)".

Note that C* = (A*A)™'A* and C*C = (A*A)7.. Let G, = (11,5 — G(5))g"% and define
the covariance function K on [0, 1] X [0, 1] by

4.3) K(s, t) = (CG;, CGy), = ( Gy, (A*A)'G)),.

Now let Z be a zero-mean Gaussian process on [0, 1] with covariance function K given
by (4.3), let Z, ~ N(0, 1/1,) be independent of Z, and let Z, be the zero-mean Gaussian
process on [0, 1] defined by

(4.4) Z.(t)=2Z(t) — J’ 2B*g*dv for 0<t=<1
0

where 8* satisfies (3.1); Z, has covariance function K, (s, t) = K (s, t) + 41, [§ B*g"*dv
[6B*g"* dv. Since Z is Gaussian and (A*A)™" is a bounded operator by Assumption I, for
any 0 < s, t < 1 we have

E|Z(t) - Z(s)|* = 3{E|Z(t) — Z(s)|’} = 3{((G; — G,), (A*A) (G, — G\)).}*
=3[A* )M G(t) — G(s))”.
Hence, by Theorem 12.4 of Billingsley (1968), Z and Z , have continuous sample paths.
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In parallel to Section 3, a (continuous) estimator G, of G is said to be regular at f =
f(s; 0, g) if, for every sequence {f,} = {f(-; 6., g.)} with {(0,., g.)} € © X €(g), the
process n/2(G, — G,), with G, = [; g, dv, converges weakly on C[0, 1] to the same limit
process S:

n'*(Gn — G,) = S on C[0, 1]
(under f,) where the law of S on C[0, 1] does not depend on & or 8.

THEOREM 4.1. Suppose that G, is a regular estimator of G = [, gdv in the model f
= f(-; 6, g) with limit process S, that the conclusion of Proposition 2.1 holds with a given
by (2.4), that Assumption S holds with 8 = B, of (4.1), and that Assumption I holds. Then

(4.5) S=aZ,+ W,
where the process Z , is defined in (4.4) and the process W is independent of Z ...

To state a local asymptotic minimax bound, we let £: C[0, 1] — R* be a subconvex loss
function such as A(x) = || x|| = sup,| x ()|, Ax) = [| x(¢)|* dt, or Ax) = 1{x:]| x| =c).

THEOREM 4.2. Suppose that the conclusion of Proposition 2.1 holds with a given by
(2.4), that Assumption S holds with % = %, of (4.1), that Assumption 1 holds, and that ¢
is subconvex. Then, with B,(c) = {f, € #(f): n"?|| > = f*|. < ¢},

(4.6) lim oo lim,infg, sup; e g o ErAn"*(Gn — Gn)) = EAZ,)

where Z . is the zero-mean Gaussian process defined in (4.4).

The infimum over estimates G, in (4.6) is taken over the class of “generalized proce-
dures,” the closure of the class of randomized procedures as in Millar (1979, page 235).

REMARK 4.1. Asymptotic lower bounds for joint estimation of the pair (8, G) can also
be easily formulated: under the hypotheses of Theorem 4.1 or Theorem 4.2, bounds for
joint estimates of (6, G) are determined by the joint distribution of (Z,, Z,) on R' X
CJ0, 1] (see (4.4) and above); note that

t
4.7) Cov[Z,,Z,(t)] = —Iif 2B8*g*dv for 0=t=<1.
* Jo

REMARK 4.2. When the necessary condition (3.12) for adaptation holds, 8* = 0 and
Z « = Z in (4.4). In this case the coordinates of the pair (Z,,Z,) = (Z,, Z) are independent.

REMARK 4.3. Explicit calculation of the inverse operator (A *A) ™! may be difficult in
many problems. For example, we do not yet know'(A*A)~! for the class of mixture models
given in Example 2; see also Section 6. But once (A*A)™" is known, everything can be
easily calculated, including B* satisfying (3.1) in view of Remark 3.1.

REMARK 4.4 When the subspace % of (2.2) is a proper subspace of %y, # I %, a
projection operator =, defined as follows, is required: let 7: H — C[0, 1] = B be defined by
ra(t) = 2 [§ Bg"* dv as in the proofs of Theorems 4.1 and 4.2. Let = be a continuous
projection of B = C[0, 1] to the closure in B of 7H, 7H. (If m, is a projection of %, to %, then
« is easily found explicitly in particular cases by composition of the maps 7, «, and 7.)
Then Theorems 4.1 and 4.2 continue to hold with the process Z, replaced by the process
7Z, in (4.5) and (4.6). This procedure is closely related to that of Millar’s (1979) Proposition
5.2 and Example 6e.

REMARK 4.5. Asymptotic minimax lower bounds and representation theorems for
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differentiable functionals ¥ (4, G) (¥ : R' X C[0, 1] — a normed linear space S with norm
|| - | s) are also easily formulated. Suppose that ¥ is differentiable in the following sense: for
{(6, g:)} €E O X b(g) let ¥, = ¥ (b,, G.), ¥ = ¥ (0, G), and suppose that there exists a
continuous linear function ¥’:R' X C[0, 1] — S such that | ¥, — ¥ — ¥'(4, — 4,
G.— G)||s = o(n™"/%), Then regular estimates of ¥ have limit laws with ¥'(Z,,, Z,) playing
the role of Z, in (3.5), and Z,, in (4.5); and asymptotic lower bounds for estimation of ¥
= ¥ (4, g) have the quantity E/(¥'(Z,, Z,)) (where ¢, subconvex on S, is a loss function)
appearing on the right side of the bound with (Z,, Z,) as in Remark 4.1. For example,
when % = R' this approach will easily yield bounds for estimation of F' = F(-; 0, g) =
[~ f du whenever F can be written as a function of (4, G).

Another useful approach to bounds for estimation of F is as follows: let mo: Hy =
{a € L*(u) : a L f**} — H be the projection defined by

oot = Ii (@, s — AB*)ulps — AB*) + A(A*A) 'A%
*

Hence with ra = [ 2af"* du, and # = %, easy computations as in the proofs of
Theorems 4.1 and 4.2 show that (rm)* = mr*, and that bounds for estimation of F are
determined by the process

Wi =W+ Zy1(pg — ABY)

where Z, ~ N(0, 1/1,) and #’is a mean zero Gaussian process independent of Z, with
covariance function

(D(L(=5) = F(8)) "%, D(L(=,g — F(8))f ),

where D = A(A*A)'A*. When % is a proper subspace of %o, this approach must be
combined with the projection introduced in Remark 4.4.

5. Proofs. To prepare for the proofs of Theorems 3.1 and 3.2, we now define 7: H —
R' = B, using notation to agree with that of Millar (1979), by

(5.1) ra = (a, 4(0s — AB*)/I,), =h forall a=hps+ABE H.

The following Lemma, which gives the adjoint 7* of 7, is a key step in the proofs to follow.

LEMMA 5.1. The adjoint 7* : R' — H of r defined by (5.1) is given by
(5.2) T™*h* = 4h*(py — AB*)/I, for all h* € R
where B* € A satisfies (3.1) and I, is given by (3.4).

Proor. Since B = R' and H are self-dual, the adjoint * of 7 must satisfy
(a) (Ta, h*)p = (&, T*h*),

for all 2* € R' and « = hpy + AB € H. By definition of r, the left side in (a) is just A2*. But,
by the definition of 7* (5.2), the decomposition of a given by (3.2), and the orthogonality
relation (3.1), the right side in (a) also equals AA*, and hence (a) holds. 0

REMARK 5.1. The important role of the “derivative” mapping 7 and its adjoint 7* has
become clear through the work of Millar (1979, pages 236 and 241) and Levit (1978, page
372). (Levit uses the terminology “conjugate mapping” rather than adjoint.) Note that the
particular choices involved in Beran’s (1977a, b) proofs of his representation theorems are
easily understood in terms of adjoints.

PRrOOF OF THEOREM 3.1. Let 6, be a regular estimator of # with limit law %, and
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suppose that { f,} € #(f). The characteristic function of n'/%(g, — 6,) under f, is
(a) E; exp(iun'/*(6, — 6,)) = E; exp(iun'’*(6, — 0) — iuh) + o(1)
(b) = Ejexp(iun'?(b, — 0) + L, — iuh) + o(1).

This holds for all « € H and 2 € R'. We choose a = I, 7*h where 7* is given in Lemma
5.1; then 4| «||% = A’I,. Hence, under f = f(-; 0, g), the random vectors (n"/%(6, — 6),
2n7'? Y1 a(X)) f7*(X.)) converge weakly coordinatewise to a random vector (S, AZ ) with
Z ~ N(0, 1,); and, by considering only a subsequence if necessary, they converge jointly as
well. It then follows from Lemma 2.1 that the random vectors (r" 2(9,1 — 0), L,) converge
weakly under fto (S, hZ — %h’I,).

Hence, by regularity of 6, the characteristic function (a) converges to E exp(iuS) while
(b) converges, by Vitali’s theorem and an almost surely convergent construction as in
Beran (1977b), to

E exp(iuS + hZ)exp(—%h*I, — iuh).

Therefore, letting ¢(u, v) = E exp(iuS + ivZ) denote the characteristic function of (S, Z),
we have from (a), (b), and the preceding that

(c) o(u, 0) = E exp(iuS + hZ)exp(—iuh — %A’I,)

for all real A. The right hand side of (c) is analytic in A, constant for all real A, hence
constant for all complex 4. The choice A = —iu/I, yields

(d) o(u, 0) = ¢(u, —u/I,)exp(—u?®/21,)
for all real u, and this factorization into the characteristic functions of W= S — Z, and Z,

= Z/I. completes the proof.

PrOOF OF THEOREM 3.2. The mapping 7 defined in (5.1) is linear, bounded, and has
dense range in R' = B; but it is not one-to-one and hence does not yet satisfy the
requirements for r of Section 3 of Millar (1979). However the restriction of r to the (one-
dimensional) subspace H* = {2ha* : h € R'}, where o* = ps — AB* satisfies (3.1), is one-to-
one. (Take H in Millar’s set-up to be twice our H.) Moreover, | 7*h* |2 = 4h*%/I,,
so the image law Py of the unit normal on H* is simply N(0, 1/1,). But, with B%(c) =
{fo € Z(f, &*): 0| 2% = f2]l. = ¢}, the left side of (3.7) is no smaller than

lim,_olim,.infj supy ep: ) E;£n"*(8, — 6,)) = E4(Z,)

where the inequality follows from Propositions 2.1 and 3.1 of Millar (1979). O

Now define 7: H— B, = {x € C[0, 1]: x(0) = x(1) = 0} by

t «
(5.3) ralt) = J 2B8"* dv = (B, 28""110y), for 0=t<1.
0

It is not hard to exhibit r explicitly as a function of « € H: since A*(py — AB*) = 0, it
follows from (3.2) that A*a = A*A(hB* + B), and hence, under Assumption I,
(5.4) B =(A*A)"'A*a — hB* = C*a — (a, 4(0s — AB*)/1L,).B*.

Substitution of this expression for 8 into (5.3) yields

4
Ta(t) = (C*a, 28"*L10), — (o, A (oo — AB*))u(B*, 28" *110.0),
(5.5) *

= 7o(C*a)(t) — (oz,Ii (oo — AB*)) (1B *)(2)
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where 79: B — %o C C[0, 1] is defined by
TB(8) = (B, 28" 1104}, O0==t=1.

The crux of the proof of Theorems 4.1 and 4.2 is contained in the following lemma
which gives the adjoint 7* of the mapping 7.

LEMMA 5.2. The adjoint v* : BV = B§— H = H* of 7 defined by (5.3) is given by

(5.6) ™v = Crév — Ii* (og — AB*) (1oB*,v) for veE BV
where B* éatisfies (3.1),

(5.7) T6U = —2<v - J' vg dv)g‘/"’ L8

and

1
(10*, v) = J T08* dv.
0

Proor. With (ra, v) = [§ Ta dv, we have, using (5.5) and the definition of the adjoints
7¢ and C* of 79 and C,

(1, V) = (10C*a, V) —(a, 4(pg — AB*) /L) u(T0B*, V)
= (C*ay TO*U)V - (a’ 4(P0 - AB*)/I*>;4<TOB*’ U)
= (ay CTO*U),‘ - (a’ 4(p0 - AIB*)/I*)H.<TOB*’ U)

4
=(a, C1'v — A (0o — AB*)(ToB*, V) )y

= (a, 7*1))#,

where 7*v is given in (5.6). 0

REMARK 5.2. Note that by (3.1), (3.4), Remark 3.1, and the properties of adjoins, it
follows that

(5.8) (1*v, pg)p = (C18V, po)y — (1of*, V) = (1&v, C*pg), — (T0f*, V)
= (1dv, B*), — (Tof8*, v) = (10B*, V) — (ToB*, v) = 0.

This is the analogue of (3.1) in the present problem of estimating G: the “effective score”
for G, 7*v, is orthogonal to the “nuisance parameter score” pq.

PROOF OF THEOREMS 4.1 AND 4.2. These proofs proceed along the lines of the proofs
given by Beran (1977a) and Millar (1979), so we will omit most of the details. The main
chore remaining to complete the proof is the computation of || 7*v||2 where 7* is given in
(5.6): From (3.1) it follows that

po — AB* L Criv = A(A*A) '1dv,
and hence,

4
(a) vl = Cré'vlli + 7= (ToB*, v)*.
*

But, by definition of 7 and the properties of adjoints,
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| Crév |2 = (Crdv, Crdv), = (C*Crgv, 1¢v), = (To(A*A) 10, v)

= J ((A*A) ‘v, 2g1/21[0,t]>v dv(t)
= J' ((A*A)rdv, 2(10 — G()E7*), du(D),

since (A*A) 'r¢v L g%,

= J' (7'6':1[0,4, (A*A)~'r¢v), do(t) by (5.7)

= J (To(A*A) 78 110, V) dU(P),

using self-adjointness of (A*A)™",

= J' J ((A*A) '8 110, 2g1/2[0,s]>v du(s) du(?)
= J j (18 10,0, (A*A)'76 110,01} » du(s) du(t)
= J' J (Cr& 10,61, C1dLio.)u du(s) du(?)

=4 J J’ K(s, t) du(s) dvu(t),
(b)

where K is as defined in (4.3). Combining (a) and (b) yields

1 1 2
(c) %" ™ol = J J’ K(s, ) dv(s) dv(t) ++ (ToB*, v)* = E(J’ Z, dv)
* 0
where Z, is as defined in (4.4). 0

REMARK 5.3. V. Fabian and J. Hannan have pointed out to us that the local asymptotic
minimax theorem Proposition 2.1 of Millar (1979) is incorrect as stated. The difficulty is
that a stronger definition of “convergence of experiments” than the one given by Millar
(1979, page 235) is required. A corrected version of the theorem with additional detail and
a variety of related material is given by Millar (1981b); or see Le Cam (1979). In our
present context, with the differentiability condition of our Proposition 2.1 and Lemma 2.1
yielding nice expansions of local likelihood ratios, the stronger convergence of experiments
necessary for (the corrected version of) Millar’s Proposition 2.1 is in force, and the
conclusion of the asymptotic minimax theorem holds.

6. Examples, continued. Now we return to the examples introduced in Section 1,
and show how they can be treated in the framework of Sections 2, 3, 4.

EXAMPLE 1la. One-sample location model with symmetry. 1If f(x; 0, g) = g(x — 6) for
symmetric g(g € %,) having finite Fisher information I, then (2.3) and (2.4) hold with
po(x) =p(x — 6) where p = —Y%gg™"* € L*(u); (AB)(x) = B(x— 0); and # = {B € L*(u):
B L g'%, B symmetric about 0} since g, g € % and ||n'*(g.* — g'*) — B||, — 0 imply
that B is symmetric. Thus Assumption S holds, and

(6.1) (0o, ABYu= (p, B), =0 forallfe %

since p = —%gg~"/* is odd (by symmetry of g) and 8 € & is even (symmetric). Hence the
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necessary condition (3.12) for adaptation is satisfied, and our Theorems 3.1 and 3.2 show
that the best possible asymptotic variance for estimates of 4 is 1/I, = 1/I, where I, = I,
= 4| p||%, the usual parametric information for § as if g were known. The adaptive
estimators of Stone (1975), Beran (1978), and others achieve this minimum variance. As
noted previously, Beran’s (1978) estimators even achieve our bounds “locally uniformly”
in g.

To describe the lower bounds for estimation of the df G corresponding to g € ¥,, first
note that A*B = B(. + 6), so that A*A = I = the identity, and hence Assumption I holds
with (A*A)™' = I. After an application of the probability integral transformation we can
assume that g = 1j,11, and that B € # = {8 € L’[0, 1]: 8 L 1 and B symmetric about %} .
Thus 7 : %o — % C %o may be defined by moB(¢) = %(B(t) + B(1 — ¢)),0 <t =<1, and easy
computation then shows that rmoB(¢) = #(78)(¢) where 7x(t) = W(x(¢) — x(1 — ¢)).
Straightforward computation shows that K(s, t) = s /A ¢t — st, so the process Z is Brownian
bridge on [0, 1], and #Z is the symmetrized Brownian bridge Z,(¢) = %(Z(t) — Z(1 — t)).
In view of Remark 4.2 and the preceding, 7Z, = nZ = Z, is independent of Z,,.

This example has been treated in considerable detail in a Berkeley thesis by Shaw-Hwa
Lo (1982); Lo (1982) also gives lower bounds for estimation of F = [_, f du (described by
Zs(F) — Z,fwith Z, and Z, independent as above) and, following Stone (1975), constructs
estimators which achieve the bounds asymptotically.

ExaMPLE 1b. One sample location model without symmetry. Let f(x; 6, g) =
g(x — 0) for T-centered g(g € ¥%r) having finite Fisher information I,; here T is a fixed
Hellinger-differentiable location functional (such as the median) defined for all g € ¥,
with derivative pr; see Beran (1977b). Since T(—X) = —T(X) for a location functional,
4. C Y.

Now (2.3) and (2.4) hold with py = p(- — 8), p = =% gg "% and AB = B(- — 6) as in
Example 1a, but 8 = {8 € L*(u): 8 L g% B L pr}. Again Assumption S holds, but the
condition for adaptation (3.12) fails; the subspace {A8 = B(- — 0) : B € A} is “too big.” Let
B* = (p — prllpr||"2); then B* L g'* and B* 1 prsince (B*, pr),. = (p, pr). — 1 =0 by
Theorem 2(ii) of Beran (1977b). Hence 8* € #. Furthermore, p — 8* = pr/| pr |2 L B for
all B € %, so B* satisfies (3.1). Thus I, = 4| p— 8*||%2 = 4/||prl|%, and the best possible
asymptotic variance for estimating § = T(f) is || pr||2/4. Thus our Theorem 3.1 gives
precisely the same result as Theorem 6 of Beran (1977b) in this case, but our method
allows for comparison with Example la where adaptation is possible. In the present
example, “analogue estimates” achieve the lower bounds: e.g. if T(g) = median of g, then
pr(x) = g(0) 'sign(x)g"*(x) so ||pr|%/4 = 1/{4g%(0)}, and this asymptotic variance is
achieved by the sample median.

To compute the bounds for estimation of G, note that A*A = I as in Example 1a, so
that Assumption I holds. By introducing the projection map m: %y — % defined by 78
= B — (B, pr)pr/| or|* and noting that (rom)* = mo7¢, it is easily found that the process
Z has covariance function

K(s, t) = (1078 Li—o,s1, T0TE Licen,t) V-

Letting B denote a Brownian bridge process on [0, 1], it is easily verified that K is the
covariance function of

Z=B%G)- 2, J 2(pr/llprl*)g"* du

—

where Z, = [ Ypr dB°(G) ~ N(0, | pr|*/4); note that Z, and Z are independent. Hence,
recalling the definition of Z, and that 8* = p — pr/|| or||® in the present case,

Z,=BG) - Z, J 208" du = B"G) + Z,g

—o0
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where Cov{B%(G(t)), Z,} = % [“. prg"? du. Under mild regularity conditions this bound
is achieved asymptotically by the obvious estimator F,(- + §.) where F, denotes the
empirical df of X’s iid F and 8, = T(F.,) is the natural analogue estimator of § = T'(f).

Related work on a robust version of this example, with emphasis on construction of
asymptotically optimal estimates, is contained in a Berkeley thesis by Neng Hsin Chen
(1980).

EXAMPLE 2. Mixture models. Let M = M(-; 6, $) be a family of density functions
(with respect to the dominating measure 1 on R') indexed by (6, ¢) € R?, and let f(x; 6, g)
= [ M(x; 6, $)g(¢) dp where g € %, a class of densities small enough that @ is identifiable.
Suppose that M, = (8/d0)M(-; 6, ¢) exists. Then, under some additional regularity
conditions on M and its derivatives, it seems reasonable to expect that (2.2) and (2.3) will
hold with

palx) = J My(x; 0, $)8($) do/2f"*(x)
and
AB(x) = j M(x; 6, $)B(9)8"* (@) do/f/*(x);

precise conditions under which this is true would be interesting and important. For this
model we do not yet know 8*, (A*A) !, or I,. The identifiability issue is important here
since smaller ¥’s will result in smaller subspaces 4. For many M’s, including scale mixtures
of normal densities, or mixtures of paired exponentials with common hazard ratio, ¥ may
be taken to be all densities on R* = [0, ); see Teicher (1961) and Lindsay (1980). Note
that this class of models is of interest even when the parameter 6 is known or vacuous and
attention focuses entirely on estimation of G. See Laird (1978) and Jewell (1982) for some
recent work on computational and consistency aspects (but not asymptotic efficiency) of
generalized maximum likelihood estimators of G in this setting. This class of models
deserves further study.

ExamPLE 3. Two-sample shift model. Our treatment of this model fits it into a one-
sample mold by introducing a (random) indicator variable and letting the two sample sizes
be binomial rv’s as in Bickel (1982). An alternative treatment would simply involve an
appropriate two-sample generalization of Proposition 2.1 and Lemma 2.1. Suppose that
(X1, Z1), - -+ (Xa, Z,) are iid with density function f (x, z) = f (x, z; 0, 5, g) with respect to
the product p of Lebesgue measure » and counting measure on R' x {0, 1} given by

f(x Z) = {f(x) 0) =}\g(x - TI),

flx, 1) =Ag(x—n—0),

where 0 <A< 1,A=1-\ 0 ER' n€ R and g € %r as defined in Example 1b. In
this model 7 is a one-dimensional or parametric nuisance parameter (which could have
been absorbed into g, but separating it out gives a more realistic two-sample problem when
£ is known), g € %r is an infinite dimensional nuisance parameter or nonparametric
component of the model, and 6, the “shift parameter”, is the parameter of primary interest.
Thus our calculations will follow the outline given in Remarks 2.1 and 3.2: For this model
it is easily seen that (2.3) and (2.4)" hold (assuming I, < ) with

_ | pelx, 0) =0,
pﬂ(x’ 2) - {pg(x, 1) = Al/zp(x -n- 0))
where p = —% g g7'/? as before;

_ |pn(x, 0) =20 (x —m)
Pl 2) = {pn(x, 1) =\ (x = = 6);
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and

_ (@B 0 =2"B(x — )
@R =) = {(AB)(x, 1) = A"B(x =1 - ).

Also = {B € L*(u): B L g"% B L pr} where pr € L*(n) is the derivative of the Hellinger-
differentiable functional 7T, so Assumption S holds.

By straightforward calculation B = (pg, ps), = A p||2, D = || p,||[|Z = || ||%, s0o BD™' =
A and pg., = pg — BD'p, is given by

_ [pon(x, 00 = =A2X p(x — n)
poa(%, 2) = {pa.n(x, 1) = M (x — n — 0).

Thus (0., AB), = —AX (p, B), + AX (p, B), = O for all B € B, the condition (3.12)’ for
adaptation to g € %r is satisfied, and the best possible asymptotic variance for estimators
of 8 is given by 1/I, = 1/(AX I,)) since I = 4 || pg.|l. = 4 A\ | p||2 = AN I, where I, = 4 [ p%dy
= [ (g%/g)dr. The adaptive estimators of Beran (1974) attain this bound.

Easy computations using Remark 3.2 also show that the effective score for 1 is (p,. —
AB*)(x, z) = N*(Ao + Mo/ || prl|3) (x — ), 2 = 0, = =X*A(p — pr/ || pr||2)(x =7 — 6), z =
1, with 8* = X(p — pz/ || pzll?). Thus the information for estimation of n is 4 p,.c — AB* ||
=M, + 4\%/| oz}

To find the bounds for estimation of G = [~.. g dv corresponding to g € %r, we first
compute A *a = A%a(- + 1, 0) + A2a(- + 1 + 6, 1) for a € L?(), so that A*A = I and
Assumption I holds. Since 8 1 pr for all 8 € 4, the same projection m, introduced in
Example Ib is required, and the process Z is exactly the same as was given there: Z =
B°(G) — Z [ 2(p1/|lprl|Hg'*dv with Z = [ % prdB°(G). Since B* = 0, Z, = Z is
independent of Z, ~ N(0, 1/I,) with I, = I, = AX,; note that Z % Z, in the present
example, however.

ExAMPLE 4. Cox’s regression model. To illustrate our methods, we follow Tsiatis’s
(1981) formulation of Cox’s model and treat the covariate Z as a random variable. Suppose
that the covariates Z,, -- -, Z, are iid with density 4 (z), the survival time X? and the
censoring time Y, are conditionally independent given Z;, and the triples (X?, Y,, Z;) are
mutually independent for i = 1, - - - , n. Further suppose that, given Z = z, X° has density
£(-|z) determined by the hazard function A(-|z) given in (1.1), and Y has density
c(-]2).

In this censored survival data problem, we observe the random vectors X; = (T, AL, Z)),
i=1,.-.,n,where T; = min{X?, Y,} and A; = 1 or 0 according as T, = X? or not. Thus
X, -+, X, are iid with density function f (x) = f(x; 6, g) with respect to the product
measure p. = » X (counting measure) X v on = R* X {0, 1} X R given by

f(x) = {g(t|2)C(t|2)h(2)}*{c(t| 2)G(t|2)h(z)}' ™, x=(tA, 2)E .

This model is slightly unstable for certain values of 8 and densities g. For example,
when Z has a Bernoulli distribution, g has bounded support, C(tlz) =1,and g, € ¥*
satisfy || n'*(gx* — g'%) — B||, — 0 where 8 has support outside that of g, then (2.3) fails.
We restrict attention to g,’s which are absolutely continuous with respect to & so that the
support of the resulting 8s is contained in that of g, and we assume that E {Z%xp(6Z)} is
bounded uniformly in a neighborhood of 6 as in Tsiatis (1981, page 95). Then (2.3) holds
with

Pe(t, A; Z) = '2]'- Z{A‘l - eXp(az) J lfd_ﬁG— }fl/z(t’ A) 2)
(6.2) ’

z{A + log G(t]|2)}f*(¢, A, 2)

[
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and

AB(¢ 4, 2) = {AR,B(t) —exp(HZ)J R,B }fl/z(t A, z)
(6.3)

= {AR,B(t) + exp(0z) f Bgl/zdv/é(t)}fl/z(t, A, z),

where RB(t) = B(t)g~"2(t) — [ Bg"*dv/G(t), and B = {B € L*(»): B L g"% support (B)
C support(g)}, so that Assumption S holds. For verification of (2.3) in the two-sample
case of Cox’s model without censoring, see Lemma 1 of Begun and Wellner (1982); the
details for the general case are similar to those of the two-sample case.

It is not hard to show in the present case that the condition (3.12) for adaptation fails,
and hence we need to find the projection of p, onto {AB: B € #}. Standard calculations
(as in Luenberger, 1969, pages 150-153), yield

M, Cop Mo _dG Y
A*AB(t) = {Rﬁ(t) g()t) J Rﬁﬁm }g (t)
0

where M;(t) = E {Z/exp(0Z)1(r>y ) for t € R* and j = 0, 1, 2. It is straightforward to verify
that

G ‘' 1-G dG
(6.4) (A*A)‘lﬂ(t)={R,8(t) M(t()” f RBTm}g‘/z(t).
o 0

Hence we find that

M (t) ‘M, dG } 12(¢)

(6.5) B*(t) = (A*A) 'A%y (t) = {Mo(t) , M, 1-G

With x = (¢, A, z) € Z, this yields

Mi(t) ‘M, dG ).,
AB*(x )——{ M(t) p(HZ)JO Em}f (x),

and therefore, by (6.2),

1 M, 1
(po = AB"X) = 5 {A<z - Mogi ) — exp(02) f (Z _M ) }fl/z( .

Then, by straightforward computation,

ETT P RO " TORY

-exp(02)G(t|z)C(t]z) ng()t) h(z) dv(z)
[T M) M) dG(t)
66 = fﬂ {Mo(t) Mo(t)Z}MO(t) eln)

© 2
=J‘ {Mz(t)_Ml(t)z} 4R 1)
L Me(t)  Mo(t)
* My (¢)

dF(t, 1) = 4] ps|)? =
Mo(t) F(t’ ) 4"p9"n IO’

0
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with < if 8 # 0, where the third line follows from Fubini’s theorem and the definition of
M, (t), and where the fourth line follows from

Mi(t)g(t)/G(t) = f e”G(t|2)C(t]| 2)h(2)dv(2)g (8)/G(¢)
(6.7) =j g(t|2)C(t| 2)h(z)dr(z) by (1.1)

= J’ f(t 1, z)dv(z) = F'(t, 1)

where F(t, 1) = P(T < t, A = 1) is the subdistribution function of an uncensored
observation. The smallest possible asymptotic variance 1/I, for this model is attained by
the Cox (1972, 1975) partial likelihood estimator; see also Efron (1977), Chapter 4 of
Kalbfleisch and Prentice (1980), and Tsiatis (1981).

To describe the bounds for estimates of G (on an interval [0, T,] with P(T > T,) > 0),
we first compute the covariance function K of the process Z in (4.4). By direct calculation,
R(l[o,g] - G(t))g1/2 = l[o,t]G(t)/G, SO that, by (64),

- A 100 lpg dG
(A*A) H{1pg — G@))g? = G(t) g _ 1/2
[0,61 74 M, i M, 1-G g

and hence that
K(s, t) = ((1pq — G(s))g"*, (A*A) (g — G(£))8"*),

_ - dG [~ "oy dG
=Gt Lo liog o — . oG
® <f0 oo M, 0 o ]{fo M 1-G } dG)

(6,8) B SAL dG SAL B _ 1 dG
=G(t><JO E_JO (G‘G(S”ET>

G

sAt
— _ 1
by (6.7). Next, using (6.5), Fubini’s theorem, and (6.7), we find that for 0 =t < T,

j 2B*g"dv = —G(¢) J (M,/MB)dF (-, 1).
0 0

Thus the process Z, of (4.4) becomes, in this case,

Z,=27+ Z*C_}f (M,/M§)dF (-, 1)

0

where Z is a mean zero Gaussian process on [0, T,] with covariance K given by (6.8)
independent of Z, ~ N (0, 1/1,,) with I, given by (6.6); this is precisely the limit process of
the estimator of G derived by Breslow (1974) as the nonparametric maximum likelihood
estimator of G under § = the Cox partial likelihood estimator; see Efron (1977) and Tsiatis
(1981) Theorem 5.1 and Lemma 6.2.

To illustrate Remark 4.5, consider estimation of the survival function for an individual
with covariate 2o: i.e. G(¢]20) = G ()% = ¥ (0, G)(t) for 0 < ¢t = T,. It is easily shown
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that ¥’ (A, A)(¢) = exp(020) G (| z0){z0h log G(t) — A(t)/G(t)}, so that
V'(Z,, Z,)(t) = —exp(020)G(t]| 20){Z, (t)/G(t) — 20Z,log G ()}

= —exp(OZO)G(tlZo){Z(t)/G(t)

+Z, (J (M,/MG)dF (-, 1) — zolog GU))} )
0

a mean zero Gaussian process with covariance function

_ _ M 1 ([ (M 1 }
= o202 — . — L _ — dF(-,1
K. (s, t)=¢e G(s|zo)G(t|20)[J0 W dF(-,1) + T. {J; (Mo zo> 7 (-, 1)

by using (6.7), where I, is given in (6.6). This agrees with Lemma 6.2 of Tsiatis (1981).
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