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SMOOTHING SPLINES: REGRESSION, DERIVATIVES AND
DECONVOLUTION!

By JouN RICE AND MURRAY ROSENBLATT
University of California, San Diego

The statistical properties of a cubic smoothing spline and its derivative
are analyzed. It is shown that unless unnatural boundary conditions hold, the
integrated squared bias is dominated by local effects near the boundary.
Similar effects are shown to occur in the regularized solution of a translation-
kernel integral equation. These results are derived by developing a Fourier
representation for a smoothing spline.

1. Introduction and summary. We consider statistical properties of smoothing
splines and related procedures. Given x; = f(¢;) + &, 1 =1, - - -, n where f is an unknown
smooth function and the & are random errors, a cubic smoothing spline g(¢; A) is the
function which minimizes

(L.1) %2&1 {x; —gt)}> + A j {g” ()} dt.

Smoothing splines were proposed by Whittaker (1923), Schoenberg (1964), and Reinsch
(1967). Some analysis of their statistical properties in the case that g and f are periodic
appears in Wahba (1975) and Rice and Rosenblatt (1981). The method of cross validation
for choosing the smoothing parameter A from the data has been discussed in Craven and
Wahba (1979).

Smoothing splines may be viewed in a larger context. Given x; = (Af)(t;) + & where A
is a linear operator, a “regularized” estimate of f is the function g which minimizes

(1.2) ,—112,'-'.,1 {xi — (Ag) (&)Y + A j {g” ()} dt.

Frequently Af is of the form
(1.3) AfN@ = f k(¢, s)f(s) ds.

Many examples of this type may be found in Tikhonov and Arsenin (1977). The method
of regularization is used to control the instability that would arise if one tried to invert A
or A*A. The regularized solutions have a formal resemblance to ridge-regression estimates;
in both cases the variance of the estimate is reduced at the cost of increasing bias. Although
there is a large literature on this topic, there has been relatively little analysis of the
statistical properties of the solutions (however, see Wahba, 1977).

In this paper we examine two cases of (1.3), numerical differentiation

(1.4) (A1) (@) =J f(u) du
0
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142 JOHN RICE AND MURRAY ROSENBLATT

and deconvolution,

1
(1.5) (Af) (@) = f w(t — s)f(s) ds.
()

We next summarize and discuss our main results. Derivations and some further results are
contained in later sections. We first deal with a cubic smoothing spline.
Consider observations :

xr = f(k/n) + e, k=0,1,---,n,
with f continuqusly differentiable, f” € L? and the ¢, random variables with
Ee, =0, Eeei=8j0°, ¢°>0.
We wish to determine a continuously differentiable function g = g(¢; A, n) with g” € L?
that minimizes
2

(1.6) 1[1 {xo + x, — g(0) — g(1)}% + Nict {xk - g(f)} ] +A J' {g” ()} dt.
n|4 n b

Here A = A(n) > 0 and the object is to determine A(n) as a function of n so that [{ E {g(t)
— f()}*? dt tends to zero as n —  at a rapid rate. The term %(x, + x,,) — %{g(0) + g(1)}
appears in (1.6) because one wishes to allow for the possibility that f(0) # f(1) and in that
case the Fourier series of f(¢) will converge to %{f(0) + f(1)} at ¢t =0, 1.

THEOREM 1. Let f € C2 If X*(n)n® > o, \(n) > 0 as n — « then

f a(g(t))dt =

2y —1/4

3.2772

THEOREM 2. Let f € C*. Assume that A*(n)n® — o, A\(n) — 0 as n — «. Then if f®(0)
orfP1)#0

J (Eg(t) — f@t))2 dt = [{f®(0)}* + {2 Q)2 N2
while if f®(0) = f?(1) = 0 but f(0) # 0 or f¥(1) # 0 we have
f {Eg(t) — f(t)}2 dt = [{f(3)(0)}2 + {f(3}(1)}2])\7/43.2—3/2.

A common reason for nonparametric data smoothing is to calculate an estimate of the
derivative of a function. Schemes for numerically differentiating noisy data that are closely
related to the derivative of a smoothing spline have been proposed in Cullum (1971) and
Anderssen and Bloomfield (1974). The properties of the derivative of a smoothing spline
follow fairly directly from the properties of the smoothing spline itself.

THEOREM 3. Iff€ C? and if \n® — w0 as n — © and A — 0, then
1 2
f 0™(g'(1) dt = T A2 4 o(n TN,
0
THEOREM 4. Assume that f € C*, and that A\n® — «. Then if f®(0) # 0 or f?(1) # 0
1
f {(Eg'®) - {0 dt = [{fPO)) + {fP (D) ]-N/*.3.27%2
0

2?0 = f21) =0, but f(0) or f¥(1) # 0 then
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J [Eg'(t) = f'®)F dt = [{fP0) + {fO Q) N*.3.272
0

Comparing these results to Theorems 1 and 2 we see that the variance and integrated
squared bias of the derivative are a factor of A™/? larger than the variance and integrate
square bias of the function itself.

Theorem 2 shows that the integrated squared bias is dominated by contributions from
the boundary unless g satisfies the condition g®(0) = g®(1) = 0, £ = 2, 3. Lemma 6 of
Section 3 gives a local approximation to the bias in the case that these conditions are not
met. Roughly, the bias decays like exp(—27**A""%¢) trigonometrically modulated. In the
interior of [0, 1] the squared bias is proportional to A%

These results are not unexpected. The smoothing spline is a “natural” spline and
satisfies the two arbitrary end conditions f”(0) = f”(1) = 0. In the context of pure
interpolation the use of a natural spline is usually not recommended since the error near
the ends is of order A% where 4 is the mesh size whereas other methods can produce an
error uniformly of order A*, if f € C*, de Boor (1978), Powell (1981). Similarly, it can be
shown that the boundary effect dominates the integrated squared error, Rosenblatt (1976).
In the nonstochastic framework, methods of estimating the boundary constraints have
been proposed in these references and it would appear plausible that a similar approach
might work in the stochastic case.

If cross-validation does approximately minimize the expected sum of squares of devia-
tions, it must be heavily influenced by these boundary bias effects. There are other
techniques not sensitive to such boundary bias effects. For example, kernel regression
estimates can be appropriately modified near the boundary so as to remain uninfluenced
by such effects (see Gasser and Miiller, 1979).

Natural splines in the nonstochastic setting and smoothing splines in the stochastic
setting are the optimal solutions of certain minimax problems; see Powell (1981) and
Speckman (1981). It appears that flexibility is lost by guarding against worst cases.

Smoothing splines have also been proposed in the case of spectral density estimation
(see Cogburn and Davis, 1974, and Wahba, 1980). Boundary effects similar to those studied
here occur in the case of periodic smoothing splines unless the function is smoothly
periodic (see Rice and Rosenblatt, 1980). The aliasing in the case of spectral analysis of
discretely sampled data implies that boundary behavior will not be smooth in this context.

In the deconvolution problem we consider observations

xk=F(k/n)+£k, k=0,.--,n,

where F(k/n) = [§ w(k/n — u)f(u) du, with f” € L*? and the & uncorrelated random
variables with mean 0 and variance o. The regularized approximation to f is the function
£ that minimizes

2 1

1.7) 1 {xo +.x. — G(O) — G(1)}* + 1 )y {xk - G(f)} +A f {g”(t)} dt.
4n n n b

Here G(k/n) = [§ w(k/n — u)g(u) du. The kernel of the integral equation, w, is the periodic

extension of a function defined on [0, 1], and it is assumed that w € L% We assume that

the Fourier coefficients w; of w are nonzero for all k.

The constants that occur in the asymptotic expressions for the components of the
integrated mean square error depend on the exact form of w, but the rates of decrease
depend only on the rate of decrease of the Fourier coefficients w, of w. Paralleling
Theorems 1 and 2 we have

THEOREM 5. Let f € C? and suppose that |wy.|*> ~ k™%, 8> 0. If \sn**® > o

J o2(g(t)) dt ~ n~I\"@EHV/ @8
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F1c. 1. Bias in estimating f(t) = cos(2wt) + 4 cos(wt). A = 1076,

THEOREM 6. Let f € C* and suppose that |wy|*> ~ k™%, 8 > 0 and An**® - » as
n— o, Then if f”(0) or f”(1) #0

J {Eg(t) — f(t)} dt ~ N+,
Iff7(0) = f(1) = 0 but f©(0) or fP(1) # 0, then

j (Eg(t) — f(t)} dt ~ N/@8+9,
IFf®(0) = f®(1), k = 2, 3 then

j {Eg(t) — f(t)} dt ~ N+,

Analytic expressions for the approximate local bias are not available, but the qualitative
behavior is similar to that of a smoothing spline.

Note that if w is very smooth, B is large, and the integrated mean square error will tend
to zero relatively slowly.

We have been informed by a referee that there may be some overlap of our results with
an unpublished Ph.D. thesis of M.A. Lukas at the Australian National University.

2. Examples. The function f(t) = cos(2nt) + 4 cos(wt) satisfies f”(0) = —8=2, f”(1)
=0, f”(0) = f”(1) = 0. Figures 1 and 2 show the exact bias of the smoothing spline
estimate of the function and its derivative for 50 equi-spaced sampling points and A = 10~°.
The effect of f”(0) is clearly evident. The asymptotic analysis (Lemma 5) predicts that the
bias,

b(t) = /(0N 2exp(—t 272\~ /*) (sin(£ 272\ ~/4) — cos(t 272\ "4},
From this expression we see that the first zero-crossing of the bias should occur at ¢ =

aA/427%2 = 0,035 and that b’(¢) should be zero at ¢ = #A/*2~/2 = (.070, which is borne out

in Figure 1. Figure 2 shows that the bias of the derivative is larger by a factor of about
A4
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Fic. 2. Bias in estimating the derivative of f as in Figure 1. A = 107°.

We next consider the deconvolution problem wherein fis convolved with a function w,
the graph of which is an isosceles triangle centered at 0 with height 20 and base 0.4. This
is intended to correspond to a situation in which averaged values of f are measured with
error. Since the analysis of Section 4 requires that w be periodically extended, the triangle
is also centered over —1 and 1. To calculate the bias, (1.7) was discretized assuming 25
equi-spaced observations and the solution was computed at 50 equi-spaced points. Other
mesh sizes were tried to ensure that the results did not merely reflect the discretization.
The calculations were done on a VAX 11/80 in double precision. Figure 3 shows the bias
for A = 107% there is a clear effect near 0 and also an effect near 1. The shapes are
qualitatively similar to Figure 1.

Since the assumption that w is periodically extended is clearly somewhat artificial, we
also computed the bias for w just corresponding to a triangle centered over 0. The resulting
bias is shown in Figure 4. Here the only effect is near 0; the effect near 1 of Figure 3 is
apparently due to the periodicity of w.

3. The smoothing spline and its derivative. In this section we derive Theorems
1-4 and some auxiliary results In order to do this we carry out a Fourier analysis of the
smoothing spline.
Notice that

1

(31) &r = f 2aikt (t) dt = Ag"ah - Aglbk + hk bk
0

for k # 0, where Ag®=g(1) — g(0), ar = 1/(2mik), Ag' = g'(1) — g(0), br = 1/(2mik)%, Ay
= J‘(l) e2mhtg//(t) dt.
Let

1/2(x0 + x,) if j=0,

Yi=

% if j=1,.-,n—1,
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F1G. 4. Bias in deconvolving f in a noncircular case. A = 1078,
and set
yi= —1; Y224 yrexp(2mijk/n).

Given a sequence of coefficients p;, we will let pf” denote the corresponding set of aliased
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coefficients arising in a discrete Fourier analysis

P =32 wprim, E=0,1,--.,n—1

Also let
ﬁ(g") = p(()") —Po= Zs#Opsn
and
(3.2) Se=2E — Ag%af? + Ag'BY, k=1, ,n—1.
N

LEMMA 1. Letfand Ag’, Ag' be given. Assume that f, g are continuously differentiable
with f”, g” € L2 Then the function g minimizing (1.1) is determined by the following
specification on Fourier coefficients:

A

(3.3) g0 ="22 — Al + Ag'be”,
N/
(3.4) hyn=0 for s##0,
1 R
(3.5) Rrssn = Tt brvsnln

fork=1, ..., n—1and integral s, where

(3.6) Ag = {zz;} I ap/n + rk>}{zs:;% a2/ + 7)),
Vn

(3.7) Agt = —{zz;} L b/ + rk>}{1 + SR B PO+ )
Jn

and ry, = Y. {2n(k + sn)}*.

The Parseval relation implies that (1.1) can be rewritten as
2

a 2 a
e8| i | 2T gl + ag'b = (i)
n n

(3.8)
+ }\[(Agl)z + Zk#OZsl hk+sn|2 + 23#0' hsn|2]~
In minimizing this expression, one can separately minimize the sum of the terms with &

fixed for each value of 2. Minimizing for 2 = 0 leads one to (3.3) and (3.4). For £ # 0 we
have

(3.9) Mitsn = {ék - (hkbk) (n)}bk+sn~

Multiplying by b+s» and summing over s leads to
(n) - ék Tk
(3.10) (hxb) o

and this together with (3.9) leads to (3.5). If we insert (3.3), (3.4) and (3.5) in the expression
(3.8), the result can be written as

(8.11) A Agt|2+ AYEc]

| 2x|°

}\+I‘k'

Minimizing this expression with respect to Ag® and Ag' leads to (3.6) and (3.7).
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LEMMA 2. The function g minimizing (1.1) has Fourier coefficients

yo 17 (n)
(3.12) & ==+ Ag'bf”,
*
(3.13) Gon = A% — Ag'bsn  for s#0,

and fork =1, --.,n — 1 and s integral

1
A1

(3-14) Br+sn = Ago{ak+sn - I bk+sn '2a}¢")}

I bk+sn|2 _yi

1
- ! -3 . +sn2 ™ + ’
Ag{b’”” i "o } A+re Jn

with Ag® Ag' given by (3.6) and (3.7).

The fact that G§” = 0 and (3.3) holds lead to (3.12). Also (3.4) and (3.5) inserted in (3.1)
yield (3.13) and (3.14).

The integrated mean square error of g(¢) as a function of f(¢) is
1 1

Var{g(¢)} dt +J' {Eg(t) — f(2)}* dt.

0

1
(3.15) j E{g(t)—f(t)}zdt=f
0

0

Moreover

1
(3.16) j Var{g(t)} dt = Var(go) + 2 },#-1 Var(g).
0

It should be noted that the g,’s are complex-valued random variables. The covariance of
two complex-valued random variables U, V is understood to be cov(U, V) = E{(U —
EU)(V — EV)}. We shall now derive Theorem 1. Notice that Ag® and Ag'® are real even
though they are written in complex form. It is clear that

P 1
(3.17) cov(y;, yr) = (8,-,k ~ 5 >02

forj,k=0,1,-.-,n — 1. From (3.17) and (3.6) and (3.7) which give expressions for Ag’
and Ag', it may be shown via integral approximations to certain sums that if An* — « as
n— o the variances of Ag® and Ag' are approximately

2
(3.18) oX(Ag%) = % C.CroA~v*,
2
(3.19) . oX(Ag") = % CiC32\ /4,
where
_ | 27x | _ | 27 | ¢
G = |27rx|4+1dx’ G = (|277x|4+1)2dx’

dx _ | 27 |*
Ca_j|2wx|4+l’ Ci= 2mx | + 12

The term

I bk+sn |2a}zn) |2

n—1 —
(3.20) Es 2k=1 |ak+sn }\ + 1y

occurs as a coefficient of 0%(Ag°) in contributing to (3.16). However, (3.20) can be
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approximated by

| 2ik | = NG,

2
(321) N o BTk E D

with an error O(n™") if A(n)n* — » as n — o. Similarly, the term

1
(3.22) Yo Thzt | Brron — X | brssn |20 |2
'k

which arises as a coefficient of 6*(Ag") can be approximated by

| 2arik |*
N2k F 1
with an error O(n~?) if A*(n)n® — « as n— . The estimates obtained for (3.20) and (3.22)
imply that the contribution to (3.16) from the terms involving Ag® and Ag! in (3.14) is
O(n™") if \*(n)n® — « as n — . Now consider the contribution from the last term on the
right of (3.14). We shall see that it makes the major contribution to the integrated variance.
The expression

(3.23) ATy A¥1C,

— bk+sn I
3.24 oy |
( ) 2 Zk |)\ +ry |2
can be approximated by
1 1 A
(3.25) Yo<iki<ns2 ([2nk " + 1) 25 h Cs,

where

dx
C = ———
° f (| 2mx|* + 1)2
with an error O(n™") if A(n)n® — ® as n — «. Theorem 1 follows from these estimates.

Our next object is to derive Theorem 2 for the integrated squared bias of g as an
estimate of f. Notice that for % # 0 we have

1
(3.26) fr= j > f(t) dt = Af°ar — Af by + my, by
0
with
1
(3.27) ‘ my = f e (t) dt.
0

Using (3.26) it is clear that
%{f0) + f(1)} = The—w fo = k0 F17,
(3.28) F(j/1) = 35— fr exp(~2mijk/n)
= Y2343 fIP exp(—2wijk/n), j=1,...,n—1.
This implies that
(3.29) Efj/Vn=f", j=0,1,-.-,n—1
From (3.26) it follows that
7 =Afa” — A5 + (m;b))™, j=1,.-.,n—1.
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Relations (3.6), (3.7), and (3.29) imply that
(330)  EAg°=Af"+ {Ti= (mebr)™af? /(N + re) IR | @ |2/ (A + 1))
and
EAg ' =Af[1— {1+ 351|087 12/ (A + 1)} ]
— {2kt (mab) DL /(A + 1)1 + i1 [ 68712/ (A + r)) 7

Since we are dealing with real-valued functions f it follows that

(3.31)

m = fﬁ_k
and
(mrbr)™ = (m_pb_p)™.

These last two relations together with (3.30) and (3.31) imply that

(27k)Im my k) 1™
_ O IV T AT
(3.32) EAg - Af°= {Zk— T+ 2,,k|4}{2” T Al 2wk|“}
and
Re m; 1 -
1 _ 1~ ® " ) .
(3.33) EAg — Af'= {Zk_ T }\|2Wk|4}{2k T M2Wk|4}

If f € C® one can see that

1
Rem; = J’ f”(x)cos 2mkx dx
0

(3.34)
"1
= j 3 {f"(x) + f”(—x)}cos 2wkx dx
0
and
1 1
2ak Im my, = 27k J’ f”(x)sin 2wkx dx = =Af + j F®(x)cos 2rkx dx
(3.35) ° 1 °
=-Af%+ f % {(®x) + f®(—x)}cos 2mkx dx
0
with

Af? = A1) — £2(0).
From (3.14) it follows that for k=1, ---,n — 1

Brvon |
Egk+sn - ﬁ3+sn = (EAgO - Afo){ak+sn _m a}em}

A+
(3.36) — (EAG" — AfY) Brven — [ breon[* b
. sn A ¥ s
+ (mab )""—| Drvan|” _ Mirond
k Ok )\+ e k+sn Ok+sn «

Further, if f € C* we have
(3.37) my, = AfPar — Af%r + f10br
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with Af2 = f@(1) — £2(0), Af> = @) — 0, 2 = [3 exp(2mikt) f* (¢) dt. The last
term on the right of (3.36) can then be rewritten as

2 N 2
Af? (akbk)("}l%-m—l — Gpssnbprsnp — AF? (bi)(")-lk'-"i — bieen
(3.38) A+ A+ 12

020 [Brean]®
+{(f}e bk) A+rk f+snbk+sn .

Let
2
Ao(t) = =Y Yioi {(bﬁ)m)l}l\’_":% - bi,,s,,}exp {—2mi(k + sn)t},
k
brsn|? ,
A(t) = =% Tt {(ak bk)m)l}\_”i.% - ak,,snbkﬂ,,}exp {—27i(k + sn)t},
2 .
Ax(t) =Y Trt {b,mn - l%_-mr—l b}{"}exp {—2mi(k + sn)t},
k
2
As(t) =Y, {ak+sn - l%’:_‘"r_l af }exp {—2mi(k + sn)t}.
k
Set
2mik)’ e :
Bi(t) =A ZMX@(—W:;T)_'_—Iéxp(—2mkt), j=0123.

LEMMA 3. IfA°n®— o, A — 0 as n— « then
1
(3.39) J’ |A;(t) — B;(t) | dt = oNT¥7*),  j=0,1,2,3.
0

Also [§|B;(t) |* dt tends to zero at the rate of A4 G=0,1,2,38.

The estimates required for this lemma parallel those used to obtain (3.21) and (3.23).
We wish to get more convenient representations or estimates of the B;(t)’s. A contour
integration shows that

1 e 1 _
- —|¢2-1/2 —1/2 . 2_1/2 )
Co(t) = J T < dx —2& e {cos(t27"?) + sin (| ¢| )}

Successive differentiation then indicates that

eix 1 _
___ —|2712 i (497172
Cl(t) J 1T -3¢ sin( )

1 (lx)z 1 e —1/2 —1
=— - 971/2
Ca(t) = f 1T 2 dx 2\/ée {sin(| ¢] 27/%) — cos(t )},

ltx
(tx) 1 —|t|2-1/2 —1/2
== = 2712),
Cs(t) J T a7 dx 5 580 te cos(t )
An application of the Poisson summation formula tells us that
(3.40) B;(t) = A¢4Y, Ci((k — OAV).

Only the terms in the sum (3.40) corresponding to & = 0 k = 1 need to be considered since
the sum of the remaining terms die off at the rate e —eA"* with a a positive constant. Notice



152 JOHN RICE AND MURRAY ROSENBLATT

that the formulas for the C;(t) above imply that

Ci=C=—to.
R

LEMMA 4. Assume that f € C*. Then if Af>#0
(3.41) EAg® — Af° = —AV2Af?
while if Af>=0

(3.42) EAg° — Af°= 2«/5}9“%{ £O0) + f@1)}.
IfF f®0) + f2(1) # 0 we have

(3.43) EAg' — Af'= —2«/§>\1/4%{ £20) + F21)}
and if f20) + f®1) =0

(3.44) EAg' — Af' = AfPA2

as A = A(n) - 0.

The asymptotic relations (3.41) and (3.42) follow from (3.32), (3.35) and (3.37). Formula
(3.43) is a consequence of (3.33) and (3.34). If f2(0) + f?(1) = 0, since ¥, Re ms = %{ f?(0)
+ f®(1)} one can see that

Rem, A(27k)* Re my,
(3.45) 11T A@Tk)* X7 A@rk)*
However by (3.37)
3
(3.46) Rem, = ?2A§€—)2- - W j {F9x) + f9(—x)}cos 2nkx dx.

This implies (3.44).

LEMMA 5. Letf € CL Iff?(0) # 0, f?(1) = 0 then
Eg(t) — f(t) = fO O\ e

(347)

- {sin(t272A74) — cos(£27V2ATV4)) + e(t),

0 < t < 1, where the error term e(t) is such that

(3.48) > f {e(t)} dt = OU {Eg(t) — f(&)} dt) .
IfFf®0) = f2(1) =0, f®(0) # 0, f@(1) = 0, we have
(3.49) Eg(t) — f(t) = fOONY*V2e 2" cos(¢27/2A7/%) + e(t)

0 < t < 1, where the error term again satisfies (3.48). The approximations appropriate for
the cases f?(0) =0, f?(1) #0 and f2(0) = f?(1) =0, f®(0) =0, f®(1) # 0 are obtained
by replacing t by 1 — t in the main expressions on the right of (3.47) and (3.49) respectively.

We next consider the variance and bias of the derivative g’ of the smoothing spline.
Theorems 2 and 3 follow from the previous analysis of g, after noting that the Fourier
coefficients of g’ are
(3.50) go=Ag°
(3.51) gh=arAg"' — arhy, k#O.
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We first consider the integrated squared variance
V=7 o®(gh).
From (3.18), 6%(g) = (6%/n) C.CT2A~Y* As in (3.14)

1
ak+snAg1 = Qr+snPrssn = ak+snAgl<1 - m bk+snb}em)
(3.52)

ak+snbk+sn&
A+r \/; ’

Estimates similar to those used in the analysis of the smoothing spline show that the
contribution to the variance from the first term is of order A~/2n~", The second term gives
a contribution of order A™/*n""; the third term dominates, giving a total contribution to V

+ Qrton a}e”) Ago -

(27x)?

0
.53 = — )\
(3.53) n IR {@mx) + 137 dx.

Next, the bias:
(354) Eg;€+sn - f/'k+sn = Qk+sn (EAgl - Afl) = Qk+sn (Ehk+sn - mk+sn)
which, as in (3.36), is equal to

' n) o (n)
(EAgO Afo)w"- (E'Agl _ Afl)(ak+sn _ b}z }\a: fk+sn)
k
3.55
( ! _ (my. br) (n)bk+sn —m
@ A+ e k+sn | -

Making approximations as in the analysis of the spline function itself,

Eg'(t) — f'(t) = (EAg" — Af°) + (EAg’ — Af)A"'Bo(¢)

+ (EAg" — AfY)Bs(t) + Af2B:(t) — AFPB: (¢).
Using the Poisson-summation approximation and Lemma 4 if £ (0) # 0, f@(1) = 0,
Eg'(t) — f'(¢) = f?(0)2"2\*e ™ "cos u
where u = 27V2A7V4 If fP(0) = f®(1) = 0, and fP(0) # 0, f¥(1) =0
Eg'(t) — f'(t) = — fP(0)A%e“(sin u + cos u).

Note that the approximate (in an L. sense) bias of the derivative is the derivative of the

approximate bias (Lemma 5).

4. Deconvolution. We now sketch the development of the deconvolution results.
Since this parallels closely the derivations of Section 3 the presentation will be somewhat
sketchier. As before let g have Fourier coefficients

(4.1) &r = Ag°ak - Aglbk + hebr, B#0
and let
G = WrEr, Ar= wrar, Bp= wkbk, H, = w,brhs

and define y; as in Section 3. Then (1.7) may be written as

42) lf— —Go- G G("' +A[Ag)? + X Y | Ajon |1,

n

+2k

Minimizing the Oth term gives A, = 0, s # 0, and Gy + é&’” = /Nn.
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As in the analysis of Section 3, we first fix Ag’ and Ag' and minimize with respect to the
h/s. If

éj=%_Ag0Al(n) +Ang}n).

Then (4.2) becomes

(4.3) Y2, — H"|*+ A(Ag")? + XX | Hevon |?| Bissn] ).
The minimizing coefficients can be calculated to be

g,

(44) hj+mn = Bj+sn A—_:F?J

where p, = Y2« | Bj+w |* Now to calculate the minimizing Ag’ and Ag', this solution is
substituted back into (4.3) and minimized with respect to Ag° and Ag' yielding

4.5) A = {Re 2L AP N+ p,)—l}{z' |AP 20+ p) ™)
Vn

6  Ag'= —{Af‘ +Re Y %B}”’ ™ +p,~>‘}{1 +SIBSPO+p) Y
n

We next consider the integrated squared variance, which is the sum of the variances of
the Fourier coefficients of g. Now, from above,
bjvn | WissnAS” b)vsn|*Wjr snB”
Bj+sn = Ag0<aj+sn —Q_'L[F—.I— + Agl bj+sn —|_.{+_|_£L
4.7 A+pj A+ pj
| bj+sn | 2u_)_j+sn jj_.
Ap Vn
Via approximations similar to those in Section 3, it may be seen that the first two terms
contribute a net variance of order n~'A~%/@*9 whereas the third term contributes the
dominating variance, which is of order n~'A~®F* /89,
If we write the Fourier coefficients of f as
4.8) fr = Af°ar — Af' b + my

and take expectations in (4.7), the bias of the (j + sn)th Fourier coefficient may be
expressed as

+

BDrtsn 2w A (n)
Egk+sn - ﬁe+sn = (EAgO - Af0)<ak+sn —uj;‘.i—k—)

)\ +pk
_ 1_ 1 _ |bk+sn|2u—)k+snB;en)
(4.9) . (EAg' — Af )<bk+sn Tt
| bk+sn |2u—7k+snM}en) -m b
A +pk k+snUOk+sn-
As in Section 3 for || =n/2,k#0
Aay Abr Aay by
—- P~ 0 __ A 0y TR E 1 _ 1 + A 2
Eg. — fr = (EAg f))\+|Bk|2 (EAg Af))\+|Bk|2 f)\+|Bk|2
AbE MNP bi
3
- + .
A A+ |Bi|2 A+ |Be|®
If we let
4-J
. j = r— 3 —2mi, s = 0) ) 2, y
(4.11) Di(t) =AYk VAR exp(—2mikt) J 1,2,3
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(note that || D, || ~ A7~%/¢+26) then
4.12) Eg(¢) — f(¢) = (EAg® — Af°)Ds(¢t) — (EAg' — Af')D:(¢)
. ()2
' + AFPDi(t) — AFPDo(t) + A Y ——= " exp(—2mikt).
D (t) Do (t) Z}\+|Bk|2eXp( wikt)
The functions D, (¢) play the role of the functions B, (¢) of Section 3. Although their exact
analytical forms depend on w, they are, like the B,’s, successively odd and even, and are

increasingly peaked near 0 and 1 as A — 0.
We now consider the individual terms in (4.12). From (4.5) it follows that

_ S mpBrAr(\ + pr) 7!
Y AP+ pa) 7!

EAg° — Af°

The denominator can be estimated to be ~ A*®*% _If Af? 5 0, the numerator is
= AP | B+ p) ' ~ ATV,

In combination with D; this gives a net contribution to the integrated squared bias which
is ~A>CF+9 1f Af? = 0 the numerator is = { f®(1) + f®(0)}/2, giving a net contribution of
order A/ If f®(0) = f*(1) = 0 k = 2, 3 the net contribution is O (A?).

Next,
Af' + 3 m; | B, |*A + pa) !

1+ Y| B’ + pe)
The denominator is ~ A™'®*% and if f®(1) or f®(0) # 0 the numerator is = {f®(1) +

£®(0)}/2. This gives a net contribution to the integrated squared bias of order A* @+ If
both second derivatives are zero the numerator is

EAg' — Af' =

by, .
=M TEE TN

giving a net contribution of order A”/®***%_If both second and third derivatives vanish at
1 and 0, the net contribution is O (\?).

The last term in (4.10) can be estimated to make a contribution to the integrated
squared bias of order A%
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