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ASYMPTOTIC EFFICIENCY OF THREE-STAGE HYPOTHESIS TESTS!

BY GARY LORDEN

California Institute of Technology

Multi-stage hypothesis tests are studied as competitors of sequential
tests. A class of three-stage tests for the one-dimensional exponential family
is shown to be asymptotically efficient, whereas two-stage tests are not.
Moreover, in order to be asymptotically optimal, three-stage tests must mimic
the behavior of sequential tests. Similar results are obtained for the problem
of testing two simple hypotheses.

1. Introduction. Multi-stage hypothesis tests have obvious practical advantages over
fully sequential tests in many situations and can be expected to have part of the efficiency
advantage of sequential tests. Can they be asymptotically efficient when compared with
sequential tests? If so, how many stages are required to do it?

The present investigation shows that in the contexts of Sequential Probability Ratio
Tests (SPRT’s) and Schwarz’s (1962) tests for the one-dimensional exponential family, the
answer is yes and that three stages are needed except in degenerate cases. The asymptot-
ically efficient three-stage tests must necessarily imitate the behavior of asymptotically
optimal sequential tests (see Remark 1 of Section 6). They can be constructed as follows.
Take m observations in the first stage, and then stop if the corresponding sequential test
would stop; otherwise determine a time N, = m + 1 to end the second stage, N: being
designed to slightly overestimate the stopping time of the sequential test. If at N, one is
still within the continuation region of the sequential test, then continue until time 7z, when
the third and final stage terminates. Thus, in any case the total number of observations is
at least m but does not exceed 7. The ideas developed in the proof of the main theorem
suggest that the same sort of recipe works in quite general contexts for sequential testing,
such as that of Kiefer and Sacks (1963).

Multi-stage tests in the SPRT context are discussed in Section 2, and the main result
for exponential families is derived in Section 3. The results of Section 4 show that two-
stage tests generally have asymptotic efficiency less than one, and that asymptotically
optimal tests of three or more stages have asymptotically negligible final stage. Section 5
derives some lower bounds on expected sample sizes that are refinements of an inequality
of Hoeffding (1960) and are useful in the proof of Theorem 1.

2. Multi-stage competitors of the SPRT. A natural starting place for the investi-
gation of the asymptotic efficiency of multi-stage tests is the problem of deciding which of
two given densities, fand g(f# g), is true based on independent and identically distributed
observations. Let f, and g, denote the likelihoods after n observations and denote the usual
information numbers (assumed finite) by

I(f, 8) = Eflog(fi/g) and I(g, )= Elog(g/f).
It is well-known that the optimal tests are SPRT’s with expected sample sizes

(1) EN~I(f,g logB™' and E,N~I(g f) loga™’
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130 GARY LORDEN

as the error probabilities a and 8 go to zero.
It is easy to describe a family of two-stage tests attaining the asymptotic optimality
property, (1), in the case where

2 I(f,g) log B! ~ I(g, f) 'log a".

Using the weak law of large numbers and a standard asymptotic technique (Chung, 1968,
page 188), it can be shown that there exist integers n = n(t) = ¢t such that as t —» «

n==t+ o(t),
(3) P{log(f./g:) < tI(f,8)}— 0, and P{log(g./f,) <tI(g f)} — 0.

For given « and B, choose the first stage sample size m = n(t), where ¢ is the larger of the
two sides of (2). Then m is asymptotic to both sides of (2), and by (3)

(4) Pr{log(fn/gm) = log 7'} — 1
and .
(5) P.{log(gn/fn) =log @'} — 1.

The test terminates with the first stage if the event in (4) or in (5) occurs, making the
appropriate terminal decision. If neither holds, the test continues until a total of 77
observations have been taken and makes the same terminal decision as a fixed sample size
test on 7 observations that is chosen to have error probabilities at most « and 8. This can
be done with 7z < Mt < Mm observations. Thus, the expected sample size under f is at
most

m[1 + MPs{log(fn/gn) <log 87}] = m{1 + o(1)} ~ I(f, g8) log B,

and a similar result is obtained under g. Now, the probability of error under f is at most
the sum of the probability that the event in (5) occurs, which is less than a, and the error
probability of the test based on 7 observations. Hence, the error probability under fisless
than 2a and, similarly, under g is less than 28. One can achieve given a* and * by going
through the construction with a = a*/2 and 8 = 8*/2, leaving the asymptotic results for
expected sample sizes unaffected.

In the case where (2) does not hold but (log 87')/(log a ') is bounded away from zero
and infinity, Corollary 1 of Section 4 shows that there do not exist asymptotically optimal
two-stage tests. However, one can attain asymptotic optimality by using a three-stage test
whose first two stages end at min(mi, m;) and max(m,, ms), where

mi~t=I(f,g) log B!, me~t:=1(g,f) loga’,

and (4) and (5) hold for m; and ms, respectively. A third stage ending at # < M max(m,,
my) is used as before, and a similar argument shows that the expected sample sizes under
f and g are both minimized asymptotically.

If the log-likelihood ratio log(g:/f,) has finite third moment under f and g then more
explicit determinations of m; and m,, of the form

mi=t+ Ci(tlog t;)'*, i=12,

can be made along the lines of (Chung, 1968, page 214) using the Berry-Esseen theorem.
In this case one obtains

E/N = 1(f,8)"log B~ + O([(log B")log log B7']"%),

and a similar result for E,N. The results in the next section are of this type.
It is shown in Section 4 that two-stage tests can attain the asymptotic optimality
property (1) only if (2) is satisfied.

3. Three-stage tests for the exponential family. Suppose that independent and
identically distributed observations X, X, - - - have density
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fo(x) = exp{fx — b(6)}, 60,

with respect to a non-degenerate o-finite measure and O is the natural parameter space of
the family of densities. Let S, =X; + --- + X,,,n=1,2, ..., and note that E4,S, = nEsX;
= nb'(d) and VaryS, = n Var,X; = nb” (). Sequential likelihood ratio tests of two separated
hypotheses 8 < 6, and 6 = 6,, can be defined in terms of the log-likelihood functions

L.(0) = 8S, — nb(9)

as follows: for given 0 < y,, y1 < 1, stop the first time

(6) supy>aLn(0) = L,(6o) + log v5'
or
(7 supg<e,Ln(0) = L.(6) + log yi'.

Relations (6) and (7) define the upper and lower stopping boundaries, respectively, of the
tests arising in the study of Bayes asymptotic shapes in Schwarz (1962), and 6 < 6, (resp.
6 = 6) is rejected only if the upper (resp. lower) boundary is crossed.

Let § < 0 denote given interior points of ©. It is shown in Lorden (1972) that if (log
vi')/log o' is bounded away from 0 and ® as yo and y; go to zero, then the expected
sample sizes of the tests defined by (6) and (7) are optimal to within O (log log yi'"), i = 0,
1, as yo, y1 — 0, uniformly for 8 € [4, 8], among all tests with the same or smaller error
probabilities. A similar result with O ([(log v;")log log vi]/?) is proved below for a family
of three-stage tests constructed to imitate the sequential tests.

To obtain the three-stage tests, it is necessary first to develop an alternative description
of the stopping boundaries along the lines of Schwarz’s work. If x belongs to the range of
the X/’s and x > b'(6,), then the ray S, = nx intersects the upper stopping boundary at a
point whose n-coordinate is

(not necessarily an integer), where
I(x) = Supa>ao[(0 — bo)x — {b(ﬂ) - b(6’0)}].

(Define Iy(x) = 0 and no(x) = o if x < b’(6,).) For the lower stopping boundary, I;(x) and
ni(x) are defined similarly. Note that I, ./ in x and I; \\, so that no \\ and n; /. Let

n(x) = min(ny(x), ni(x)),

the first intersection of the ray S, = nx with one of the stopping boundaries. The function
n(x) characterizes the stopping region in the sense that (&, S;) reaches or exceeds one of
the boundaries if and only if 2 = n(S:/k).

Since &' is an increasing continuous function on the interior of ©, its range is an interval
(x4, x*). If x belongs to (x,, x*), then the maximum likelihood estimate of § on S, = nx is
8(x) = (b')"Y(x), and it is easily verified that the information numbers satisfy

(8) I(é(x), 6) = I(x) if b)) =x<x*
and
9) I@(x),0) = L(x) if x, <x=b6).

It is also easy to see that there is a 6 in (6o, 61) for which the information numbers satisfy
106, 8,) _log v5"
1(6,6:) logyi'’

since the left-hand side increases continuously from 0 to c on (6, 6;). Let 6. denote the
solution of (10) and let 7i = n(d'(62)). By (8)-(10), no(x) and ni(x) intersect at x = b’(6>)

(10)
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where they both have the value 7, so that

log yo' _ logyi'
1(6, 60) 1(65,6)

using the monotonicity properties of no(x) and ni(x). It is assumed in the main theorem
that the ratio of log yi’' to log yo' is bounded away from 0 and o, so that #; remains
bounded away from the endpoints of (6, 6:).

A convenient fact for use in the definition of the three-stage tests and the proof of their
asymptotic optimality is the following (which is proved following the proof of the main
theorem).

(11) A= = max.n(x),

LEMMA 1. There exist positive constants A and B such that if
on=1+ A(n""log n)'?,

then .

_y _n(Se/k) - _E
(12) Po{Pn <W<Pn,k—n}>l n

forn=1and§<6=<24.

The three-stage tests and, in particular, the stopping times Ni, N2, N; for the three
stages can now be defined. Use [ y] to denote the greatest integer <y and {y} for the least
integer =y.

Stage(i). Choose 0 < C < min(I(8z, 60)/1(8, 60), I(0,, 6,)/1(6, 6)). Let Ny = m = [CR).
The restriction on C ensures that

(13) m=n@®'©), 6=<0=<§.

Stage(ii). Let 7 = {fi} and set N, = min(@t, {p%n(Sn/m)}).
Stage(iii)). N;=n.

At the end of stages one and two, the test is terminated if and only if one of the
boundaries is crossed, which is certainly the case after the third stage, by virtue of (11). In
any case, an appropriate terminal decision is made. Note that if at the end of the first stage
the test continues, then m < n(S,,/m) and, hence, N> > m.

It is clear that the error probabilities, ay and a1, when 6 < 6, and 6 = 6,, respectively,
satisfy

(14) - a) = ﬁ‘Y() and a; =< ﬁ‘Yl,

since the probability under 8 < 6, for example, that (6) holds for a fixed n € {1, -- -, i}
is at most yo, as was shown in Lorden (1972).

Let t(ao, a1, ) denote the smallest possible §-expectation of the sample size of a
(possibly sequential) test with error probabilities less than or equal to ao and a;.

THEOREM 1. If N = N(yo, y1) is the stopping time of the three-stage test defined above,
then as yo and vy, tend to zero
E4N = t(fTyo, Aiys, 0) + O(((log yi)loglog vi)?), i=0,1,
uniformly for § < 0 < 8, provided that (log yi*)/log v is bounded away from 0 and «, in
which case t(fiyo, i y1, §) is of order log yi* for i =0, 1.

Proor. Fix 4in [¢, 8] and assume that vy, and v; are small enough so that m = 1.
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Let V denote the event in (12) when n = m, the first stage sample size, i.e. the event
—1 < n(Sk/k)

(15) Pm m< Pm, k=m.
To see that
(16) N = {p7n(Sw/m)} onV,

note first that this relation holds if N = m, since by (13)
m =n('(0)) < pmn(S,/m) onV.

If N > m, then N; > m and either N, = 17, in which case N = N, and (16) holds by the
definition of N3, or else

Nz = {p7n(Sn/m)} = pnn(¥'(0)) = n(Sn,/N>),

which suffices for stopping, so that N = N, and equality holds in (16). Now, (15) and (16)
yield N

N = {pnn(®'()} onV
and, using Lemma 1 and the fact that 7/m — C7,
B
EsN =< {pnn(b'(9))} + oy i = n(b'(0)) + O((72 log R)"?).

By a modification of a lower bound of Hoeffding (1960), it can be shown (see the remark
following Lemma 2 of Section 5) that
17) t(@yo, Aiyi, 0) = n(b'@)) — O(R"?)
uniformly for § < 0 < . Therefore,

E4N — t(fiyo, iyy, 0) < O((77 log 7)'7?)

and the conclusion of the theorem follows immediately.

Proor oF LEMMA 1. Since B may be chosen arbitrarily large, it evidently suffices to

prove (12) for large n, in which case (12) is made stronger by replacing p, by pr. This
stronger version follows from

_, _n(Sy/k) _ B
(18) Pe(Pk < 2 @) < Pk) =1 7z

by summing the complementary probabilities over 2 = n. B
To prove (18), let J denote a closed subinterval of (x,., x*) containing &'(¢) and (f) as
interior points. Then there is a D > 0 such that

n(x)

19
(19) n(xz)

1‘5D|x1—x2| if xl,xZEJ

by the following argument. If X1, X2 = b'(02), then the left-hand side of (19) equals
Io(x) | _ | Zo(x2) — Io(x1)| _ (length of &) NIz — 21 |
Io(x1) - I(b'(62)) - Io(b'(62)) ’
this last as a straightforward consequence of the fact that the supremum in the definition
of I,(x) is attained at 8(x) = (b")"!(x) for x in J. Relation (19) holds similarly if x;, x» <
b’(6:), whereas if x; < b'(6:) < x», then (19) is obtained by noting that
n(x:) n'@) _
n(b'(62)) n(x) ’

which reduces the argument to the previous cases.

n(x;) _
n(xz)

-1+
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It suffices now to show that there exists a @ > 0 such that

(20) Po( Sk _ b'(0)' = (QF7'log k)l/z) =1- ;27 , @8=6=<49,

k
since the event in (20) implies for sufficiently large % (independent of ) that S/ belongs
to <J, whence (19) can be applied to yield (18) for large %. To prove (20), choose & > 0 such
that @ — ¢ and @ + ¢ belong to the interior of ©. Since b” is continuous, there is a @ > 0
such that

|b(0+t)—b(0)—tb’(0)|s§—tz if 0<60=<0 and |t|=e

Therefore, letting a; = (Q% log k)"/? and ¢ = 4(Q 'k 'log k)"/? and using Chebyshev’s
inequality, for sufficiently large &

Py(Se — kb'(0) = ar) = Py(exp(¢S, — thb'(0) — taz) = 1)
=< (exp(b(6 + t) — b(0)))"e;:p(— thb'(0) — tax)

k
= exp(é t? - tak> = 1/k%

A similar argument works for estimating the probability that S, — kb’(6) is less than or
equal to —a, and putting the two results together yields (20), completing the proof of the
lemma. :

4. Necessity of three stages. The main theorem of this section can be used to show
that three stages are, generally speaking, necessary for asymptotic optimality of tests.
Results of this nature for the testing problems of the preceding sections are contained in
Corollaries 1 and 2. They are based on the assertion of Theorem 3 that, barring a special
relationship between the overall error probabilities, the last stage of an asymptotically
optimal multi-stage test contributes a vanishingly small fraction of the total sample size.

Fork=1,2, --.,let Ci(a, B) denote the class of k-stage tests of f vs. g having error
probabilities < a, 8. Define

te(a, B, p) = infc, o,z EN,

where E denotes expectation under the density p. In case & = 1 the tests have fixed sample
size and, hence, the notation ¢;(a, 8) will be used to reflect the lack of dependence on p. In
accord with Section 3, the notation ¢(a, 8, p) without subscript will denote the infinimum
of EN over all tests, including fully sequential ones.
For asymptotic theory, the basic fact is that
. (loga™ log B!
Heo B ) "‘“‘(I(p, T, g))

as a, 8 — 0. The case where the two ratios on the right-hand side are asymptotically equal
is special in that fixed sample size tests turn out to be asymptotically optimal, at least if p
belongs to the exponential family generated by f and g. The hypothesis (21) of Theorems
2 and 3 is designed to rule out this special case. The next theorem shows that under this
assumption at least two stages are required to minimize the expected sample size asymp-
totically when p is true.

THEOREM 2. Suppose that f, g and p are densities with respect to a sigma-finite
measure, that f is distinct from g and p, and that all of the information numbers are

finite. If a and B satisfy
I(p, 8)
I(p, )

log 87!
log o™ =Q>

(21
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for some @ > 0, then as a — 0
log a™!

g
(22) tk(ar Ba p) m fOr k= 2,
whereas there exist 1> 0 and D < « such that
log a™
23 ti(a, )= 1+9)——-D
(23) 1(a, B) = ( ")I(p,f)
for all 0 < a, B < 1 satisfying (21).
Proor. It suffices for (22) to show that
loga™
24 t(a, B, p) = 1-o0(1
(24) (a, B, p) I(p,f)( o(1))

and that the right-hand side is attainable by two-stage tests. The latter fact is established
by a construction like the one in Section 2. Choose the first-stage sample size

_loga™

in such a way that under p

P(log%"— = log a“) -1

m

and, if this highly probable event fails to occur, continue until 7, chosen so that a fixed
sample size test on 7z observations has error probabilities < «, 8. To prove (24), fix 0 < e
< 1 and note that by the law of large numbers

logl;.—llvv —(1+¢eNI(p,f) = maxn(log% — (1 +&)nl(p, f)) <elog a™),

this last with probability approaching one. Using Chebyshev’s inequality,
P(logp—N = (1 —e)loga~'and fis rejected) = P(‘C—N =a'™andfis rejected)
N N

fr
fr

= o 'E "X 1{fis rejected} = a*— 0.
PN

Combining the last two relations,
P((1 + e)NI(p, f) < (1 — 2¢)log a " and fis rejected) — 0.

A similar result holds with fand « replaced by g and 8 (even if p = g) and, using (21), leads
to ‘
P((1+ ¢)NI(p, f) = (1 — 2¢)log o™ and g is rejected) — 0.

Since either f or g must be rejected, (24) follows and (22) is proved.

The lower bound (23) on #(a, B) is derived by considering the exponential family of
densities of the form A = C(@)fp' %, 0=6=<1.

As 80— 0,I(h,f)— I(p,f)and I(h, g) = I(p, g by dominated convergence. By virtue
of (21), then, 6 can be chosen small enough so that I(h, g)/I(h, f) < Q.
Since (21) holds with p replaced by A, so does (24), and thus
log a™!
I(h, f)

This suffices for (23), since I (h, f) < I(p, f), which holds because 4 lies between p and fin
the exponential family.

tl(a’ Ba h) = t(‘x’ B, h) = (1 - 0(1))-
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THEOREM 3. Under the assumptions of Theorem 2, suppose that a family of k-stage
tests (k = 2) is given, with error probabilities a, B satisfying (21). Let N = N (a, 8) denote
the stopping time of a test in the family and M = M (a, B) the total sample size of its first
k — 1 stages. If the tests are asymptotically optimal, i.e. if the expected sample size under
D satisfies

loga™
I(p, f)

as a— 0, then M ~ log a™'/I(p, f) in probability (p), and EM ~ log a™*/I(p, f).

(25)

The proof is postponed until after the statements and proofs of the two corollaries.

COROLLARY 1. In the problem of testing f vs. g in Section 2, suppose that the
information numbers are finite and that (log 87')/(log «") is bounded away from zero
and infinity. Then there exist two-stage tests asymptotically minimizing both EfN and
EyN if and only if (2) holds. .

ProoF. The construction of two-stage tests based on (3) in Section 2 suffices for the
existence assertion. The converse part is proved by applying Theorem 3 with p = g to
conclude that the first stage sample size m must be asymptotic to (log a™*)/I(g, f), and
with p = f (reversing the roles of f and g in the theorem) to find m asymptotic also to
(log 87Y)/I(f, ), whence (2) holds.

COROLLARY 2. In the testing problem of Section 3, assume that (log ai')/(log ag") is
bounded away from zero and infinity. Then there do not exist two-stage tests that
minimize EoN asymptotically for four distinct values of 6 in [6,, 6:].

REMARK. Two-stage tests can be asymptotically optimal for three #-values—see
Remark 3 of Section 6. But tests asymptotically optimal for an interval of §-values must
have structure similar to the tests proposed in Section 3—see Remark 1 of Section 6.

ProOF OoF COROLLARY 2. Consider a sequence of (ao, a;)’s tending to zero and note
that there is a subsequence along which (log a1')/(log as') converges to a limit L > 0. If
o1, + -+, ¢4 are distinct points in [y, 6:], then the four numbers I(¢;, 6:)/I(d;, o), i = 1,
.-+, 4, are distinct since this ratio decreases strictly as ¢; goes from 6, to ;. Evidently
there exist two of these four numbers that are distinct from L and lie on the same side of
it—the left side, say (the other case being similar). Thus, there is a @ such that for these
two ¢/’s

-1
lOg 0(1_I > Q > I(¢i, 01)
log oo I(¢i, 6o)
for sufficiently small ao, a; in the subsequence. By Theorem 3, asymptotic optimality at

the ¢/’s requires that the first-stage sample size be asymptotic to (log as")/I(¢:, 6o) for both
¢:’s, which is impossible since the two information numbers are not equal.

PrOOF OF THEOREM 3. Clearly

-1
(26) N~ %% in probability (p),
since N is at least this large in probability by the argument leading to (24) and cannot be
asymptotically larger with positive probability, since EN is by hypothesis asymptotic to
the right-hand side of (26). .
The key to the proof is to consider the conditional error probabilities, @ and B8 (say),
given the first M observations, of the last stage, which always has fixed sample size
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(possibly zero) and is therefore subject to (23). Given 0 < ¢ < %, Chebyshev’s inequality
yields

P(& fﬁ > al_‘) = a‘_1E<& fﬁ) = a* 'Efd = o,
§ 27 Pm
which goes to zero as a — 0, so that

1

27 log a7 ' + logl;—M = (1—¢)loga” w.pr.— 1.
M

By the law of large numbers,
log(pam/fu) — (1 + e)MI(p, f) < max,(log(p./f.) — (1 + e)nl(p, )

! wpr.— 1,

=<eloga”
and by (26)
MI(p,f) < NI(p,f) =<2loga™  wpr.—>1,

which combine to yield

log(pa/fu) — MI(p, f) <3cloga™  wpr.— 1.

Using this last relation with (27) leads to

(28) log @' = [(1 — 4e)log a™' — MI(p, f)]" =log arl,
say, with probability approaching one. Arguing similarly and using (21),

log 7" = [(1 — 4e)log B~* — MI(p, &)]* = log 1,

say, and thus
(29) N-M=t(@& B) = t(d, B1)) wpr.— 1L

Using (21), log B is seen to be at least @ log &i* so that (23) applies to the extreme
right-hand member of (29) and, hence,
log ai*
I(p,f)
Replacing N by (1 + ¢)(log a™")/I(p, f), which by (26) is an upper bound in probability,

and using (28) to replace log &i" leads after simplification to
1

N-M=(1+n9) -D w.pr. — 1.

log a™
I(p, f)

Since ¢ can be arbitrarily small, (log a™)/I(p, f) is thus asymptotically a lower bound in
probability on M and, using Chebyshev’s inequality, on EM also. Since M < N, (25) and
(26) show that the same quantity is an asymptotic upper-bound in both senses and the
theorem is proved.

M+ Dy =(1—4e—b5en?)

w.pr. — 1.

5. Lower bounds on expected sample sizes. The lower bound (17) used in the
proof of Theorem 1 is easily established for 8; < 8 < 8, since ¢(1zyo, 1y1, 0) is at least the
expected sample size of an SPRT of 8 vs. 6o, which is at least (log(7zy0) ™) /1(8, 6o) — o(1).
The case § < 0 < 6, is similar, and the case 6, < 8 < 6, is a straightforward consequence of
(32). Inequalities (30)-(32), which may be useful in other contexts, are extensions of
inequality (1.4) of Hoeffding (1960). These inequalities can be “solved for EN” to obtain
inequalities more closely resembling Hoeffding’s.

LEMMA 2. Suppose that N is the stopping time of a test of fo against f; having error
probabilities at most Qv;, i = 0, 1 where @ = 1. Let p be a density under which
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I; = E log(p(X)/f.(X))
and
= Var log(p(X)/f(X)), i=0,1,

are positive and finite. Then

. log yi! o logyvi™\ 1/ oo
<EN + ; = EN)V? +
@y ™™ < T 2\log vo! log 1) EN)
. logys go log 2@
3 i EN EN)V% +
(31) min, T = += 3 <Io 1)( ) mmJ,- )
and
(32) min 28Y _ gy POe ) [L L ENY + 10g(2Q)
Ii maini 2 ’

where p(yo, y1) = (maxlog y;')/minlog yi ™.

ReEMARK. In the application of (32) to derive (17), p = f5 and the left-hand side of (32)
becomes n(b'(6)). Letting @ = 1, EN can be replaced by t(2yo, 2y1, 8), which is at most 7.
The right-hand side of (32) is then at most ¢(7iyo, 1y1, ) + O(7'?), since p(yo, v1) is
bounded above by hypothesis, max; I(6, 6;) is bounded away from zero, and o; and o are

at most (§ — @) times the maximum of (b”())*/ on [6, 8].

ProOF OF LEMMA 2. Let p, denote p(X;) --- p(X,) and define fo. and fi, similarly.
Defining the events A; = { py > 0 and f; is rejected} and using Wald’s well-known argument,

(33) Qv=Pia) = EL fl—” 1{A).

Assuming without loss of generality that
(34) Y12 Yo,

let A = log yi'/log yo' = 1.
Using the obvious analog of (33),

Qyéz(Qymz( fONI{Ao}> ("’”) 1{A,},

and, hence,

2Qvi= Qv+ Qn = E(( °”) 14, + 1Y 1{A1})

=F mm(( ON) s fl—N>
PN/ DN
Taking logarithms, changing signs, and using Jensen’s inequality,

logyi' —log2Q < E max()\ log log )
(35) fon” " fiv

= max(Al, )EN + E max(AZ®, Z{),

where

log 2Q

)

min,-log Yi



THREE-STAGE HYPOTHESIS TESTS 139

fo’=log(%) — nl; n=12 ...

Write
max(A\Z, Z§) = L(AZR + ZW) + % | AZR — Z§ |
and use Wald’s equations for first and second moments to get
Emax(AZR,ZR) =% E |AZRQ — Z{ | = B[E(\ZY — Z{)*]?
= R(EN)A(Var(AZ{® — Z("))*> <= B(EN)"*(Aoo + a1).
Using this in (35) and then dividing by log y1’ yields
1- ;%:i—?l = (maxi @I—“Y:—I)EN + -;- (EN)1/2<log6:/61 + E@%;’l)

which, after dividing by the coefficient of EN and using (34), leads to (30). Relations (31)
and (32) both follow easily from (30).

6. Additional remarks.

1. It is natural to ask whether the three-stage tests of Section 3 must mimic Schwarz’s
sequential tests in order to be asymptotically optimal. The answer according to
Theorem 2 is yes, to a substantial degree they must. Assuming for convenience that
(log vi')/(log yo") converges to a positive limit, so that 6, — 6*, say, Theorem 2 requires
that if the true 6 is outside an arbitrarily small neighborhood of * then the second stage
stops at a time asymptotic to n(b’(#)) in probability. It is easily shown that the first stage
sample size, m, say, must go to infinity, so that n( b’(é,,,)) is also asymptotic to n(d'(6)), and
thus the second stage stopping time must be chosen in a way that is asymptotically
equivalent to the method of Section 3, i.e. essentially dictated by Schwarz’s stopping
region. More leeway is clearly permissible in the choice of the first and third stage stopping
times, although Theorem 2 does imply that the probability of a non-negligible third stage
(e.g. = a fraction ¢ of the total sample size) goes to zero for § outside a neighborhood of
0*. (It is straightforward to extend this to all # by using the fact that any test can be
truncated at rn without significantly increasing its error probabilities.)

2. An associate editor pointed out how different these three-stage tests are from the
asymptotically optimal three-stage confidence estimation rules of Hall (1981), which rarely
finish with the second stage and seem to bear little resemblance to fully sequential
procedures. As the preceding remark clarifies, the difference seems to be based on
fundamental differences between the testing and estimation problems.

3. Corollary 2 of Section 4 is best possible in the sense that there do exist two-stage tests
with asymptotically minimum sample size for three #-values under special conditions. In
fact, the construction of two-stage competitors of the SPRT in Section 2 suffices. Suppose
that (2) holds and p is the density belonging to the exponential family generated by f and
& that satisfies I( p, f)I(f, g) = I(p, g)I(g, f). Then the construction of Section 2, with the
second stage (when needed) stopping at a fixed 7z asymptotic to (log a”')/I(p, f), works
and yields asymptotically minimum expected sample size at p (as well as f and g), since 7
is asymptotically minimum for p.

4. The referee raised a question about higher-order improvements in the asymptotic
optimality stated in Theorem 1 that might be achieved by using more than three stages.
By a fairly straightforward though tedious extension of the arguments in Section 3, it can
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be shown that in 2 = 3 stages one can achieve the minimum expected sample sizes to
within ¢"(log £)'~", where t is the sequential minimum and r is % to the power “number of
stages minus two”. Thus, each additional stage can reduce the extra sampling by roughly
a square root factor, but it is doubtful that this kind of improvement is worth the extra
complexity of tests with more than three stages.

Acknowledgment. Thanks are due to a referee for careful reading and criticism and
to Bob Berk, Peter Bickel, and David Siegmund for helpful discussions.
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