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LARGE SAMPLE BEHAVIOUR OF THE PRODUCT-LIMIT
ESTIMATOR ON THE WHOLE LINE

BY RicHARD GILL

Mathematical Centre, Amsterdam

Weak convergence results are proved for the product-limit estimator on
the whole line. Applications are given to confidence band construction, esti-
mation of mean lifetime, and to the theory of g-functions. The results are
obtained using stochastic calculus and in probability linear bounds for empir-
ical processes.

1. Introduction. Let Xj, ---, X, be independent positive random variables with
common continuous distribution function F. Independent of the X/’s, let Uy, ---, U, be
also independent positive random variables with possibly noncontinuous and defective
common distribution function G. The problem at hand is to make nonparametric inference
on F based on the censored observations (X~,-, 8:;),i=1, ..., n, defined by

Xi=X.AU, 0i=I{X,= U},

where A denotes minimum and I{.} is the indicator random variable of the specified
event. Classically, F' is estimated by the product-limit estimator ', introduced by Kaplan
and Meier (1958). Defining processes N and Y on [0, «) by

N@) =#{i:Xi=<¢t,6,=1}, Yt)=#{i:Xi=t),
then F'is given by

1-FP(t) = Hg{l —dN(s)}.

Y(s)
Define also the random time T by
T = max;X;
and for any process W define the stopped process W7 by
WT(t) = WA T).
Define the important Kaplan-Meier process Z by

F-F

— 5 1/2
" I-F
Note that 7 = F, and that if AN(T) = N(T) — N(T-) = 0, i.e. the largest observation is

censored, then F (T) < 1 almost surely. N
Let H be the distribution function of the X/’s, given by

1-H)=Q1-F)1-0a),

VA

and define (possibly infinite) times 77, 7¢ and 74 by

Tr=sup{t:F(t) <1}
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50 RICHARD GILL

etc. In the sequel, by [§ we mean integration over the interval (0, ¢£]. When we drop the
limits of integration, we implicitly define a function or process ¢ — f4(-). Define also some
continuous, nonnegative, nondecreasing functions A, C and K by

(" dF(s)
A(t)_J;l_——l_?—(—st)_’

t

) = f’ dF (s) _ dA(s)
, I1-F()(1-GG-) ), A-H()
and
0]
KO =1rem

where K(¢) = 1if C(¢) = «. Note that A(rr) = o, and that C(ry) = © and K(rg) = 1 if
76 = 7r. When 7¢ < 77 it is both possible that C(rg) = © and C(7y) < «. (We write, e.g.,
1 — F (s—) even though F is continuous to indicate the right extension for noncontinuous
F)

Let B be a standard Brownian motion on [0, «) and let B° be a Brownian bridge on
[0, 1]. Assuming G to be continuous, Breslow and Crowley (1974) proved a result on weak
convergence of n'/2(F — F) equivalent to the following theorem. The two ways in which
we state it derive from Efron (1967) and Hall and Wellner (1980).

THEOREM 1.1. For any 7 such that H(t—) < 1

F-F
Z=n1/2<1_F>—>gB(C) in D[0,7] as n— oo,
or equivalently
1/21_K ﬁ 0 .
ﬁ( — F) -4 B°(K) in D[0,7] as n— .

Note that B(C) is a continuous Gaussian martingale, zero at time zero, with covariance
function

cov[B(C(s)), B(C(t))] = C(s) A C(t) = C(sA t).

Breslow and Crowley’s (1974) proof of Theorem 1.1 was based on approximating n/?(F
— F') by an expression linear in the empirical processes N/n and Y/n, and then applying
standard results on weak convergence of empirical distribution functions. Though this
sounds straightforward, the proof was unavoidably complex. (Beware too of a misprint in
the proof of the central theorem, where the expression three lines from below on page 447
should read 2¢ + 2Kpr(X(1 — F)72 O)pT(F~1"§;, F).) The simple form of the limiting
distribution only appears after long calculations in which complicated expressions surpris-
ingly cancel out.

Since F and also K can be uniformly consistently estimated on [0, 7] for any 7 such that
H(7—) < 1, the theorem gives two obvious ways of constructing confidence bands for F on
[0, 7] based on the known distributions of sup.<c) | B(x)| and sup.<x | B%(x)| respec-
tively; see Gill (1980a) and Hall and Wellner (1980).

Clearly there is hope that the Brownian bridge version of Theorem 1.1 could be
extended to [0, 7#] giving confidence bands for F on the largest possible interval. When
K (ru) = 1 one would be able to use the distribution of sup.=:|B°(x)|, leading to simpler
computations too. Finally, when there is no censoring (G = 0), such bands would reduce
to the usual Kolmogorov bands for F based on the empirical distribution function F. Such
a result was conjectured to hold by Hall and Wellner (1980) and motivated the work
presented here. Part of the conjecture remains an open question, but the techniques used
will turn out to be of wider application.
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Let us first define K by

. . . ¢ dN(s)
1-R=1/0+¢) and C(t)=J—n—
b, Y(s)(Y(s) — 1)

(so K(T) =1 and €(T) = » almost surely if AN(T) = 1). Then we shall prove

THEOREM 1.2.

T
@) nl/z{i:IF((F—F)} —9B%K) in D[0,7x] as n— .
T
nW{i_I;(F—F)} —,B%K) in D[0,75] as n— w,
(ii)
provided that N
" dF (¢)

(If F(T) = 1 we interpret (1 — If')/(l — F') in the point T as equal to its value in T— )

Whether or not part (ii) of Theorem 1.2 holds without the condition (1.1) we do not
know. Note that

1-K
(1.2) 1—Gsﬁsl

and that (1 — K)/(1 — F) is nonincreasing. The same relationship holds between K Fand
G, where @ is the product-limit estimator of the censoring distribution G. These facts

follow from the equality

1-F dG
d(l - K) = |ltohacoa-a ¥

When there is no censoring F becomes the ordinary empirical distribution function of
the X/'s, so apart from being “stopped at T the theorems reduce to the classical result on
weak convergence of the empirical distribution function. Theorem 1.2 (ii) gives asymptotic
confidence bands for F on the random interval [0, T'] provided censoring is not too heavy.

The result does have some practical importance. One would be tempted to apply
Theorem 1.1 after choosing 7 such that Y(7) is reasonably large. So in fact 7 will not be
fixed in advance. Moreover, what is felt to be “reasonably large” may well be numbers as
small as 5 or 10. However, Theorem 1.1 has the implicit condition Y (r) —, . Thus it is
not obvious that Theorem 1.1 will yield accurate approximations when applied in such a
way. ‘

In proving Theorem 1.2 it turns out that a technique is being used which leads to quite
general results on weighted or integrated Kaplan-Meier processes under a natural condi-
tion.

In the next section we therefore state and prove such a general theorem, using the fact
that Z7 is a martingale. In Section 3 we show that Theorem 1.2 is a corollary of this, and
go on to present.other applications to estimating mean lifetime and to the theory of g-
functions. All our results can be easily extended to nonidentically distributed censoring
variables, and in particular therefore to the model of fixed censorship. Also the results can
be extended to noncontinuous F. We refer to Gill (1980a) for such a fuller treatment, where
part of the material here has already appeared together with a study of two-sample tests.
A brief survey of the necessary martingale and counting process theory can be found there,
or in Aalen (1978). We depend heavily on this and on Aalen and Johansen (1978).
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2. Main theorem

THEOREM 2.1. Let h be a nonnegative continuous nonincreasing function on [0, Tx]
such that

2.1) j ’ h(t)? dC(t) < oo,
0

Then the processes (hZ)", (fhdZ)"™ and (fZdh)™ converge jointly in D0, t4] in distri-
bution to processes hZ“, [hdZ' and [Z' dh respectively, where

2.2) Z® = B(C)
and
(2.3) hZ® = j hdZ™ + f Z dh.

REMARK. 2.2. When C(1y) = o, the limiting processes here are interpreted to be
equal in the point 74 to their limits as 7 1 7z, which do exist as we shall now show. In fact
the limit of AZ is zero. Also we must discuss in any case what we mean by the process
[ hdZ, which cannot be defined by pathwise Lebesgue-Stieltjes integration. Taking up
the latter point first, we note that [ AdZ‘ can be defined on [0, 7) either by (2.3) or as
a stochastic integral in the sense of Meyer (1976). By Gill (1980b) Lemma 5, 2nd part, the
two definitions coincide. By (2.1), fAdZ is a square integrable martingale on [0, 7#)
which can be extended by taking limits to [0, 7z ]. So it remains to show that either AZ
or [Z dh also has a limit almost surely as ¢ — 7 (in which case both processes do). Now

we can write
TH

h(t)*C(¢t) = J h2(t) Lo, .1(s) dC(s).

0

So when C(7x) = » and consequently by (2.1) A(¢) | 0 as ¢ 1 7a, by dominated convergence
(2.4) h(t)’C(t) >0 as t1]ra.

It follows immediately that when C(7g) =

(2.5) h(t)Z(t) >,0 as 1w

we must extend this to an a.s. result. By the Birnbaum-Marshall inequality (Birnbaum
and Marshall, 1961) applied to the submartingale {Z® — Z*(¢)}? and the nonincreasing
function A% on [¢, Ti), we have

P(supsert,m[{Z7(s) = ZP () h(s)F = ¢) = % J’ ’ h(s)* dC(s).

Therefore
Plsupy, - (RhZ— h(t)Z™ ()} = 4e] < %J' h?dC + P[{h‘(t)Z‘°°)(t)}2 =¢]
t

= 1 (J h?dC + h(t)zC(t)).

€

Now let &, > 0 and §,, > 0 satisfy &, | 0 and Y, »8,. < . For each m we can now by (2.1) and
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(2.4) find a ¢, such that

AP, 1y (B2 = h(tn) 27 ()} = o] < B,
Thus by the Borel-Cantelli lemma AZ* converges almost surely, and by (2.5) the limit is
zero.

In order to prove Theorem 2.1 we first present a sequence of lemmas including a proof
of Theorem 1.1.

LEmMMA 2.3. Define M by

t

M(t) = N(t) — f Y(s) dA(s).
o

Then M is a square integrable martingale on [0, )] with predictable variation process
(M, M) given by

t

(M, M) (t) =f Y (s) dA(s).

0
Proor. See Aalen (1976), Section 5C, or Gill (1980a). 0O

LEMMA 2.4. Forallt

1-F@) _ [(1=F(s-)dM(s)
1-FT(t) , 1—F7(s) Y(s)

Proor. See Aalen and Johansen (1978), or Gill (1980a). O

Since we may define 1/Y = 0 on (T, »), the integrand in Lemma 2.4, (1 — F_)/ a-
FT)Y, is a bounded predictable process on [0, 7] for any 7 < 7p. This gives us:

LEMMA 25. (1 —F)/(1 = F))T and Z" = n'*(1 — (1 — F)/(1 — F))7} are square
integrable martingales on [0, 7] for any 7 < 1r, and < Z”, ZT > (t) = [¥*T (1 — F_)?/(1
—F)*n/Y dA for all t.

LEmMMA 26. ForanyB € (0,1), Z2[1 - F(t)<B {1 -F@t)}Vt<T]=1-4.

ProoOF. See Gill (1980a). (Essentially, apply Doob’s inequality to the nonnegative
martingale (1 — F')/(1— F7)) O

LemMa 2.7. For any B € (0, 1), 2[Y(¢)/n = B{l — H(t —)}Vt = T] = 1
—e(1/B)e VA,

Proor. See Wellner (1978), Remark 1(ii). (The fact that H need not be continuous is
of no consequence.) [

LemMa 2.8. For any 1 such that H(r—) < 1, sup;=.| F(t) — F(£) | >» 0  asn— .

Proor. Since (T < 1) — 0 as n — o, it suffices by Lemma 2.4 to show that for any
e>0

>£]—>0 asn — oo,

“1— F(s—) dM(s)
, 1—F7(s) Y(s)

(2.6) P [sup,ST
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1-F_dM .
-1/2T _
By Lemma 2.3, n="°Z fl—F =

predictable variation process equal at time ¢ to

f‘” {1 = F(s—))2 dA(s)
0

is a square integrable martingale on [0, 7] with

{1-F@e)Y Y() '

Therefore, by Lenglart’s (1977) inequality applied to (n"/2Z7)2and n™! (Z7, ZT), it follows
that for any 5 > 0, the left-hand side of (2.6) is bounded by

AT 2
%+g@“ - Fe))y 1 dA(s)>n]_ 2+9[ Alr) L ]
0

{1-F©e) Y6 A-FOP YaATD)

Since Y(r A T)/n -4 1 — H(7—) > 0 as n — », we now easily see that (2.6) holds. 0

It is an open question as to whether the supremum in Lemma 2.8 may be taken over ¢
=T

LEMMA 29. Let h be a continuous, nonnegative, and nonincreasing function and let
Z be a semimartingale, zero at time zero. Then for all T

f h(s) dZ(s)

0

Sup05t51h(t)lz(t) I = 2 supos¢=-

Proor. Note that [ A dZ can equivalently be interpreted here as a stochastic integral,
a pathwise integral when it exists as such, and by formally integrating by parts; cf. Remark
2.2. Define U(¢t) = [§ h(s) dZ(s) so that for ¢ such that A(t) > 0,

_[faue _vey [
20 = fo R R fo Uts )d<h( ))
f (U® - Us-)) d(h( ))

’ h(2) h(e)
fo {U@) — Us-)} d( )‘ = 2 supo=s=:| U(s )l{l_h_(O_)}

Thus

[h(®)Z(@) | =

h(s)

Proor oF THEOREM 1.1. Recall that 7 satisfies H(t—) < 1. Since Z(T'< 1) > 0asn
— oo, it suffices to show that

F-F\ 1-F\n"2dM
T _ ,1/2 — AL
7m-ni(177) = | (=) e

in D[0, 7] as n — «. By Lemma 2.5 above and Theorem V.1 of Rebolledo (1980) this is the
case if foreach ¢t <

(Z",Z")(t) =f

0

“Ma-Fs-)) n
(1—F7 ()" Y(s)

dA(s) =, C(2)

and for eache >0

AT o .
TT{1-Fs-)? n 1— R(s=) n'? ~
jo (1= F7(s)}* Y(s) I{ T=F) Y ¢ 98 -0
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(Note that by continuity of F we are in the quasi-left-continuous case in which Rebolledo’s
(1980) strong and weak ARJ(2) conditions coincide). By Lemma 2.8 and the Glivenko-
Cantelli theorem for Y/n both conditions are easily seen to hold. O

Proor oF THEOREM 2.1. By Theorem 1.1 we certainly have weak convergence on [0,
7] for any 7 such that H(r—) < 1. Also by Remark 2.2 the limiting processes do exist on
[0, 7] and are continuous in 7. Thus (see Billingsley, 1968, Theorem 4.2) it suffices to
prove “tightness at 7", i.e. we must show

2.7 lim 4, lim sup,—.. 2[sup.<.<r|h(t)Z(t) — h(1)Z(7)| > €] =0 Ve>0

and

t
(2.8) lim . lim supn—« 9’[sup7stsr j h(s) dZ(s)

>£]=0 Ve > 0.

(Note that by the equality [ Z dh = hZ — [ h dZ the corresponding result for [ Z dh does
not need to be explicitly verified.)

Now
Sup.<e=r| h(0)Z(t) — h(1)Z(7) | < sup.<=r| R(E)(Z(t) — Z(7)) | + | (h(r) — h(ru))Z(T)|.

We already know that Z(1) —¢ Z (1) as n —  so that
{h(r) — h(ta)}*C(7)
. .

€

lim sup,.«? [| {A(te) — h(7)}Z(7) | > e]l=

If C(t#) < o this quantity converges trivially to zero as v | 7y. However, if C(ry) = o we
must have A(rx) = 0 by (2.1) and convergence to zero follows from (2.4). By Lemma 2.9

sup.=e=r|h(E){Z(¢) — Z(1)} | = 2 sup.=i=1

j h(s) dZ(s)

Thus (2.8) implies (2.7).

Since 4 is, as a process, predictable and bounded, and Z” — Z7(r) is a square integrable
martingale on [7, 7’] for each 7’ such that H(r'—) < 1, we have for any n > 0 by the
inequality of Lenglart (1977) (cf. the proof of Lemma 2.8)

t
W[sup,stsfm f h(s) dZ(s) >£]
AT
_n {h(s))’(1 = F(s-))* n
_5-2+9U TR aPE 76 dA(s)>n]

ol S

=

. +B8+e(l/BeVE+ P

" B73{h(s)}? dA(s) -
T 1-Hs) "

for any B € (0, 1) by Lemmas 2.6 and 2.7. Letting 7’ 1 7# (or choosing 7’ = 74 if H(tg—)
< 1) and choosing

n= J’ H,B_ah(S)2 dC(s),
we obtain

j h(s) dZ(s)

.@I:sup,stsq- > a] =B %2 f h(s)? dC(s) + B + e(1/B)e 5.

By (2.1), and since B8 was arbitrary, this gives us (2.8). 0
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3. Applications. We first prove Theorem 1.2.

PROOF OF THEOREM 1.2. Part (i): Choose A = 1 — K in Theorem 2.1. Then (2.1) holds
because

o dC(s)

A+Cer I T+Cm -1

J ’ {1 - K(s)}* dC(s) =
0

)
Part (ii): Choosing A = 1 — F in Theorem 2.1, we see that
(3.1) nV*(F — F)T >4 (1= F)Z® in D[0, 4],
provided that
T” " dF(s
J; {1 - F(s)}*>dC(s) = JO F’c%< 0;
i.e. provided that (1.1) holds. Now straightforward arguments show that
supo=i=.| K(t) — K(t)| »»0 asn—w

for any 7 such that H(r—) < 1. Therefore, by Lemma 2.8 we certainly have weak
convergence of

PN . T
nl/z{i :II;(F— F)} in D[0, 7]

for any 7 such that H(r—) < 1. Thus to prove part (ii) it remains only to prove “tightness
at 75"’ as in Theorem 2.1. Since (1 — K)/(l -M=1 (cf. (1.2)), this follows from (3.1). O

Next we consider estimation of mean lifetime [§ ¢ dF(t) = [T {1 — F(t)} dt = p(),
which we suppose here to be finite. Many authors mention this problem but only Susarla
and Van Ryzin (1980) achieve any really general result. Even so, they are obliged to work
with an estimator (3 {1 — F@®)} dt, where M = M, 1 » is a sequence of constants
depending on the unknown F and G in a complicated way. We shall consider the estimator

fra- F()} dt and obtain a more general result under a natural condition.
Define functions u and g and a process fi by

p(2) =j {1-F(s)) ds and fi(t) = p() — u(®),
0

g = J (1 - F(s)} ds.
0

Note that
- F
nY4 i —p) =—| n'? F— (1-F)dt=—| Zdj.
1-F
Thus we obtain immediately from Theorem 2.1:

THEOREM 3.1. Suppose
TH
(3.2) j &% dC < oo,
0
Then

n2(fh — p)" —o f Z™ dg in D[O, t#].
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COROLLARY 3.2. Supppose (3.2) holds and furthermore
(3.3) n'2 i(T) =50 asn— o,

Then

T, TH TH

Z(s) dji(s) = J i(s)? dC(s)).

0

fi(s) dZ(s) =g N(O, J

0

nY2((T) — (@)} > — J

0

ProoF. Under (3.3) we are in the situation 7y = 77 and C(rg) = . Also T —y» Ty asn
— o, Thus the corollary follows by Remark 2.2. 00

REMARK 3.3. Suppose F is a distribution function whose residual mean life-time
function /(1 — F) is bounded. This covers in particular all increasing hazard rate
distributions. Then (3.2) is easily seen to hold if (1.1) does. This is true in particular if

(3.4) 1-G)=c(l - F)* close to &

for some constants ¢ > 0 and B < 1; i.e. when the censoring distribution is lighter in the tail
than the distribution of interest.

Some straightforward calculations also show that (3.3) holds if for some 0 < a < 2 and
¢’ > 0 we also have

(3.5) 1-H)=cp~ close to 7r.

This in turn is implied by (3.4) and boundedness‘of i/(1—F).
Finally, we sketch an application to g-functions (cf. Pyke and Shorack, 1968, Theorem
2.1, and Wellner, 1977).

THEOREM 3.4. Suppose q is a continuous function on [0, 1] which is positive on (0,
1), symmetric about %, nondecreasing on [0, 2], and such that

Yodt
(3.6) f oy ="

and (1 — t)/q(t) is nonincreasing close to 1. Then

1 /1- T BYK)
1/2 -4 _ Sy
” {q(K) (1 - 'F()‘f“ F)} 2®)

Proor. In Theorem 2.1 we only needed 4 to be nonincreasing in the neighbourhood
of 7y; and this was only needed in the case C(rg) = o (K(ry) = 1). Thus by -(3.6) and
Theorem 2.1 with A = (1 — K)/q(K) we have weak convergence on [, 4] for any 7 such
that K(r) > 0. So we only need further to prove “tightness near zero”. Exactly the same
arguments as in Theorem 2.1 can be used again to give this result too. [

in D[0, Ty] as n — .
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