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MIXTURES OF DIRICHLET DISTRIBUTIONS AND ESTIMATION
IN CONTINGENCY TABLES

By JaMmEs H. ALBERT' AND ARJUN K. GUPTA

Bowlz:ng Green State University

Assuming a multinomial sampling model, prior distributions are devel-
oped which can accept prior information about symmetry and independence
in a two-way contingency table. Bayesian estimates for the cell probabilities
are obtained from the posterior distributions which are attractive alternatives
to the usual classical estimates when vague prior information about symmetry
or independence is available.

1. Introduction. Consider an I X ¢/ contingency table {X,,,i=1, ---,I,j=1, ...,
J} where X,; denotes the observed frequency in the (i, j) cell and let ,, denote the
probability that an observation falls in that particular cell. Assume a sample of size N is
taken from an infinite population and therefore {X,,} has a multinomial distribution with
parameters N and 8 = (0yy, -- -, 61s).

Under this sampling model, consider the problem of estimating the vector of cell
probabilities # using prior information about the cross-classification structure of the table.
Specifically, say a user believes, before sampling, that there exists symmetry or indepen-
dence in the table. That is, the cell probabilities are believed a priori to satisfy the
relationships 0,, = 6,, for i < (in the case of symmetry) or 6, = 6,.0.,, where ,. and 8., are
marginal probabilities (in the case of independence). It is of interest to develop prior
distributions for § which can reflect beliefs about symmetry and independence and lead to
posterior estimates for 6.

The usual method of inputting prior information assumes that @ possesses the conjugate
Dirichlet distribution with density proportional toIl, 85 "%~ where K > 0, 5,; > 0, and
Y...; M, = 1. The posterior density of @ is proportional to I1,,#5™**~! and a cell probability
8., can be estimated by its posterior mean, given by

N x, K

The parameter ,, is the prior mean of 6, and represents the user’s prior guess at the
probability. The parameter K is related to the prior variance of §,; and reflects the precision
of the set of prior guesses {7,}. A natural way of enlarging the class of Dirichlet
distributions is to consider a two-stage prior, introduced by Fienberg and Holland (1973)
and Good (1967). The first stage of the prior assumes that 8 given (K, {n,,}) is Dirichlet;
the second stage gives K and 9 = (nu, - - -, nzs) the prior density ¢(K, 5). The resulting
prior distribution is a mixture of Dirichlets and the posterior mean of 8,; is given by

Xy K

—+E|l——, R
x) N <N+ K™ x)
where the expectations on the right hand side of (1.2) are taken with respect to the

posterior distribution of (K, 5). See Good (1976) and Crook and Good (1980) for discussions
on the use of Dirichlet mixtures in Bayesian testing.

(1.2) E(6 )=F N
: vI1% =B\ 5Tg
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First, consider the use of the “natural” Dirichlet prior to reflect prior beliefs about
symmetry or independence. (For simplicity, we will restrict discussion to the 2 x 2 table,
where I = J = 2.) The user first will select the vector of prior means 5 which represents a
guess at the vector of cell probabilities 8. If the user believes a priori in a particular cross-
classification structure, then clearly 5 should satisfy the same structure. Thus, in the
symmetry case, niz = 721, and in the independence case, ni; = 7,15, where 1, = 711 + M3,
Ms = Mu + n21. These prior beliefs can be represented by the following configurations of
prior means:

Symmetry Independence

(L.3) ) M Me NaNb ﬂa(l - TIb)
Mz 1 —mu— 2ne T=m)m 1 =10 —mn)

Note that the dimension of the space of 7 is reduced to two, because of the restriction
Y.i; My = 1 and the additional assumption of symmetry or independence. If a user could
specify values of 711, 712 (in the symmetry case) or 14, 75 (in the independence case), then
1 would be completely specified and the Dirichlet prior could be used. However, in this
situation, the user believes solely in the symmetry (independence) configuration, and the
actual values of the parameters 711 and 712 (1, and 7;) are unknown.

The Dirichlet distribution appears unsuitable for use in situations where the user
cannot obtain an exact value of the prior mean vector 5. But the Dirichlet can be used as
the first stage of a two-stage prior which reflects both the belief in the configuration of
prior means (1.3) and the ignorance of the independent parameters in this configuration.
In the first stage, the user will select the configuration (1.3) and a value of the Dirichlet
parameter K. The parameter K reflects the sureness of the configuration of prior means,
and, in the two-stage prior, it will be shown to reflect the strength of the user’s belief in
symmetry or independence. The second stage of the prior assigns to the independent
parameters (111, M2 Or 14, 75) a noninformative uniform distribution. This stage reflects
ignorance about the location of these independent parameters.

In Sections 2 and 3, we first discuss how these two-stage priors reflect the beliefs of
symmetry and independence, and then give posterior mean estimates for the cell proba-
bilities. In the symmetry case, the posterior means are shown to approach “symmetry”
estimates as the value of the prior parameter K approaches infinity, or equivalently, as the
user’s prior belief in symmetry grows. In Section 3, a generalized version of the indepen-
dence prior is developed which can accept additional prior information about the marginal
cell probabilities in the table. In an example, the posterior means appear to shrink the
classical estimates towards “independence” estimates, the degree of shrinkage depending
on the value of the parameter K. These Bayesian estimates of the cell probabilities will be
appropriate for use when prior information about symmetry or independence exists, but
this information is not sufficiently strong to use symmetry or independence estimates. By
using the Dirichlet parameter K, the user can state the precision of his knowledge about
the cross-classification structure, and the résulting posterior estimates compromise be-
tween the usual estimates and the estimates assuming the particular cross-classification
structure.

2. Estimation using prior knowledge of symmetry. Assume that a square con-
tingency table is given (I = JJ) and it is of interest to estimate the cell probabilities using
prior knowledge about symmetry. As discussed in Section 1, this prior belief can be
represented by the following two-stage prior distribution.

Stage I: @ is distributed Dirichlet (K, 5), where the elements in the prior mean vector
7 satisfy the relationships 7, = 5;, for i < j. Let n* = (nu1, no2, «++, N1, M2, -+ -, M1, o3y
- - -, Mr-1,1) denote the vector of distinct prior means.

Stage II: The vector 9* is given a uniform distribution over the set A = {g*: 3, > 0,
Yi=1 M + 2 Yuc, m,, = 1}. This stage of the prior distribution expresses ignorance about the
location of p*.
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The resulting prior density for @ is given by
(2.1) 7(6) = J’ 71(0]9*)m2(n*)dn*,
A

where m; is the Dirichlet density given by
I'(K)
zI=l F(K"Iu) Hl<} FZ(Knu)

771(0|"]) = HzI=1 0517”_1 Hl<j (0t10ﬂ)Kn”_la

and 7. is the uniform density. Several facts can be shown about this prior. First, the

correlation between two cell probabilities 6,, and 8, (for i # j) is given by
2K{I(I+1)+2}'—(K+ D){I(I+ 1)}

2K{I(I+ 1)+ 2} —(K+D{IT+ 1)} "+ 1

p(01j> 0jl) =

Note that p(6,,, 6,.) is an increasing function of K and approaches 1 as K approaches
infinity. A user specifying a value of the prior parameter K is specifying a value of
o(6,, 6,,) and is indicating a degree of belief in symmetry in the table. Second, it can be
shown that, as K approaches infinity, the density (2.1) approaches a uniform density on
the “space of symmetry” {0:6,,=0, 0, =0,,i </, Y., 0, = 1}. Thus, for a large selected
value of K, the prior is placing most of its weight on symmetric values of # and is reflecting
a strong prior belief in symmetry.

In practice, it will be difficult for a user to choose a value of K by guessing at a value of
the correlation coefficient p(8;,, 6,.). One simple interpretation of the precision parameter
K of a Dirichlet distribution is that it represents the sample size of a “preliminary”
contingency table which reflects one’s prior beliefs about 8 (Good, 1965). Thus, if a user’s
prior belief is based on a previously observed contingency table where the cell frequencies
approximately satisfy x,, /N = x,, /N, for i # j, then K could be chosen to be the sample size
of this table. A value of the parameter K can also be chosen through specifying subjective
probabilities. First, for K large, the marginal distribution of (6,,, §,,) is approximately
bivariate normal with correlation coefficient p. Then, in this situation, Gokhale and Press
(1980) discuss methods of indirectly assessing a value of p by assessing the probability of
“concordance” 7(p). In our notation, if two pairs of independent observations (8,1, 6,.1),
(8,2, 0,.2) are drawn from a bivariate normal density, the probability of “concordance” is
given by

1 1
T(P) = P(0l12 > 0:/1 I 0];2 > 0111) = ? + — arcsin p.
b

A value of K can then be indirectly chosen by specifying the probability 7(p).

To estimate a cell probability 6,,, we will use its posterior mean E (6, | x). The following
theorem gives a general expression for the posterior mean, and, additionally, evaluates this
expression in the limiting cases K = 0 and K = «. These two cases correspond, respectively,
to a very weak belief and a very strong belief in symmetry in the table.

‘

THEOREM 1. Let the prior distribution for 8 be given by (2.1). Then

N xlj+ K
N+KN N+K

(2.2) E@©,|x) = E(ny|x),

where the expectation E(n,|X) is taken with respect to the posterior distribution of n*,
with density given by
'77'3(7'* I X) = CIH{=1(Knll)(x") . Hz<} {(Knlj)(x‘,)(Knlj)(xﬂ)}) 7'* € A’

C, being the proportionality constant and a” = a(a+1) --- (@ +r—1), a® = 1. In the
limiting situations where K approaches zero and infinity, E (8, | X) approaches, respec-
tively,

(2.3) limg_oE(6,|x) = x,/N, fori,j=1,..-,1
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and
x, +1 ..
B _— =] = ]_’ ooy I
24) NYIg+Dz it
limg_..E(0,|x) =
1 x,+x,+1 ..
(2.5) fori##j.

2N +II+1)/2
Proor. See Albert and Gupta (1981).

Note that the posterior mean of §, in the limiting case K = 0 is simply the maximum
likelihood estimator under an unrestricted model. In addition, note that in the case K =
oo (a strong prior belief of symmetry), the posterior mean of an off-diagonal probability is
a type of “symmetry” estimator which pools the counts in cells (z, /) and (J, i) to estimate
6,,. Thus in the usual situation where a finite positive value of K is used, it is expected that
the posterior mean (2.2) will shrink the MLE x;/N towards a symmetry estimator, the
degree of shrinkage depending on the value of K.

3. Estimation using prior knowledge of independence. Consider the related
problem of estimating the vector of cell probabilities using prior information about
independence in the table. That is, the cell probabilities are believed to satisfy the
relationships 6, = 6,.6,, for all i, j, where .. = ¥ 7, 6,,,i=1, ..., Tand 0., =35, 6,,,j = 1,
---, J are the marginal probabilities of the two variables in the contingency table. In
addition to the belief about independence, the user may possess prior beliefs about the
location of the two sets of marginal probabilities. Beliefs about independence and the
marginal probabilities can be reflected by means of the following two-stage prior distri-
bution.

Stage I § is distributed Dirichlet (K, ), where n,, = nanpy, i =1, -, L j=1, -+, d,
N =0, s, =0 for all 4, j and L) e = 21 M6, = 1.

Stage II: The vectors 1, = (a1, - -+, Nar) and 9, = (M1, - - -, M) are independent, 1,
possesses a Dirichlet (L., A,) distribution and 7, possesses a Dirichlet (L, A;) distribution,
where A, = (Aa1, -+ -, Aar), Ao = (Ap1, -+ +, Aps). The prior density for @ is then given by

(3.1) (f) =f Y(O1m", K)Y(a|Aas La)d(s| Ao, L) dna dne
B

where
B= {("ay "b): Na = 02 Ney = 0) 1= 1) MY I)j = 1! MY J? 2{21 Nar = Z;’Zl Ny = 1}!
'Il+ = (Na1Mo1, * * +» Narfsr), and

I'(K)

3.2 Oln,K) =— "
(3.2) Yv(@|n, K) I, T(Kny)

I1,, 951,
This prior distribution implies the following knowledge about the marginal probabilities
and the interaction in the table.
(i) The means and variances of the marginal probabilities 6,. and 6., are given by
(K+ L,+1) .
1) = (u,V ) ST Ty N\ - Nai), =1, 1
E@.)=A\ ar(d,.) (K+1)(L,,+1)}\ 1—-Aw) i=1 1
(K+L,+1)

E(o-/) = }\b/y Var(a‘,) =m

Abj(l_}\bj)y j=ly "')J'
The parameter A, represents a prior guess at the probability 6,. and (for a fixed value of
the parameter K) the parameter L, reflects the precision of this prior guess.

(ii) Consider the vector of parameters (yi1, vz, - - -, yis), where y, = 6, — 6..6.,,, i = 1,
.-, I,j=1, ..., J. This vector can represent the interaction structure in the table. The
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mean and variance of y, from the above prior (3.1) are

(3.3) E(y,)=0
and
K Aai(l = Aw)La Agi(1 — Ay)Ly
4 Var(y,) =
34 () = F I D& Ty Lr1 Lo+ 1

From observing (3.3), it is clear that the user believes that the two variables in the
contingency table are independent and from (3.4) the strength of the user’s belief in
independence is indicated through the parameter K. To better understand the role of K in
the prior, -consider the special case where I = J = 2. In this 2 X 2 table, one common
measure of association is the correlation coefficient, defined by

Pc = (011 - 0140~1)/(01~0240.10~2)1/2-
Using (3.3), the prior mean of p. can be approximated by
E@0n—6..0.,)/{E(6:.6,.)E(0..0.2)}'/* = 0.

Similarly, the prior variance of p. can be approximated by

(3.5) E@u — 6..6.,)° _ K+1
' E6,.6,.)E(0.10.5) - KK + 3) .

Note from (3.5) that the prior variance of p. is a decreasing function of K. The user who
specifies a large value of K believes that the parameter p. lies within a small interval about
zero and is indicating a strong belief in independence.

As in Section 2, a value of the prior parameter K can be chosen by regarding it as the
sample size of a preliminary table in which there exists independence between the two
variables. In the special 2 X 2 table, an alternative way to indirectly choose K is to specify
an interval of the form (—a, a) which is felt to contain p. with high probability, say, 0.91.
By using tables of incomplete beta integrals, a translated beta density (symmetric about
0) can be matched to this prior belief. The variance of this translated beta density can
then be set equal to (3.5) to obtain the value of K.

As in Section 2, a cell probability 6, is estimated by its posterior mean. Theorem 2
below gives an expression for the posterior mean and gives simple expressions for this
estimator in the limiting cases where the prior parameter K approaches zero and infinity.

THEOREM 2. Let the prior density for 8 be given by (3.1). The posterior mean of 6, is
given by
N «x,

©6) EGx =NTgNTNTE

E(Mamy I x),

where the expectation in (3.8) is taken with respect to the posterior distribution of
(Ma, M), with density given by
71 (ay N | X) = C L, (Knans;) ™ TH_y pheta T ™™, (o, ms) € B,

C being the proportionality constant. Furthermore

. X,
(3.7) llmK_,oE(OU | x) = N] ,
i + La atr . L
(3.8) limg_..E(8,|x) = (x Aa)(x., + Ly Asy)

(N + Lo)(N + Ly) ’
where x,. = 371 x,, X, = Yoy x,.

Proor. See Albert and Gupta (1981).
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TABLE 1
Parental decision-making and political affilia-
tion. Source: Braungart (1971)

Political Affiliation
SDS YAF
Parental Authoritarian 29 33
Decision
Making Democratic 131 78

Recall that a large value of K implies a strong belief in independence in the table. Note
that one can write (3.8) as the product §,.4.,, where ;. = (x,. + LoAa)/(N + L) and 6, =
(x, + LsAy) /(N + Ls). The posterior mean, in the limiting case K = oo, first combines the
prior information and the sample information to estimate the marginal probabilities 6,.
and 6., by 6, and 4. ; respectively. Then the estimators §,. and 4. ; are multiplied to estimate
8., reflecting the strong belief in independence.

To illustrate the behavior of the posterior mean (3.6) for finite values of K, consider the
2 X 2 table (from Braungart, 1971, and analyzed in Bishop, Fienberg and Holland, 1975)
given in Table 1 which classifies college students with respect to their political affiliation
and their family structure. Consider the estimation of the cell probabilities using the prior
belief that the two variables of the study are independent. To use the prior density (3.1),
first one specifies the vectors (La, Aa1, Aaz) and (Ls, Ap1, Ap2) which reflect prior knowledge
about the proportions of students in the two political affiliations and the two family
structures respectively. In this example, we will set LoAai = LoAa2 = LAy = Lyiy = 1,
reflecting ignorance about the location of these proportions (, and 7, each will be assigned
uniform distributions). Next, one specifies a value of the prior parameter K, which indicates
the strength of the belief of independence.

In practice, the posterior mean (3.6) is difficult to compute numerically, due to the
posterior expectation

natnbjﬂl("ay 1’b| X) d'na dnb
(3.9) EMany|x) = =2 :
f m1(Na, N | X) dna dis
B

a ratio of two multidimensional integrals each of dimension I + J — 2. One efficient method
of numerically computing these integrals uses the notion of importance sampling. First, it
can be shown that as the prior parameter K approaches zero and infinity,

(3.10)  limxom(Ma, 05| X) = 7i(a, 0| X) = Y(qa| 1/L, I(J + D)Y(m, |1/, JT + 1))
and
(3.11)  limxewm (e, 05| X) = 73000, 5] X) .= Y0 | 8ay N + Lo (s |85, N + L),

where 1 is the vector containing all ones, 0. = ., ---,6;.)and 8, = @., .- ., 6.5). Thus
for small or large values of K, the posterior density 7; can be approximated by the simpler
asymptotic densities 71 and 77 respectively. Next, rewrite the posterior expectation (3.9)
as

71(Nas M| X) |,
aey] ———— = b 9 me| X) A d
Ln "b’{#{(na,mlx} {(as Mo | X) dno dns

m(na,anX)} v
g - ( as X) d ad
J;{W‘l’(na,anX) e, o] x) e e

(3.12) E(Mamy|x) =

>

where 7{ is one of the two limiting densities. Finally, to approximate the integrals in (3.12)
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TABLE 2
Computed values of the maximum likelihood estimates (K = 0), “independence” estimates (K = x)
and posterior means for different values of K

K 0 200 400 600 1000 2000 ®
b, .107 .120 124 127 .130 1133 136
b:o 122 111 106 103 1100 098 095
021 483 AT0 466 463 460 457 454
b2 288 300 304 307 310 312 316

using simulation, n, sets of values of (., 1») are randomly generated from the Dirichlet
densities of 7. Call these randomly generated values (dim, - -+, dim, €1m, -+, €gm), m =1,
.+, ng. Then (3.12) is approximated by
Z::O=1 dimejm‘”l(dm, €nm I x)/'”(ll(dm’ €n | x)

E’r:{)=l T1(dm, €m | x)/'”(ll(dm, €m | X) ’
where d,, = (dim, - -+, din) and €, = (eéim, - - -, €sm). In the situation where K is large and
the asymptotic density =} is used, the approximation (3.13) reduces (in the case where
L,,)\ai = Lb>\bj =1 for all l,]) to
Zfr{;l dtmejmr-[k,/(deme/’m)(xh’)/(nkdi};hnﬁ'e?;r’z

ZZ"=1 I, (Kdpmerm ) =) [ (I pdisI1 %)

(3.13)

(3.14)

Several additional comments should be made concerning this computational method.
First, in the large K situation, each summand in (3.14) was computed by first computing
the natural log of each individual term (the log of (Kdyme:m)**’ was computed by first
expressing it as a ratio of gamma functions and then using the IMSL procedure DLGAMA),
combining the logs of the terms and then taking the exponential of the result. Second, this
method can also be used to compute the posterior means in the symmetry situation, with
the densities 7} and #3 replaced by the corresponding limiting distributions of 5 *.

In Table 2, values of the posterior means, given in (3.6), are calculated (numerically
using the approximation (3.14)) for different values of the prior parameter K. These
estimates were computed in each example using no, = 5000 iterations and requiring 42
seconds of CPU time. When the estimates were recomputed using a new set of 5000 values
of (d, ex), the new estimates deviated no more than .001 (in each cell) from the estimates
presented in Table 2. It appears that 5000 iterations are adequate in obtaining reasonably
accurate approximations to the posterior means (3.6) for tables as large as 10 X 10, though
a larger number of iterations may be required to estimate small cell probabilities. (One 10
X 10 example required 7 minutes and 20 seconds of CPU time.) Since this computational
method simulates values from the limiting density =3, this method appears to work best
for large values of K. However, in many examples, this procedure appears to give stable
values for even moderate values of K and wé would recommend the use of the alternative
density 71 only when K is chosen small.

In addition to the numerically computed posterior means, Table 2 gives the values of
the estimators in the limiting cases K = 0 and K = «. Note that as the value of K increases
from 200 to 2000, the posterior means shrink the maximum likelihood estimates {x,/N}
towards the independence estimates {(x;. + 1)(x., + 1) /(N + 2)?}. These posterior estimates
reflect the imprecise prior belief in independence by compromising between estimates
assuming an unsaturated model and estimates assuming an independence model.
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