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SPHERICALLY SYMMETRIC PROBABILITY ORDERINGS USEFUL
IN MULTIPLE COMPARISONS'

By ROBERT BOHRER AND HENRY P. WYNN

University of Illinois (Urbana) and Imperial College (London)

The statement that one region has more probability content than another
with respect to all spherically symmetric (rotation invariant) distributions is
a partial ordering among such regions. A simple geometric characterization of
this ordering is given for star-shaped regions containing the origin. This
characterization has several different interpretations. New techniques, ine-
qualities, and examples are produced from this geometrical approach. The
results have particular application to simultaneous confidence levels.

1. Introduction.

1.1 Background. Test sizes and confidence levels for simultaneous inference about
many parameters can often be expressed in terms of the probability content of certain
regions with respect to known multivariate distributions such as the normal or Student ¢.
Thus F and Chi squared tests give rise to spherical regions. For simultaneous tests and
confidence intervals concerning several individual parameters or for comparisons with a
control, hypercubes or rhombi may be needed. More complex regions may arise, for
example, from tests based on Studentized range procedures. Details may be found in
Scheffé (1959), Miller (1966), Wynn and Bohrer (1978), or in review articles such as O’Neill
and Wetherill (1971), Spjstvoll (1974), and Miller (1977). A number of useful inequalities
have been derived for comparing the probability contents of such regions. Thus, the papers
of Dunn (1958), Slepian (1962), Sidak (1967), Jogdeo (1970), Das Gupta et al. (1972), and
Wynn (1977) discuss the probability content of some standard figures or their generaliza-
tions with respect to particular or arbitrary spherically symmetric distributions.

In this paper we give a simple geometric approach leading to a rather different style of
proof. The techniques are simplified and exemplified in the case of Scheffé sets (Section
2.1), in a partial ordering for correlation matrices (Section 2.1), in new perspectives on the
work of Wynn (1977) (Section 2.2), in the use of facial distributions to compare measures
of solids with congruent faces (Section 3.1), and in two methods for ordering the three-
dimensional Platonic and Studentized range solids with some statistical interpretations
(Sections 3.2 and 3.3).

1.2 Characterization. Let X = (X;, Xy, -+, X,)’ be a random vector in £" with a
spherically symmetric distribution. Thus, if u is the probability measure associated with X,
then for any rotation, P, about the origin, O, and for any measurable set, A, we have
p[ P(A)] = u(A). It is convenient to represent the random vector X in £”" by putting X
= RS, where R = || X| and S = X/|| X||(X # 0) are the length of X and its direction,
interpreted as a point on %, the surface of the unit sphere in # ". With this representation
in terms of R and S, the measure p can be rewritten as the product of a probability
measure, ug, on [0, ) and uniform measure, us, on %. Thus, p = pr X pus. The random
variables associated with pur and ps are denoted R and S.
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A star-shaped region, ., in #" is a region such that for every s in .%, the set of ¢ for
which cs is in #is a closed interval, [0, H(s)] (say), or [0, =], in which we interpret H (s)
= o0, Thus, for any X in a star-shaped set H, ¢cX is in H for 0 < ¢ < 1, and H includes its
boundary, although this may, in some directions, be at o.

For two regions, H and H*, in #", we denote H > H* if and only if u(H) > u(H*) for
all spherically symmetric u. The purpose of the present paper is to investigate this partial
ordering “>". Note that we write H = H* if u(H) = u(H*) for every spherically symmetric
p. This holds trivially if H = P(H*) for some rotation P. We sometimes use this fact
implicitly.

For any star-shaped region, H, and any direction, s, we have H(s) = sup{c: ¢s € H}, so
that H(s) is the distance to the boundary of H from the origin, 0, in the direction s. Now
if S is uniformly distributed on %,, then H(S) is a random variable. For r positive, define
the distance distribution of H to be Fr(r) = us[ H(S) < R]. Note the use of <, rather than
<, in this definition. With these definitions, we can give a simple geometric characterization
of the partial ordering >.

THEOREM 1. For two star-shaped regions, H and H*, in ",
@) H>H*
if and only if
(ii) Fu(r) < Fu-(r) forallr > 0.

Proor. For any spherically symmetric u = pr X ps and for any star-shaped set G,
w(G) = [§ ps{s: G(s) > r} dur(r) = [§ [1 — Fs(r)] dur(r). From this, if (ii) holds, then (i)
follows.

Now assume (i), i.e., that u(H) > p(H*) for all spherically symmetric measures p.
Consider p = pr X us, where pgr puts unit mass at R = r*. Then the distribution Fr(r)
takes a single, unit step at r*, so that for any star-shaped set G, we have

p(G) =J Fr(G(s)) dus(s) =J dps(s) =1 — Fa(r*),
S, G*

n

where G* = {s: G(s) > r*}. Applying this with G = H and G = H* and using (i) gives
Fy(r*) = Fg+(r*) for arbitrary r*, which completes the proof.

The distance distribution, Fy, is a purely geometrical quantity. Analytically, it can be
easier to deal with than the partial ordering >, to which it is so closely related by Theorem
1.

2. Partial Orderings of Scheffé Sets.

2.1 Scheffé sets. One type of convex, star-shaped region arises naturally from the
theory of simultaneous confidence intervals. These “Scheffé sets” originated in the work
of Working and Hotelling (1929), were generalized by Scheffé (1953), and appear in the
constrained extensions studied by Bohrer (1967, 1969), Bohrer and Francis (1972a, b),
Wynn and Bloomfield (1971), and Wynn (1975, 1977).

Let X have a spherically symmetric distribution in £ ", and let ¢ denote the variance

of X;fori=1, ..., n. Typical of the type of set measured in simultaneous inference is the
set of all X such that
(1) a’X < K[Var(a’X)]"? forallainA,

where A is a given set of n-vectors. Since the X, are uncorrelated, (1) can be rewritten as
a’X < Ko|a] foralainAors’X=c¢ forallsins,

where S* = {s: s =a/| al|, ain A} and where ¢ = Ko.
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With this motivation and for given ¢ > 0 and S any set of unit vectors, we define the
Scheffé set H = {X: s'X < ¢ for all s in S}. This is merely the intersection of all the half-
spaces on the origin sides of the hyperplanes {X: s'X = c}, which are tangent to the sphere
of radius ¢ and perpendicular to s, for all s in S. Such regions are convex, contain the
origin, and, hence, are star-shaped.

For Scheffé sets, H, the distance to the boundary, H (s), is monotonically related to two
other quantities, which are of interest to investigate. Suppose that S = {sy, 83, + - -8} is
finite, so that ¢s,, i = 1, - - ., u, are the tangent points of the faces of H to the sphere ¢%,.
Suppose that the points s, are distinct and that H is bounded. For a given point H(s)s of
the boundary of H, suppose that it lies in the hyperplane {X: s,/X = ¢}. Thus H(s) s; =
¢, or H(s) = c/(s’sy) where s's; is the maximum over i = 1, ..., m of s’s,. We may
interpret 6(s) = arccos(sys.), where 0 < 6 < 7/2, as the angle between s and s, and cl(s)
as the geodesic distance in the c-sphere between cs and the nearest tangent point, cs..
Thus, H(s) is a monotonic function of this geodesic distance. We cite the consequence of
this relationship as a corollary to Theorem 1.

CoroLLARY 1. Let X have a spherically symmetric distribution in #". For ¢ positive
and finite, two sets, S and S*, of unit vectors define two Scheffé sets, H and H*, for which
H > H* if and only if, for S distributed uniformly in &%,,

ps(supss’S < r) = us(sups+s’'S < r)

for all positive r.

The statement in Corollary 1 imposes a partial ordering on correlation matrices in the
following sense. Let S denote a set of m* unit vectors and let S* denote a set of m* unit
vectors, all in £2". Let Z (n X m) and Z*(n X m*) denote the matrices with these vectors
as the respective columns. Then Z'Z and Z*'Z* are correlation matrices. The element in
row i and column j is the correlation of s;X with s/X, where s, is the Ath unit vector from
S* or §**, respectively. Corollary 1 can be interpreted to say that Z*'Z* > Z*'Z* in the
sense that the maximum correlation between a randomly chosen S’X and its “nearest”
S5X is stochastically larger for the set S than for S*. The authors consider that this rather
strong partial ordering will have application elsewhere in multivariate analysis. The
Platonic figures of Section 3.2 provide examples.

The second quantity related monotonically to H(s) is the distance in the face of H from
the boundary point H(s)s to the tangent point, cs; (say), viz.,

D(s)* = || H(s)s = cs,|* = H(s)” = c*.

We shall return to the use of faces in Section 3.

2.2 The Scheffé sets for n = 2. As an application of Section 2.1, we rework the main
result of Wynn (1977). Suppose that n = 2 and that S* = {s,:i =1, --., m} consist of m
distinct vectors defining, for ¢ > 0, a bounded Scheffé set, H. Suppose the points s, are
labeled in order around the unit circle, S;. Define 6, = arccos(s.s,.;) for i = ,.--,m—1
and 6, = arccos(s;.s1). These 6, are thus the angles subtended at the origin by the
neighboring tangent points. Since the s, are distinct and since H is bounded, it follows that
0 < 0. < 7 for all i and that =, = 2. Without loss of generality, order the angles so that
0.+1 = 0,. Now take a random S on %, and write §(S) = arccos(S’s;), where S’s; =
sup(S’s,) = 0. Now the distance distribution is

Fu(ry=ps{s:H(s) <r} =ps{s:c/(s'sy) <r} =ps{0 < 8(S) < ¢},
where ¢ = arccos(c/r). Thus

Fu(r) =1—ps(0(S) = ¢) =1 - Z(6, — ¥)*/(2m).
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Thus, for two such figures, H and H*, we have H > H* if and only if
(2) 20, — )" > Z(0F — )T

for all ¥ in [0, 7].

Now note that the case where 6,, = 7 can be dealt with by allowing a mass of probability
at @ = =, which does not change the condition.

In Theorem 2 of Wynn (1977), a sufficient condition also was given. Set m = m* by
including “dummy” values of § = 0 for the figure with fewer angles. Then (2) is equivalent
to

YErO. =YL 07, k=2 ..., m.

This condition, together with the condition that the angles sum to 27, is exactly the
condition that the vector # majorizes the vector 8*, and the sufficient conditions follow
immediately. This fact is a consequence of Theorem 8 in Hardy, Littlewood, and Polya
(1929), as noted by Marshall and Olkin (1979) (Proposition E’ et seq.). It follows that
m(H) is a Schur convex function of §. There seems to be no simple extension of this result
to higher dimensions solely in terms of angles, although the methods of the next section
give a partial solution.

3. Facial distributions.

3.1 Using faces. As mentioned in Section 2.1,
(3) D(S)* = H(S)* - c?,

where D(S) is the distance to the nearest tangent point, ¢s.;. In comparing two polyhedral,
Scheffé sets, it is natural to consider the (n — 1)-dimensional faces. Let H be a closed
Scheffé region defined by ¢ > 0 and finitely many distinct unit vectors, S = {s,:i = 1,
.++, m}. The uniform distribution on & induces a spherically symmetric distribution on
the “facial” planes {x:s8'x = ¢} for i = 1, ..., m. The facial probability distribution
analogous to F(r) we denote by

Fp(d) =ps{s:D(s) =d} =Y, us(ss=s)us{s:D(s) = d|ss=s,}

where, as in Section 2.1, s; is the S-vector which is closest to the random direction S.

One difficulty in measuring general polyhedral regions, H, is that the faces are often
very different in shape. Suppose, however, that H is regular, in the sense that all its faces
are congruent, as, for example, obtains when H is one of the Platonic solids or any other
of the classically regular polyhedra. That is, for every pair of faces, there is a rotation of
the one onto the other. Then

Fo(d) = ps{D(S) = d|s; = s},

so that we need to consider only one face. If that one face were the entire hyperplane, H,
= {X:s1X = c}, then

us{D(S) = d|H:) = ps{0(S) = arccos[c®/(c® + d*)]V*| H,}

t
= kf sin" " }(u) du,
[}
where ¢ = arccos[c?/(c® + d®)]"* and % [§" sin""*(u) du = 1. In this case, the density for
D(S) is then
fo(d| Hy) = ked™ 2/ (c® + d*)".

Now the face perpendicular to s; is a proper subset of the hyperplane H,, so at a distance,
d, the previous density is multiplied by m, to account for the m faces, and reduced by
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4) A(d) = the proportion of the content of the surface of S(d)
which is contained in the Scheffe set face,

where S(d) is the (n — 1)-dimensional sphere of radius d, lying in the Scheffe set face and
with center at the tangent point, s;. Thus,

fo(d) = mkedA(d)/(c® + d?)™.

The dependence of this density on angles is thus through A (d), which is the solid angle cut
by the face in the surface of S(d). Since the faces are convex, this solid angle decreases
from unity when d = 0%, i.e., in a neighborhood of the tangent point s, to 0 when the face
is wholly within the sphere S(d).

Now a necessary and sufficient condition for H > H* in comparing two Scheffé sets
defined with the same ¢ > 0 is that Fip(d) < Fp-(d) for all d > 0. If each of the two figures
has (separately) congruent faces, then H > H* is equivalent to

ps{D(S) < d|ss=s1} = ps{D*(S) < d|s} =s}) forall d>0,

in an obvious notation. We now use these ideas to give a useful sufficient condition.

THEOREM 2. Let H and H* be two Scheffé sets tangent to the same sphere of radius
¢, having m and m* (separately) congruent faces, respectively. Suppose that (i) m < m*,
(ii) max H(s) = max H*(s), where the maximum is over all s in %, and (iil) mA(d) —
m*A*(d) has at most one sign change from + to — as d goes from 0% to «. Here, A and
A* are the solid angles defined, as in (4), in the definitions of fo and fp+. Then H > H*.

ProOOF. Sincem =m* and A(0*) = A*(0*) = 1, it follows that
fo(0%) — fp-(0) = 0.

Moreover, there is only one sign change in fo(d) — fp-(d). Thus, Fp:(d) — Fp(d) is non-
negative and increasing at 0%, increases to a maximum as d increases, and then decreases.
By virtue of (ii), Fpp then attains the maximum value, unity, at a smaller d-value than Fp,.
Thus, Fp-(d) = Fp(d) for all d, and the proof is complete.

3.2 Ordering the Platonic solids. 'To illustrate the method of Section 3.1, a complete
ordering of the Platonic solids in three dimensions is given. These solids are: H (4), the
tetrahedron (4 triangular faces); H(6), the cube (6 square faces); H(8), the octahedron (8
triangular faces); H(12), the (pentagonal) dodecahedron (12 pentagonal faces); and H(20),
the icosahedron (20 triangular faces).

The intuition suggests that if all these solids are scaled so that their faces are tangent
to the same (inscribed) sphere then they are ordered so that their probability content,
with respect to any spherically symmetric distribution, decreases as their number of faces
increases. As a special case, it is easy to show, using Table I in Coxeter (1948), that their
volumes are so ordered. The present result thus generalizes the volume comparison by
showing that ordering persists for the area of intersection with every spherical shell.

Two of these Platonic solids arise as the regions measured to set critical points for
confidence region or testing multiple comparison procedures. The cube arises in any
procedure which requires the (possibly Studentized) maximum modulus distribution. See
Miller (1966) and Bohrer (1979).

The other figure with an interesting statistical intepretation is the tetrahedron, which
arises from a slippage test as follows. Let X,, i = 1, - .-, 4, be four independent normal,
N(6,, v), random variables. For example, these might be means of n-samples from a “usual”
one-way layout, as in Scheffé (1959), Section 2.1 and Chapter 3. Consider the uniformly
most powerful unbiased test of Hy: 6, = 6, = 6; = 6, against alternative H,: 6, = 0, + & for
8 > 0 and for all j # i. Namely, this test rejects H, if X, — X. is too large, where X. is the
sample average of the X,. If all four of these tests, all having the same size, are performed
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simultaneously, then

(i) the simultaneous acceptance region is a cylinder whose base is H(4), and

(ii) the multiple test is optimal in the sense of Spjstvoll (1972), i.e., it maximizes the
minimum power among unbiased tests having the same (or smaller) expected number of
Type I errors.

The technique for establishing the claimed ordering is first to orient the solids so that
all are centered at the origin with faces tangent to the sphere of radius c. Denoting the
facial distribution for the m-faced Platonic solid by Fpu)(d), we then show that these
distributions are ordered. Since all the faces are congruent and since rotation of faces does
not alter their spherically symmetric probabilities, we can “stack up” faces, with common
center, as convenient.

(i) (tetrahedron versus cube). The tetrahedron has four triangular faces with side
c2 \/6, and the cube has six square faces of side 2¢. A square face is seen to be a subset of
a triangular face when a side of one is rotated parallel to a side of the other. It is clear that,
for 0 < d < ¢, Fpe(d) = 1.5Fpu(d) and that, for d > C\/§, Fpe(d) =1, its maximum
value. Fore < d < C\/é, the rate of increase of Fpe)(d) — Fpu) (d) decreases continuously,
since more of the circle of radius d falls outside the square face than the triangular face.

(ii) (cube versus octahedron). The octahedron has eight triangular faces of side ev6.
Picture all the faces with common center and the following orientation. For each of the
two solids, rotate its “stacked up” faces so that they form a symmetric, regular, 24-pointed
star, neighboring faces oriented at 15° from each other. Both stars have their points at
distance ¢v/2 from the center, and the two stars can be rotated so that their points coincide.
In this position, the angles at the points of the octagon-star are contained in the corre-
sponding angles of the cube-star. It is clear then that, for ¢ < d < C\/é, Fpe(d) >
Fpe (d), with both values being unity for d > V2. For0<d< ¢, the quantity 6 As(d) =
6 (cf. (4)), while 8 Ag(d) =8for0< d < c/\/§ and then decreases for c/s@ < d < c. Thus
the condition of Theorem 2 obtains.

(iii) (octahedron versus dodecahedron). The twelve pentagonal faces of the dodeca-
hedron, H(12), have sides 4c¢(10 + 22/v5)/2 = 4.403c, which are not “subsets’ of the
triangular faces of H(8). The radii of the circles inscribed in the faces of H(12) and H(8)
are given, respectively, by di(12) = .5¢(6 —2v5)"/? = 618c and d;(8) =cv2 = .707c, and
the circumscribing circle radii are d»(12) = c¢(14 — 6v5)"? = 764c and d»(8) = cv2 =
1.414c¢. Since d1(12) < d:(8) < d2(12) < d»(8), Theorem 2 says that it suffices to verify that
8 Ag(di(12)) — 12 A12(d2(8)) > 0. Indeed, this difference, approximately 2.725, is positive.

(iv) (dodecahedron versus icosahedron). The faces of H(12) and H(20) have the same
total number of vertices (12X5 = 20X3); and their circumcircle radii are identical, viz., c¢(14
— 6v5)/2 = 764c. The vertex angles of the H(12) faces is larger than for H(20) (72° >
60°). Thus an argument completely analogous to that comparing the cube and octahedron
proves that the dodecahedron dominates the icosahedron.

3.3 Placing the rhombic dodecahedron. For statistical and geometrical reasons, it is of
interest to consider the semi-regular, three-dimensional dodecahedron with rhombic faces,
H’(12); cf. Coxeter (1963). This solid has facial semi-axes of ¢ and ¢/ V2 when its inscribed
sphere has radius c¢. This rhombic dodecahedron is the figure whose uncorrelated trivariate
normal (or corresponding Student ¢) probability is measured in determining P(R < c¢),
where R is a (Studentized) range random variable with four (numerator) degrees of
freedom.

Theorem 2 can be used to place H’(12) into the ordering of the Platonic solids, between
H(8) and H(12). Note how this result, saying that the less regular dodecahedron has more
probability, and its derivation, through comparison of angles, are three-dimensional
extensions in the spirit of Wynn (1977).
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Fi6. 1. The angle functions, mA,(d), form = 4, 6, 8, 12, 20 and 124’(d) (m = 12').

The angle functions to be compared for the m-faced Platonic solids, H(m), are

m if0<d<di(m),
mA,,(d) = { m — mE (m)arccos(d:(m)/d) /7 if di(m) < d < dy(m)
0 otherwise,

where E (m) is the number of edges of each face and d, (m) and d.(m) are, respectively, the
incircle and circumcircle radii of the H(m) faces. With analogous trigonometry and
notation, the angle function for H’(12) is seen to be

12 ifo<d<c/V3
124%(d) = 12 — 48 arccos(1/(dv3))/x ife/V3<d<c/vV2
2% 012 — 24(arccos(V2/V3) + arccos(1/(dV3)) /7 ifc/\/§< d<c
0 otherwise.

This angle function for H’(12) is seen, by using some elementary, if tedious, analysis and
computation, to cross those for H(8) and H(12) exactly once, as required for Theorem 2 to
give the ordering claimed. A more delicate geometrical proof can be given in the spirit of
Section 3.2. The complementary methods of the present and previous sections are both
presented, since either may be more useful in other applications.

Figure 1 illustrates all six of the angle functions, mA,.(d), for H being the five Platonic
solids as well as H'(12). Inspection verifies the Theorem 2, one-crossing property, away
from the crossing-point, while some elementary analysis shows that only one crossing
occurs near the crossing of each pair of curves.
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work.
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