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A NOTE ON THE MINIMAX ESTIMATION OF THE POISSON
INTENSITY FUNCTION"

By ALBERT Y. Lo
University of Pittsburgh and Rutgers University

The empirical intensity function of the Poisson point process is shown to
be a nonparametric minimax estimator for a weighted quadratic loss function.

1. Introduction and summary. In this article, we will consider the minimax esti-
mation of a Poisson intensity function based on n independent realizations from the
Poisson point process. The technique we use is the frequently applied criterion of constant
risk given by Theorem 2.11.2 of Ferguson (1967). The applicability of this criterion depends
on the existence of a Bayes solution. Our approach is nonparametric and the results here
parallel the developments of Ferguson (1973) and Phadia (1973). We state their results
briefly.

In Ferguson (1973), a nonparametric Bayes estimate of the cumulative distribution
function with respect to the Dirichlet prior probability and a quadratic loss function was
derived. Subsequently, using the constant risk criterion, several minimax estimators of the
cumulative distribution function for different loss functions were obtained in Phadia (1973).
Since estimation of the Poisson intensity function and estimation of the cumulative
distribution function are similar problems, a nonparametric minimax estimator of the
Poisson intensity function can be obtained analogously provided that the Bayes solution
of the problem of estimating the Poisson intensity function is available. Exploiting the
constant risk criterion, a nonparametric minimax estimator is derived based on the Bayes
solution in Lo (1982).

In Section 2, we derive the minimax estimator of the Poisson intensity function for a
class of loss functions.

In the sequel N; = {N;(¢); t€ R},i=1, . .. , n, denotes n independent realizations from
a Poisson point process.

2. Nonparametric minimax estimation of the Poisson intensity function. The
parameter space { is the space of nondecreasing right continuous functions u(t), t € R,
such that p() < . Let the action space be identical to the parameter space. The loss
function is taken to be

2
1) i) = j {u(t) (t;ut)} W (o,

where W is a fixed member of £. We consider the following estimator of u,
2 1

2.2) £(6) =~ 32 Ni®), tE R,

We call /i(¢) the empirical intensity function.

PROPOSITION 2.1.
2 1
E,L(p, 1) =—J W (dt).
n R
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Proor. This is a simple consequence of the facts thatfor 1 =i#j<n
E,Ni(t) = p(t), E.Nit)N;(t) = p*@t), E.Ni2) = p’(t) + p(@).

The following theorem states the main result.

THEOREM 2.1. If Ny, Ny, ---, N, is a sample of size n from a Poisson point process
with intensity function p, the empirical intensity function defined by

2 1
p(t) = ;2;"’::1 Ni(t), tE R,

is @ minimax estimator of p with respect to the loss function L in (2.1), the parameter
space Q and the action space identical to Q.

Proor. Using the notations in Lo (1982), let Z,, s be a weighted Gamma probability
on Q with 8 > 0, and a, = ¢8_; where £ is a positive integer and ¢ > 1. We compute the
Bayes risk with respect to the prior law £, ; on Q and the loss function L(p, i) as follows.
Denote the Bayes risk by

oA 2
EL(p,;i)=f gl 2O w0y,

R p(2)

On the set of ¢ such that ax(t) > 1, the above quantity can be reduced to

B -1
2.3 J;J’ [(1 T n,B) {a(t) — 1+ ENi(t)}} L {n@®

— ()Y’ Po1e3n,p04npr(dp) @ (AN)W (1),

where N” is the n-fold product space of the Poisson point process and @(dN) is the
marginal distribution of the n point processes; that @ (dN) is the joint distribution of n
negative binomial point processes is shown in Example 3.1 of Lo (1982). This means that
the Bayes estimate i is given by the posterior mean, where a;, becomes o, — 1; i.e.

0 if ou(t) =0 Gff t < —F),

() = 8
[ar(t) — 1+ 2Ni(t)](m>, if an(t) >0 Gff —k<t).
Note also that the innermost integral of (2.3) becomes the posterior variance after ay is
updated to a; — 1. Thus, the innermost integral of (2.3) becomes, via Proposition 2.1 in Lo
(1982), '

2
L {p(t) — Ii(t)}2%h—1+2Nl,ﬂ(1+nﬂ)-l(d,U«) = {ar(t) — 1+ ENi(t)}(l +'8n,8> , —k=t.

The next step is to evaluate the second integral of (2.3). Note that, if —& < ¢, the second
integral becomes

B - B\ B
Ln[(l+nﬁ){ak(t)—1+2Ni(t)}:| {ak<t>—1+zzvi<t>}(l+nﬂ) QEN) =1

Thus, the Bayes risk becomes

B o
mlk W (dt),
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and with B = k, as £ — o this converges upward to

lj w(dt),
n Jr

which is the constant risk of the empirical intensity function. We have proved the theorem.
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